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PREFACE
Welcome to Algebra and Trigonometry, an OpenStax College resource. This textbook has been created with several goals in
mind: accessibility, customization, and student engagement—all while encouraging students toward high levels of academic
scholarship. Instructors and students alike will find that this textbook offers a strong foundation in algebra and trigonometry
in an accessible format.

About OpenStax College
OpenStax College is a non-profit organization committed to improving student access to quality learning materials. Our
free textbooks go through a rigorous editorial publishing process. Our texts are developed and peer-reviewed by educators
to ensure they are readable, accurate, and meet the scope and sequence requirements of today’s college courses. Unlike
traditional textbooks, OpenStax College resources live online and are owned by the community of educators using them.
Through our partnerships with companies and foundations committed to reducing costs for students, OpenStax College is
working to improve access to higher education for all. OpenStax College is an initiative of Rice University and is made
possible through the generous support of several philanthropic foundations. OpenStax College textbooks are used at many
colleges and universities around the world. Please go to https://openstaxcollege.org/pages/adoptions to see our rapidly
expanding number of adoptions.

About OpenStax College’s Resources
OpenStax College resources provide quality academic instruction. Three key features set our materials apart from others:
they can be customized by instructors for each class, they are a "living" resource that grows online through contributions
from educators, and they are available free or for minimal cost.

Customization
OpenStax College learning resources are designed to be customized for each course. Our textbooks provide a solid
foundation on which instructors can build, and our resources are conceived and written with flexibility in mind. Instructors
can select the sections most relevant to their curricula and create a textbook that speaks directly to the needs of their classes
and student body. Teachers are encouraged to expand on existing examples by adding unique context via geographically
localized applications and topical connections.

Algebra and Trigonometry can be easily customized using our online platform (http://cnx.org/content/col11758/latest/).
Simply select the content most relevant to your current semester and create a textbook that speaks directly to the needs of
your class. Algebra and Trigonometry is organized as a collection of sections that can be rearranged, modified, and enhanced
through localized examples or to incorporate a specific theme to your course. This customization feature will ensure that
your textbook truly reflects the goals of your course.

Curation
To broaden access and encourage community curation, Algebra and Trigonometry is “open source” licensed under a
Creative Commons Attribution (CC-BY) license. The mathematics community is invited to submit feedback to enhance
and strengthen the material and keep it current and relevant for today’s students. Submit your suggestions to
info@openstaxcollege.org, and check in on edition status, alternate versions, errata, and news on the StaxDash at
http://openstaxcollege.org.

Cost
Our textbooks are available for free online, and in low-cost print and e-book editions.

About Algebra and Trigonometry
Written and reviewed by a team of highly experienced instructors, Algebra and Trigonometry provides a comprehensive
and multi-layered exploration of algebraic principles. The text is suitable for a typical introductory algebra course, and was
developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular
approach and the richness of content ensures that the book meets the needs of a variety of programs.

Algebra and Trigonometry guides and supports students with differing levels of preparation and experience with
mathematics. Ideas are presented as clearly as possible, and progress to more complex understandings with considerable
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reinforcement along the way. A wealth of examples – usually several dozen per chapter – offer detailed, conceptual
explanations, in order to build in students a strong, cumulative foundation in the material before asking them to apply what
they’ve learned.

Coverage and Scope
In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of
student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility
in instruction.

Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors
recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a
cohort that need the prerequisite skills built into the course.

Chapter 1: Prerequisites

Chapter 2: Equations and Inequalities

Chapters 3-6: The Algebraic Functions

Chapter 3: Functions

Chapter 4: Linear Functions

Chapter 5: Polynomial and Rational Functions

Chapter 6: Exponential and Logarithm Functions

Chapters 7-10: A Study of Trigonometry

Chapter 7: The Unit Circle: Sine and Cosine Functions

Chapter 8: Periodic Functions

Chapter 9: Trigonometric Identities and Equations

Chapter 10: Further Applications of Trigonometry

Chapters 11-13: Further Study in Algebra and Trigonometry

Chapter 11: Systems of Equations and Inequalities

Chapter 12: Analytic Geometry

Chapter 13: Sequences, Probability, and Counting Theory

All chapters are broken down into multiple sections, the titles of which can be viewed in the Table of Contents.

Development Overview
Openstax Algebra and Trigonometry is the product of a collaborative effort by a group of dedicated authors, editors, and
instructors whose collective passion for this project has resulted in a text that is remarkably unified in purpose and voice.
Special thanks is due to our Lead Author, Jay Abramson of Arizona State University, who provided the overall vision for
the book and oversaw the development of each and every chapter, drawing up the initial blueprint, reading numerous drafts,
and assimilating field reviews into actionable revision plans for our authors and editors.

The collective experience of our author team allowed us to pinpoint the subtopics, exceptions, and individual connections
that give students the most trouble. And so the textbook is replete with well-designed features and highlights, which help
students overcome these barriers. As the students read and practice, they are coached in methods of thinking through
problems and internalizing mathematical processes.

For example, narrative text is often followed with the “How To” feature, which summarizes the presentation into a series
of distinct steps. This approach addresses varying learning styles, and models for students an important learning skill for
future studies. Furthermore, the extensive graphical representations immediately connect concepts with visuals.

Accuracy of the Content
We understand that precision and accuracy are imperatives in mathematics, and undertook a dedicated accuracy program
led by experienced faculty.

1. Each chapter’s manuscript underwent rounds of review and revision by a panel of active instructors.

2. Then, prior to publication, a separate team of experts checked all text, examples, and graphics for mathematical
accuracy; multiple reviewers were assigned to each chapter to minimize the chances of any error escaping notice.
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3. A third team of experts was responsible for the accuracy of the Answer Key, dutifully re-working every solution to
eradicate any lingering errors. Finally, the editorial team conducted a multi-round post-production review to ensure
the integrity of the content in its final form.

The Solutions Manual, which was written and developed after the Student Edition, has also been rigorously checked for
accuracy following a process similar to that described above. Incidentally, the act of writing out solutions step-by-step
served as yet another round of validation for the Answer Key in the back of the Student Edition. In spite of the efforts
described above, we acknowledge the possibility that—as with any textbook—some errata may have been missed. We
encourage users to report errors via our Errata (https://openstaxcollege.org/errata) page.

Pedagogical Foundations and Features 

Each chapter is divided into multiple sections (or modules), each of which is organized around a set of learning objectives.
The learning objectives are listed explicitly at the beginning of each section, and are the focal point of every instructional
element

Narrative text
Narrative text is used to introduce key concepts, terms, and definitions, to provide real-world context, and to provide
transitions between topics and examples. Throughout this book, we rely on a few basic conventions to highlight the most
important ideas:

Key terms are boldfaced, typically when first introduced and/or when formally defined

Key concepts and definitions are called out in a blue box for easy reference.

Key equations, formulas, theorems, identities, etc. are assigned a number, which appears near the right margin.
Occasionally the text may refer back to an equation or formula by its number.

Examples
Each learning objective is supported by one or more worked examples, which demonstrate the problem-solving approaches
that students must master. The multiple Examples model different approaches to the same type of problem, or introduce
similar problems of increasing complexity.

All Examples follow a simple two- or three-part format. The question clearly lays out a mathematical problem to solve.
The Solution walks through the steps, usually providing context for the approach—in other words, why the instructor is
solving the problem in a specific manner. Finally, the Analysis (for select examples) reflects on the broader implications of
the Solution just shown. Examples are followed by a “Try It,” question, as explained below.

Figures
Openstax Algebra and Trigonometry contains figures and illustrations, the vast majority of which are graphs and diagrams.
Art throughout the text adheres to a clear, understated style, drawing the eye to the most important information in each
figure while minimizing visual distractions. Color contrast is employed with discretion to distinguish between the different
functions or features of a graph.

Supporting Features
Four unobtrusive but important features, each marked by a distinctive icon, contribute to and check understanding.
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A “How To” is a list of steps necessary to solve a certain type of problem. A How To typically precedes an
Example that proceeds to demonstrate the steps in action.

A “Try It” exercise immediately follows an Example or a set of related Examples, providing the student with
an immediate opportunity to solve a similar problem. In the Web View version of the text, students can click an Answer
link directly below the question to check their understanding. In the PDF, answers to the Try-It exercises are located in the
Answer Key.

A Q&A may appear at any point in the narrative, but most often follows an Example. This feature pre-empts
misconceptions by posing a commonly asked yes/no question, followed by a detailed answer and explanation.

The “Media” icon appears at the conclusion of each section, just prior to the Section Exercises. This icon
marks a list of links to online video tutorials that reinforce the concepts and skills introduced in the section.

Disclaimer: While we have selected tutorials that closely align to our learning objectives, we did not produce these tutorials,
nor were they specifically produced or tailored to accompany Openstax Algebra and Trigonometry. We are deeply grateful
to James Sousa for compiling his incredibly robust and excellent library of video tutorials, which he has made available to
the public under a CC-BY-SA license at http://mathispower4u.yolasite.com/. Most or all of the videos to which we link in
our “Media” feature (plus many more) are found in the Algebra 2 and Trigonometry video libraries at the above site.

Section Exercises
Each section of every chapter concludes with a well-rounded set of exercises that can be assigned as homework or used
selectively for guided practice. With over 6300 exercises across the 13 chapters, instructors should have plenty to choose
from[1].

Section Exercises are organized by question type, and generally appear in the following order:

Verbal questions assess conceptual understanding of key terms and concepts.

Algebraic problems require students to apply algebraic manipulations demonstrated in the section.

Graphical problems assess students’ ability to interpret or produce a graph.

Numeric problems require the student perform calculations or computations.

Technology problems encourage exploration through use of a graphing utility, either to visualize or verify algebraic
results or to solve problems via an alternative to the methods demonstrated in the section.

Extensions pose problems more challenging than the Examples demonstrated in the section. They require students
to synthesize multiple learning objectives or apply critical thinking to solve complex problems.

Real-World Applications present realistic problem scenarios from fields such as physics, geology, biology,
finance, and the social sciences.

Chapter Review Features
Each chapter concludes with a review of the most important takeaways, as well as additional practice problems that students 
can use to prepare for exams.

Key Terms provides a formal definition for each bold-faced term in the chapter.

1. 6,367 total exercises. Includes Chapter Reviews and Practice Tests.
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Key Equations presents a compilation of formulas, theorems, and standard-form equations.

Key Concepts summarizes the most important ideas introduced in each section, linking back to the relevant
Example(s) in case students need to review.

Chapter Review Exercises include 40-80 practice problems that recall the most important concepts from each
section.

Practice Test includes 25-50 problems assessing the most important learning objectives from the chapter. Note that
the practice test is not organized by section, and may be more heavily weighted toward cumulative objectives as
opposed to the foundational objectives covered in the opening sections.

Answer Key includes the answers to all Try It exercises and every other exercise from the Section Exercises,
Chapter Review Exercises, and Practice Test.

Ancillaries
OpenStax projects offer an array of ancillaries for students and instructors. Currently the following resources are available.

Instructor’s Solutions Manual

Student’s Solutions Manual

PowerPoint Slides

Please visit http://openstaxcollege.org to view an up-to-date list of the Learning Resources for this title and to find
information on accessing these resources.

Online Homework

WebAssign is an independent online homework and assessment solution first launched at North Carolina State University
in 1997. Today, WebAssign is an employee-owned benefit corporation and participates in the education of over a million
students each year. WebAssign empowers faculty to deliver fully customizable assignments and high quality content to their
students in an interactive online environment. WebAssign supports College Algebra with hundreds of problems covering
every concept in the course, each containing algorithmically-generated values and links directly to the eBook providing a
completely integrated online learning experience.

XYZ Homework provides powerful online instructional tools for faculty and students. Our unified learning environment
combines online assessment with MathTV.com video lessons to reinforce the concepts taught in the classroom. Randomized
questions provide unlimited practice and instant feedback with all the benefits of automatic grading.

About Our Team

Jay Abramson has been teaching Precalculus for 33 years, the last 14 at Arizona State University, where he is a principal
lecturer in the School of Mathematics and Statistics. His accomplishments at ASU include co-developing the university’s
first hybrid and online math courses as well as an extensive library of video lectures and tutorials. In addition, he has served
as a contributing author for two of Pearson Education’s math programs, NovaNet Precalculus and Trigonometry. Prior to
coming to ASU, Jay taught at Texas State Technical College and Amarillo College. He received Teacher of the Year awards
at both institutions.

Contributing Authors
Valeree Falduto, Palm Beach State College

Rachael Gross, Towson University

David Lippman, Pierce College

Melonie Rasmussen, Pierce College
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1 | PREREQUISITES

Figure 1.1 Credit: Andreas Kambanls

Chapter Outline
1.1 Real Numbers: Algebra Essentials

1.2 Exponents and Scientific Notation

1.3 Radicals and Rational Expressions

1.4 Polynomials

1.5 Factoring Polynomials

1.6 Rational Expressions

Introduction
It’s a cold day in Antarctica. In fact, it’s always a cold day in Antarctica. Earth’s southernmost continent, Antarctica
experiences the coldest, driest, and windiest conditions known. The coldest temperature ever recorded, over one hundred
degrees below zero on the Celsius scale, was recorded by remote satellite. It is no surprise then, that no native human
population can survive the harsh conditions. Only explorers and scientists brave the environment for any length of time.

Measuring and recording the characteristics of weather conditions in in Antarctica requires a use of different kinds of
numbers. Calculating with them and using them to make predictions requires an understanding of relationships among
numbers. In this chapter, we will review sets of numbers and properties of operations used to manipulate numbers. This
understanding will serve as prerequisite knowledge throughout our study of algebra and trigonometry.
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1.1 | Real Numbers: Algebra Essentials

Learning Objectives

In this section students will:

1.1.1 Classify a real number as a natural, whole, integer, rational, or irrational number.
1.1.2 Perform calculations using order of operations.
1.1.3 Use the following properties of real numbers: commutative, associative, distributive,
inverse, and identity.
1.1.4 Evaluate algebraic expressions.
1.1.5 Simplify algebraic expressions.

It is often said that mathematics is the language of science. If this is true, then the language of mathematics is numbers. The
earliest use of numbers occurred 100 centuries ago in the Middle East to count, or enumerate items. Farmers, cattlemen,
and tradesmen used tokens, stones, or markers to signify a single quantity—a sheaf of grain, a head of livestock, or a fixed
length of cloth, for example. Doing so made commerce possible, leading to improved communications and the spread of
civilization.

Three to four thousand years ago, Egyptians introduced fractions. They first used them to show reciprocals. Later, they used
them to represent the amount when a quantity was divided into equal parts.

But what if there were no cattle to trade or an entire crop of grain was lost in a flood? How could someone indicate the
existence of nothing? From earliest times, people had thought of a “base state” while counting and used various symbols
to represent this null condition. However, it was not until about the fifth century A.D. in India that zero was added to the
number system and used as a numeral in calculations.

Clearly, there was also a need for numbers to represent loss or debt. In India, in the seventh century A.D., negative numbers
were used as solutions to mathematical equations and commercial debts. The opposites of the counting numbers expanded
the number system even further.

Because of the evolution of the number system, we can now perform complex calculations using these and other categories
of real numbers. In this section, we will explore sets of numbers, calculations with different kinds of numbers, and the use
of numbers in expressions.

Classifying a Real Number
The numbers we use for counting, or enumerating items, are the natural numbers: 1, 2, 3, 4, 5, and so on. We describe
them in set notation as  {1, 2, 3, ...} where the ellipsis (…) indicates that the numbers continue to infinity. The natural
numbers are, of course, also called the counting numbers. Any time we enumerate the members of a team, count the coins
in a collection, or tally the trees in a grove, we are using the set of natural numbers. The set of whole numbers is the set of
natural numbers plus zero:  {0, 1, 2, 3, ...}.

The set of integers adds the opposites of the natural numbers to the set of whole numbers:
 {..., −3, −2, −1, 0, 1, 2, 3, ...}. It is useful to note that the set of integers is made up of three distinct subsets: negative
integers, zero, and positive integers. In this sense, the positive integers are just the natural numbers. Another way to think
about it is that the natural numbers are a subset of the integers.

… , −3, −2, −1,
negative integers

0,
zero

1, 2, 3, ⋯
positive integers

The set of rational numbers is written as  ⎧⎩⎨mn  |m and n are integers and n ≠ 0⎫

⎭
⎬. Notice from the definition that rational

numbers are fractions (or quotients) containing integers in both the numerator and the denominator, and the denominator is
never 0. We can also see that every natural number, whole number, and integer is a rational number with a denominator of
1.

Because they are fractions, any rational number can also be expressed in decimal form. Any rational number can be
represented as either:

1. a terminating decimal:  15
8 = 1.875, or
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1.1

2. a repeating decimal:   4
11 = 0.36363636 … = 0.36

We use a line drawn over the repeating block of numbers instead of writing the group multiple times.

Example 1.1

Writing Integers as Rational Numbers

Write each of the following as a rational number.

a. 7

b. 0

c. –8

Solution
Write a fraction with the integer in the numerator and 1 in the denominator.

a. 7 = 7
1

b. 0 = 0
1

c. −8 = − 8
1

Write each of the following as a rational number.

a. 11

b. 3

c. –4

Example 1.2

Identifying Rational Numbers

Write each of the following rational numbers as either a terminating or repeating decimal.

a. −5
7

b. 15
5

c. 13
25

Solution
Write each fraction as a decimal by dividing the numerator by the denominator.

a. −5
7 = −0.714285

———
, a repeating decimal
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1.2

b. 15
5 = 3  (or 3.0), a terminating decimal

c. 13
25 = 0.52, a terminating decimal

Write each of the following rational numbers as either a terminating or repeating decimal.

a. 68
17

b. 8
13

c. −17
20

Irrational Numbers
At some point in the ancient past, someone discovered that not all numbers are rational numbers. A builder, for instance,
may have found that the diagonal of a square with unit sides was not 2 or even  32, but was something else. Or a garment

maker might have observed that the ratio of the circumference to the diameter of a roll of cloth was a little bit more than
3, but still not a rational number. Such numbers are said to be irrational because they cannot be written as fractions. These
numbers make up the set of irrational numbers. Irrational numbers cannot be expressed as a fraction of two integers. It is
impossible to describe this set of numbers by a single rule except to say that a number is irrational if it is not rational. So we
write this as shown.

{h|h is not a rational number}

Example 1.3

Differentiating Rational and Irrational Numbers

Determine whether each of the following numbers is rational or irrational. If it is rational, determine whether it is
a terminating or repeating decimal.

a. 25

b. 33
9

c. 11

d. 17
34

e. 0.3033033303333 …

Solution

a. 25 :  This can be simplified as   25 = 5. Therefore, 25  is rational.

b. 33
9 :  Because it is a fraction, 33

9   is a rational number. Next, simplify and divide.
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1.3

33
9 = 33

11

9
3

= 11
3 = 3. 6

¯

So,  33
9   is rational and a repeating decimal.

c. 11 :  This cannot be simplified any further. Therefore,   11  is an irrational number.

d. 17
34 :  Because it is a fraction,  17

34   is a rational number. Simplify and divide.

17
34 = 17

1

34
2

= 1
2 = 0.5

So,  17
34   is rational and a terminating decimal.

e. 0.3033033303333 …   is not a terminating decimal. Also note that there is no repeating pattern because
the group of 3s increases each time. Therefore it is neither a terminating nor a repeating decimal and,
hence, not a rational number. It is an irrational number.

Determine whether each of the following numbers is rational or irrational. If it is rational, determine
whether it is a terminating or repeating decimal.

a. 7
77

b. 81

c. 4.27027002700027 …

d. 91
13

e. 39

Real Numbers
Given any number n, we know that n is either rational or irrational. It cannot be both. The sets of rational and irrational
numbers together make up the set of real numbers. As we saw with integers, the real numbers can be divided into three
subsets: negative real numbers, zero, and positive real numbers. Each subset includes fractions, decimals, and irrational
numbers according to their algebraic sign (+ or –). Zero is considered neither positive nor negative.

The real numbers can be visualized on a horizontal number line with an arbitrary point chosen as 0, with negative numbers
to the left of 0 and positive numbers to the right of 0. A fixed unit distance is then used to mark off each integer (or
other basic value) on either side of 0. Any real number corresponds to a unique position on the number line.The converse
is also true: Each location on the number line corresponds to exactly one real number. This is known as a one-to-one
correspondence. We refer to this as the real number line as shown in Figure 1.2.

Figure 1.2 The real number line

Example 1.4
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Classifying Real Numbers

Classify each number as either positive or negative and as either rational or irrational. Does the number lie to the
left or the right of 0 on the number line?

a. −10
3

b. 5

c. − 289

d. −6π

e. 0.615384615384 …

Solution

a. −10
3   is negative and rational. It lies to the left of 0 on the number line.

b. 5  is positive and irrational. It lies to the right of 0.

c. − 289 = − 172 = −17  is negative and rational. It lies to the left of 0.

d. −6π  is negative and irrational. It lies to the left of 0.

e. 0.615384615384 …   is a repeating decimal so it is rational and positive. It lies to the right of 0.

Classify each number as either positive or negative and as either rational or irrational. Does the number lie
to the left or the right of 0 on the number line?

a. 73

b. −11.411411411 …

c. 47
19

d. − 5
2

e. 6.210735

Sets of Numbers as Subsets
Beginning with the natural numbers, we have expanded each set to form a larger set, meaning that there is a subset
relationship between the sets of numbers we have encountered so far. These relationships become more obvious when seen
as a diagram, such as Figure 1.3.
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Figure 1.3 Sets of numbers
N: the set of natural numbers
W: the set of whole numbers
I: the set of integers
Q: the set of rational numbers
Q´: the set of irrational numbers

Sets of Numbers

The set of natural numbers includes the numbers used for counting:  {1, 2, 3, ...}.

The set of whole numbers is the set of natural numbers plus zero:  {0, 1, 2, 3, ...}.

The set of integers adds the negative natural numbers to the set of whole numbers:  {..., −3, −2, −1, 0, 1, 2, 3, ...}.

The set of rational numbers includes fractions written as  ⎧⎩⎨mn  |m and n are integers and n ≠ 0⎫

⎭
⎬.

The set of irrational numbers is the set of numbers that are not rational, are nonrepeating, and are nonterminating:
 {h|h is not a rational number}.

Example 1.5

Differentiating the Sets of Numbers

Classify each number as being a natural number (N), whole number (W), integer (I), rational number (Q), and/or
irrational number (Q′).

a. 36

b. 8
3

c. 73

d. −6

e. 3.2121121112 …

Solution
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N W I Q Q′

a. 36 = 6 X X X X

b. 8
3 = 2. 6

¯
X

c. 73 X

d. –6 X X

e. 3.2121121112... X

Classify each number as being a natural number (N), whole number (W), integer (I), rational number (Q),
and/or irrational number (Q′).

a. −35
7

b. 0

c. 169

d. 24

e. 4.763763763 …

Performing Calculations Using the Order of Operations
When we multiply a number by itself, we square it or raise it to a power of 2. For example,  42 = 4 ⋅ 4 = 16. We can raise
any number to any power. In general, the exponential notation  an  means that the number or variable  a  is used as a factor
 n  times.

an = a ⋅ a ⋅ a ⋅ … ⋅ an factors

In this notation,  an   is read as the nth power of  a,  where  a  is called the base and  n  is called the exponent. A term in
exponential notation may be part of a mathematical expression, which is a combination of numbers and operations. For
example,  24 + 6 ⋅ 2

3 − 42   is a mathematical expression.

To evaluate a mathematical expression, we perform the various operations. However, we do not perform them in any random
order. We use the order of operations. This is a sequence of rules for evaluating such expressions.

Recall that in mathematics we use parentheses ( ), brackets [ ], and braces { } to group numbers and expressions so that
anything appearing within the symbols is treated as a unit. Additionally, fraction bars, radicals, and absolute value bars are
treated as grouping symbols. When evaluating a mathematical expression, begin by simplifying expressions within grouping
symbols.
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The next step is to address any exponents or radicals. Afterward, perform multiplication and division from left to right and
finally addition and subtraction from left to right.

Let’s take a look at the expression provided.

24 + 6 ⋅ 2
3 − 42

There are no grouping symbols, so we move on to exponents or radicals. The number 4 is raised to a power of 2, so simplify
 42   as 16.

24 + 6 ⋅ 2
3 − 42

24 + 6 ⋅ 2
3 − 16

Next, perform multiplication or division, left to right.

24 + 6 ⋅ 2
3 − 16

24 + 4 − 16

Lastly, perform addition or subtraction, left to right.

24 + 4 − 16
      28 − 16
          12

Therefore,  24 + 6 ⋅ 2
3 − 42 = 12.

For some complicated expressions, several passes through the order of operations will be needed. For instance, there may
be a radical expression inside parentheses that must be simplified before the parentheses are evaluated. Following the order
of operations ensures that anyone simplifying the same mathematical expression will get the same result.

Order of Operations

Operations in mathematical expressions must be evaluated in a systematic order, which can be simplified using the
acronym PEMDAS:

P(arentheses)
E(xponents)
M(ultiplication) and D(ivision)
A(ddition) and S(ubtraction)

Given a mathematical expression, simplify it using the order of operations.

1. Simplify any expressions within grouping symbols.

2. Simplify any expressions containing exponents or radicals.

3. Perform any multiplication and division in order, from left to right.

4. Perform any addition and subtraction in order, from left to right.

Example 1.6

Using the Order of Operations

Use the order of operations to evaluate each of the following expressions.
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a. (3 ⋅ 2)2 − 4(6 + 2)

b. 52 − 4
7 − 11 − 2

c. 6 − |5 − 8| + 3(4 − 1)

d. 14 − 3 ⋅ 2
2 ⋅ 5 − 32

e. 7(5 ⋅ 3) − 2⎡
⎣(6 − 3) − 42⎤

⎦ + 1

Solution
a.

(3 ⋅ 2)2 − 4(6 + 2) = (6)2 − 4(8) Simplify parentheses
= 36 − 4(8) Simplify exponent
= 36 − 32 Simplify multiplication
= 4 Simplify subtraction

b.
52

7 − 11 − 2 = 52 − 4
7 − 9 Simplify grouping symbols (radical)

= 52 − 4
7 − 3 Simplify radical

= 25 − 4
7 − 3 Simplify exponent

= 21
7 − 3 Simplify subtraction in numerator

= 3 − 3 Simplify division
= 0 Simplify subtraction

Note that in the first step, the radical is treated as a grouping symbol, like parentheses. Also, in the third
step, the fraction bar is considered a grouping symbol so the numerator is considered to be grouped.

c.
6 − |5 − 8| + 3(4 − 1) = 6 − |−3| + 3(3) Simplify inside grouping symbols

= 6 − 3 + 3(3) Simplify absolute value
= 6 − 3 + 9 Simplify multiplication
= 3 + 9 Simplify subtraction
= 12 Simplify addition

d.
14 − 3 ⋅ 2
2 ⋅ 5 − 32 = 14 − 3 ⋅ 2

2 ⋅ 5 − 9 Simplify exponent

= 14 − 6
10 − 9 Simplify products

= 8
1 Simplify diffe ences

= 8 Simplify quotient
In this example, the fraction bar separates the numerator and denominator, which we simplify separately
until the last step.
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1.6

e.
7(5 ⋅ 3) − 2⎡

⎣(6 − 3) − 42⎤
⎦ + 1 = 7(15) − 2⎡

⎣(3) − 42⎤
⎦ + 1 Simplify inside parentheses

= 7(15) − 2(3 − 16) + 1 Simplify exponent
= 7(15) − 2(−13) + 1 Subtract
= 105 + 26 + 1 Multiply
= 132 Add

Use the order of operations to evaluate each of the following expressions.

a. 52 − 42 + 7(5 − 4)2

b. 1 + 7 ⋅ 5 − 8 ⋅ 4
9 − 6

c. |1.8 − 4.3| + 0.4 15 + 10

d. 1
2

⎡
⎣5 ⋅ 32 − 72⎤

⎦ + 1
3 ⋅ 92

e. ⎡
⎣(3 − 8)2 − 4⎤

⎦ − (3 − 8)

Using Properties of Real Numbers
For some activities we perform, the order of certain operations does not matter, but the order of other operations does. For
example, it does not make a difference if we put on the right shoe before the left or vice-versa. However, it does matter
whether we put on shoes or socks first. The same thing is true for operations in mathematics.

Commutative Properties

The commutative property of addition states that numbers may be added in any order without affecting the sum.

a + b = b + a

We can better see this relationship when using real numbers.

(−2) + 7 = 5 and 7 + (−2) = 5

Similarly, the commutative property of multiplication states that numbers may be multiplied in any order without
affecting the product.

a ⋅ b = b ⋅ a

Again, consider an example with real numbers.

(−11) ⋅ (−4) = 44 and (−4) ⋅ (−11) = 44

It is important to note that neither subtraction nor division is commutative. For example,  17 − 5  is not the same as  5 − 17. 
Similarly,  20 ÷ 5 ≠ 5 ÷ 20.

Associative Properties

The associative property of multiplication tells us that it does not matter how we group numbers when multiplying. We
can move the grouping symbols to make the calculation easier, and the product remains the same.
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a(bc) = (ab)c

Consider this example.

(3 ⋅ 4) ⋅ 5 = 60 and 3 ⋅ (4 ⋅ 5) = 60

The associative property of addition tells us that numbers may be grouped differently without affecting the sum.

a + (b + c) = (a + b) + c

This property can be especially helpful when dealing with negative integers. Consider this example.
⎡
⎣15 + (−9)⎤

⎦ + 23 = 29 and 15 + ⎡
⎣(−9) + 23⎤

⎦ = 29

Are subtraction and division associative? Review these examples.

8 − (3 − 15) =? (8 − 3) − 15 64 ÷ (8 ÷ 4) =? (64 ÷ 8) ÷ 4

8 − ( − 12) = 5 − 15  64 ÷ 2 =?  8 ÷ 4
20 ≠  20 − 10  32 ≠ 2

As we can see, neither subtraction nor division is associative.

Distributive Property

The distributive property states that the product of a factor times a sum is the sum of the factor times each term in the sum.

a ⋅ (b + c) = a ⋅ b + a ⋅ c

This property combines both addition and multiplication (and is the only property to do so). Let us consider an example.

Note that 4 is outside the grouping symbols, so we distribute the 4 by multiplying it by 12, multiplying it by –7, and adding
the products.

To be more precise when describing this property, we say that multiplication distributes over addition. The reverse is not
true, as we can see in this example.

6 + (3 ⋅ 5) =? (6 + 3) ⋅ (6 + 5)

6 + (15) =? (9) ⋅ (11)
21 ≠  99

Multiplication does not distribute over subtraction, and division distributes over neither addition nor subtraction.

A special case of the distributive property occurs when a sum of terms is subtracted.

a − b = a + (−b)

For example, consider the difference  12 − (5 + 3). We can rewrite the difference of the two terms 12 and  (5 + 3)  by
turning the subtraction expression into addition of the opposite. So instead of subtracting  (5 + 3), we add the opposite.

12 + (−1) ⋅ (5 + 3)

Now, distribute  −1  and simplify the result.

12 − (5 + 3) = 12 + (−1) ⋅ (5 + 3)
= 12 + [(−1) ⋅ 5 + (−1) ⋅ 3]
= 12 + (−8)
= 4
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This seems like a lot of trouble for a simple sum, but it illustrates a powerful result that will be useful once we introduce
algebraic terms. To subtract a sum of terms, change the sign of each term and add the results. With this in mind, we can
rewrite the last example.

12 − (5 + 3) = 12 + (−5 − 3)
= 12 + (−8)
= 4

Identity Properties

The identity property of addition states that there is a unique number, called the additive identity (0) that, when added to
a number, results in the original number.

a + 0 = a

The identity property of multiplication states that there is a unique number, called the multiplicative identity (1) that,
when multiplied by a number, results in the original number.

a ⋅ 1 = a

For example, we have  (−6) + 0 = −6  and  23 ⋅ 1 = 23. There are no exceptions for these properties; they work for every
real number, including 0 and 1.

Inverse Properties

The inverse property of addition states that, for every real number a, there is a unique number, called the additive inverse
(or opposite), denoted−a, that, when added to the original number, results in the additive identity, 0.

a + (−a) = 0

For example, if  a = −8, the additive inverse is 8, since  (−8) + 8 = 0.

The inverse property of multiplication holds for all real numbers except 0 because the reciprocal of 0 is not defined. The
property states that, for every real number a, there is a unique number, called the multiplicative inverse (or reciprocal),
denoted  1a, that, when multiplied by the original number, results in the multiplicative identity, 1.

a ⋅ 1
a = 1

For example, if  a = − 2
3, the reciprocal, denoted  1a, is  − 3

2   because

a ⋅ 1
a = ⎛

⎝−
2
3

⎞
⎠ ⋅ ⎛

⎝−
3
2

⎞
⎠ = 1

Properties of Real Numbers

The following properties hold for real numbers a, b, and c.
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Addition Multiplication

Commutative
Property

a + b = b + a a ⋅ b = b ⋅ a

Associative
Property

a + (b + c) = (a + b) + c a(bc) = (ab)c

Distributive
Property

a ⋅ (b + c) = a ⋅ b + a ⋅ c

Identity
Property

There exists a unique real number
called the additive identity, 0, such
that, for any real number a

a + 0 = a

There exists a unique real number
called the multiplicative identity, 1, such
that, for any real number a

a ⋅ 1 = a

Inverse
Property

Every real number a has an additive
inverse, or opposite, denoted –a,
such that

a + (−a) = 0

Every nonzero real number a has a
multiplicative inverse, or reciprocal,
denoted  1a, such that

a ⋅ ⎛
⎝
1
a

⎞
⎠ = 1

Example 1.7

Using Properties of Real Numbers

Use the properties of real numbers to rewrite and simplify each expression. State which properties apply.

a.  3 ⋅ 6 + 3 ⋅ 4

b.  (5 + 8) + (−8)

c.  6 − (15 + 9)

d. 4
7 ⋅ ⎛

⎝
2
3 ⋅ 7

4
⎞
⎠

e.  100 ⋅ ⎡
⎣0.75 + (−2.38)⎤

⎦

Solution
a.

3 ⋅ 6 + 3 ⋅ 4 = 3 ⋅ (6 + 4) Distributive property
= 3 ⋅ 10 Simplify
= 30 Simplify
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1.7

b.
(5 + 8) + (−8) = 5 + [8 + (−8)] Associative property of addition

= 5 + 0 Inverse property of addition
= 5 Identity property of addition

c.
6 − (15 + 9) = 6 + [(−15) + (−9)] Distributive property

= 6 + (−24) Simplify
= −18 Simplify

d.
4
7 ⋅ ⎛

⎝
2
3 ⋅ 7

4
⎞
⎠ = 4

7 ⋅ ⎛
⎝
7
4 ⋅ 2

3
⎞
⎠ Commutative property of multiplication

= ⎛
⎝
4
7 ⋅ 7

4
⎞
⎠ ⋅ 2

3 Associative property of multiplication

= 1 ⋅ 2
3 Inverse property of multiplication

= 2
3 Identity property of multiplication

e.
100 ⋅ [0.75 + ( − 2.38)] = 100 ⋅ 0.75 + 100 ⋅ (−2.38) Distributive property

= 75 + (−238) Simplify
= −163 Simplify

Use the properties of real numbers to rewrite and simplify each expression. State which properties apply.

a.  ⎛⎝−23
5

⎞
⎠ ⋅ ⎡

⎣11 ⋅ ⎛
⎝−

5
23

⎞
⎠
⎤
⎦

b.  5 ⋅ (6.2 + 0.4)

c.  18 − (7−15)

d.  17
18 + ⋅ ⎡

⎣
4
9 + ⎛

⎝−
17
18

⎞
⎠
⎤
⎦

e.  6 ⋅ (−3) + 6 ⋅ 3

Evaluating Algebraic Expressions
So far, the mathematical expressions we have seen have involved real numbers only. In mathematics, we may see

expressions such as  x + 5, 4
3πr3, or   2m3 n2.  In the expression  x + 5, 5 is called a constant because it does not vary

and x is called a variable because it does. (In naming the variable, ignore any exponents or radicals containing the variable.)
An algebraic expression is a collection of constants and variables joined together by the algebraic operations of addition,
subtraction, multiplication, and division.

We have already seen some real number examples of exponential notation, a shorthand method of writing products of the
same factor. When variables are used, the constants and variables are treated the same way.

(−3)5 = (−3) ⋅ (−3) ⋅ (−3) ⋅ (−3) ⋅ (−3) x5 = x ⋅ x ⋅ x ⋅ x ⋅ x

(2 ⋅ 7)3 = (2 ⋅ 7) ⋅ (2 ⋅ 7) ⋅ (2 ⋅ 7)  (yz)3 = (yz) ⋅ (yz) ⋅ (yz)

In each case, the exponent tells us how many factors of the base to use, whether the base consists of constants or variables.
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Any variable in an algebraic expression may take on or be assigned different values. When that happens, the value of the
algebraic expression changes. To evaluate an algebraic expression means to determine the value of the expression for a
given value of each variable in the expression. Replace each variable in the expression with the given value, then simplify
the resulting expression using the order of operations. If the algebraic expression contains more than one variable, replace
each variable with its assigned value and simplify the expression as before.

Example 1.8

Describing Algebraic Expressions

List the constants and variables for each algebraic expression.

a. x + 5

b. 4
3πr3

c. 2m3 n2

Solution

Constants Variables

a. x + 5 5 x

b. 4
3πr3 4

3, π r

c. 2m3 n2 2 m, n

List the constants and variables for each algebraic expression.

a. 2πr(r + h)

b. 2(L + W)

c. 4y3 + y

Example 1.9

Evaluating an Algebraic Expression at Different Values

Evaluate the expression  2x − 7  for each value for x.

a.  x = 0

b.  x = 1

c.  x = 1
2
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1.9

d.  x = −4

Solution
a. Substitute 0 for  x.

2x − 7 = 2(0) − 7
= 0 − 7
= −7

b. Substitute 1 for  x.

2x − 7 = 2(1) − 7
= 2 − 7
= −5

c. Substitute  12   for  x.

2x − 7 = 2⎛
⎝
1
2

⎞
⎠ − 7

= 1 − 7
= −6

d. Substitute  −4  for  x.

2x − 7 = 2( − 4) − 7
= −8 − 7
= −15

Evaluate the expression  11 − 3y  for each value for y.

a.  y = 2

b.  y = 0

c.  y = 2
3

d.  y = −5

Example 1.10

Evaluating Algebraic Expressions

Evaluate each expression for the given values.

a.  x + 5  for  x = −5

b.   t
2t−1   for  t = 10

c.  43πr3   for  r = 5

d.  a + ab + b  for a = 11, b = −8

e.   2m3 n2  for  m = 2, n = 3
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Solution
a. Substitute  −5  for  x.

x + 5 = (−5) + 5
= 0

b. Substitute 10 for  t.
t

2t − 1 = (10)
2(10) − 1

= 10
20 − 1

= 10
19

c. Substitute 5 for  r.

4
3πr3 = 4

3π(5)3

= 4
3π(125)

= 500
3 π

d. Substitute 11 for  a  and –8 for  b.

a + ab + b = (11) + (11)(−8) + (−8)
= 11 − 88 − 8
= −85

e. Substitute 2 for  m  and 3 for  n.

2m3 n2 = 2(2)3 (3)2

= 2(8)(9)
= 144
= 12

Evaluate each expression for the given values.

a. y + 3
y − 3   for  y = 5

b.  7 − 2t  for  t = −2

c.  13πr2   for  r = 11

d.  ⎛⎝p2 q⎞
⎠
3
  for  p = −2, q = 3

e.  4(m − n) − 5(n − m)  for  m = 2
3, n = 1

3

Formulas
An equation is a mathematical statement indicating that two expressions are equal. The expressions can be numerical or
algebraic. The equation is not inherently true or false, but only a proposition. The values that make the equation true, the
solutions, are found using the properties of real numbers and other results. For example, the equation  2x + 1 = 7  has the
unique solution  x = 3  because when we substitute 3 for  x  in the equation, we obtain the true statement  2(3) + 1 = 7.
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A formula is an equation expressing a relationship between constant and variable quantities. Very often, the equation is a
means of finding the value of one quantity (often a single variable) in terms of another or other quantities. One of the most
common examples is the formula for finding the area  A  of a circle in terms of the radius  r  of the circle:  A = πr2.  For any

value of  r, the area  A  can be found by evaluating the expression  πr2.

Example 1.11

Using a Formula

A right circular cylinder with radius  r  and height  h  has the surface area  S  (in square units) given by the formula
 S = 2πr(r + h).  See Figure 1.4. Find the surface area of a cylinder with radius 6 in. and height 9 in. Leave the
answer in terms of  π.

Figure 1.4 Right circular cylinder

Solution
Evaluate the expression  2πr(r + h)  for  r = 6  and  h = 9.

S = 2πr(r + h)
= 2π(6)[(6) + (9)]
= 2π(6)(15)
= 180π

The surface area is  180π  square inches.
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1.11 A photograph with length L and width W is placed in a matte of width 8 centimeters (cm). The area of the

matte (in square centimeters, or cm2) is found to be  A = (L + 16)(W + 16) − L ⋅ W.  See Figure 1.5. Find the

area of a matte for a photograph with length 32 cm and width 24 cm.

Figure 1.5

Simplifying Algebraic Expressions
Sometimes we can simplify an algebraic expression to make it easier to evaluate or to use in some other way. To do so, we
use the properties of real numbers. We can use the same properties in formulas because they contain algebraic expressions.

Example 1.12

Simplifying Algebraic Expressions

Simplify each algebraic expression.

a. 3x − 2y + x − 3y − 7

b. 2r − 5(3 − r) + 4

c. ⎛
⎝4t − 5

4s⎞
⎠ − ⎛

⎝
2
3t + 2s⎞

⎠

d. 2mn − 5m + 3mn + n

Solution
a.

3x − 2y + x − 3y − 7 = 3x + x − 2y − 3y − 7 Commutative property of addition
= 4x − 5y − 7 Simplify

b.
2r − 5(3 − r) + 4 = 2r − 15 + 5r + 4 Distributive property

= 2r + 5y − 15 + 4 Commutative property of addition
= 7r − 11 Simplify
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1.12

1.13

c.

4t − 4⎛
⎝t − 5

4s⎞
⎠ − ⎛

⎝
2
3t + 2s⎞

⎠ = 4t − 5
4s − 2

3t − 2s Distributive property

= 4t − 2
3t − 5

4s − 2s Commutative property of addition

= 10
3 t − 13

4 s Simplify

d.
mn − 5m + 3mn + n = 2mn + 3mn − 5m + n Commutative property of addition

=  5mn − 5m + n Simplify

Simplify each algebraic expression.

a. 2
3y − 2⎛

⎝
4
3y + z⎞

⎠

b. 5
t − 2 − 3

t + 1

c. 4p⎛
⎝q − 1⎞

⎠ + q⎛
⎝1 − p⎞

⎠

d. 9r − (s + 2r) + (6 − s)

Example 1.13

Simplifying a Formula

A rectangle with length  L  and width  W   has a perimeter  P  given by  P = L + W + L + W.  Simplify this
expression.

Solution
P = L + W + L + W
P = L + L + W + W Commutative property of addition
P = 2L + 2W Simplify
P = 2(L + W) Distributive property

If the amount  P  is deposited into an account paying simple interest  r  for time  t, the total value of the
deposit  A  is given by  A = P + Prt.  Simplify the expression. (This formula will be explored in more detail later
in the course.)

Access these online resources for additional instruction and practice with real numbers.

• Simplify an Expression (http://openstaxcollege.org/l/simexpress)

• Evaluate an Expression1 (http://openstaxcollege.org/l/ordofoper1)

• Evaluate an Expression2 (http://openstaxcollege.org/l/ordofoper2)
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1.1 EXERCISES
Verbal

Is   2  an example of a rational terminating, rational
repeating, or irrational number? Tell why it fits that
category.

What is the order of operations? What acronym is used
to describe the order of operations, and what does it stand
for?

What do the Associative Properties allow us to do when
following the order of operations? Explain your answer.

Numeric
For the following exercises, simplify the given expression.

10 + 2 × (5 − 3)

6 ÷ 2 − ⎛
⎝81 ÷ 32⎞

⎠

18 + (6 − 8)3

−2 × ⎡⎣16 ÷ (8 − 4)2⎤
⎦
2

4 − 6 + 2 × 7

3(5 − 8)

4 + 6 − 10 ÷ 2

12 ÷ (36 ÷ 9) + 6

(4 + 5)2 ÷ 3

3 − 12 × 2 + 19

2 + 8 × 7 ÷ 4

5 + (6 + 4) − 11

9 − 18 ÷ 32

14 × 3 ÷ 7 − 6

9 − (3 + 11) × 2

6 + 2 × 2 − 1

64 ÷ (8 + 4 × 2)

9 + 4⎛
⎝22⎞

⎠

(12 ÷ 3 × 3)2

25 ÷ 52 − 7

(15 − 7) × (3 − 7)

2 × 4 − 9(−1)

42 − 25 × 15

12(3 − 1) ÷ 6

Algebraic
For the following exercises, solve for the variable.

8(x + 3) = 64

4y + 8 = 2y

(11a + 3) − 18a = −4

4z − 2z(1 + 4) = 36

4y(7 − 2)2 = −200

−(2x)2 + 1 = −3

8(2 + 4) − 15b = b

2(11c − 4) = 36

4(3 − 1)x = 4

1
4

⎛
⎝8w − 42⎞

⎠ = 0

For the following exercises, simplify the expression.

4x + x(13 − 7)

2y − (4)2 y − 11

a
23(64) − 12a ÷ 6

8b − 4b(3) + 1

5l ÷ 3l × (9 − 6)

7z − 3 + z × 62
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45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

4 × 3 + 18x ÷ 9 − 12

9⎛
⎝y + 8⎞

⎠ − 27

⎛
⎝
9
6t − 4⎞

⎠2

6 + 12b − 3 × 6b

18y − 2⎛
⎝1 + 7y⎞

⎠

⎛
⎝
4
9

⎞
⎠

2
 × 27x

8(3 − m) + 1(−8)

9x + 4x(2 + 3) − 4(2x + 3x)

52 − 4(3x)

Real-World Applications
For the following exercises, consider this scenario: Fred
earns $40 mowing lawns. He spends $10 on mp3s, puts half
of what is left in a savings account, and gets another $5 for
washing his neighbor’s car.

Write the expression that represents the number of
dollars Fred keeps (and does not put in his savings
account). Remember the order of operations.

How much money does Fred keep?

For the following exercises, solve the given problem.

According to the U.S. Mint, the diameter of a quarter is
0.955 inches. The circumference of the quarter would be
the diameter multiplied by  π.  Is the circumference of a
quarter a whole number, a rational number, or an irrational
number?

Jessica and her roommate, Adriana, have decided to
share a change jar for joint expenses. Jessica put her loose
change in the jar first, and then Adriana put her change in
the jar. We know that it does not matter in which order the
change was added to the jar. What property of addition
describes this fact?

For the following exercises, consider this scenario: There
is a mound of  g  pounds of gravel in a quarry. Throughout

the day, 400 pounds of gravel is added to the mound. Two
orders of 600 pounds are sold and the gravel is removed
from the mound. At the end of the day, the mound has 1,200
pounds of gravel.

Write the equation that describes the situation.

Solve for g.

For the following exercise, solve the given problem.

Ramon runs the marketing department at his company.
His department gets a budget every year, and every year, he
must spend the entire budget without going over. If he
spends less than the budget, then his department gets a
smaller budget the following year. At the beginning of this
year, Ramon got $2.5 million for the annual marketing
budget. He must spend the budget such that
 2,500,000 − x = 0. What property of addition tells us
what the value of x must be?

Technology
For the following exercises, use a graphing calculator to
solve for x. Round the answers to the nearest hundredth.

0.5(12.3)2 − 48x = 3
5

(0.25 − 0.75)2 x − 7.2 = 9.9

Extensions

If a whole number is not a natural number, what must
the number be?

Determine whether the statement is true or false: The
multiplicative inverse of a rational number is also rational.

Determine whether the statement is true or false: The
product of a rational and irrational number is always
irrational.

Determine whether the simplified expression is
rational or irrational:   −18 − 4(5)(−1).

Determine whether the simplified expression is
rational or irrational:   −16 + 4(5) + 5.

The division of two whole numbers will always result
in what type of number?

What property of real numbers would simplify the
following expression:  4 + 7(x − 1)?
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1.2 | Exponents and Scientific Notation

Learning Objectives

In this section students will:

1.2.1 Use the product rule of exponents.
1.2.2 Use the quotient rule of exponents.
1.2.3 Use the power rule of exponents.
1.2.4 Use the zero exponent rule of exponents.
1.2.5 Use the negative rule of exponents.
1.2.6 Find the power of a product and a quotient.
1.2.7 Simplify exponential expressions.
1.2.8 Use scientific notation.

Mathematicians, scientists, and economists commonly encounter very large and very small numbers. But it may not be
obvious how common such figures are in everyday life. For instance, a pixel is the smallest unit of light that can be
perceived and recorded by a digital camera. A particular camera might record an image that is 2,048 pixels by 1,536 pixels,
which is a very high resolution picture. It can also perceive a color depth (gradations in colors) of up to 48 bits per frame,
and can shoot the equivalent of 24 frames per second. The maximum possible number of bits of information used to film a
one-hour (3,600-second) digital film is then an extremely large number.

Using a calculator, we enter  2,048 × 1,536 × 48 × 24 × 3,600  and press ENTER. The calculator displays
1.304596316E13. What does this mean? The “E13” portion of the result represents the exponent 13 of ten, so there are a
maximum of approximately  1.3 × 1013   bits of data in that one-hour film. In this section, we review rules of exponents first
and then apply them to calculations involving very large or small numbers.

Using the Product Rule of Exponents
Consider the product  x3 ⋅ x4. Both terms have the same base, x, but they are raised to different exponents. Expand each
expression, and then rewrite the resulting expression.

x3 ⋅ x4 = x ⋅ x ⋅ x3 factors ⋅ x ⋅ x ⋅ x ⋅ x4 factors

= x ⋅ x ⋅ x ⋅ x ⋅ x ⋅ x ⋅ x7 factors

= x7

The result is that  x3 ⋅ x4 = x3 + 4 = x7.

Notice that the exponent of the product is the sum of the exponents of the terms. In other words, when multiplying
exponential expressions with the same base, we write the result with the common base and add the exponents. This is the
product rule of exponents.

am ⋅ an = am + n

Now consider an example with real numbers.

23 ⋅ 24 = 23 + 4 = 27

We can always check that this is true by simplifying each exponential expression. We find that  23   is 8,  24   is 16, and  27  
is 128. The product  8 ⋅ 16  equals 128, so the relationship is true. We can use the product rule of exponents to simplify
expressions that are a product of two numbers or expressions with the same base but different exponents.

The Product Rule of Exponents

For any real number  a  and natural numbers  m  and  n, the product rule of exponents states that
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1.14

(1.1)am ⋅ an = am + n

Example 1.14

Using the Product Rule

Write each of the following products with a single base. Do not simplify further.

a. t5 ⋅ t3

b. (−3)5 ⋅ (−3)

c. x2 ⋅ x5 ⋅ x3

Solution
Use the product rule to simplify each expression.

a. t5 ⋅ t3 = t5 + 3 = t8

b. (−3)5 ⋅ (−3) = (−3)5 ⋅ (−3)1 = (−3)5 + 1 = (−3)6

c. x2 ⋅ x5 ⋅ x3

At first, it may appear that we cannot simplify a product of three factors. However, using the associative property
of multiplication, begin by simplifying the first two.

x2 ⋅ x5 ⋅ x3 = ⎛
⎝x2 ⋅ x5⎞

⎠ ⋅ x3 = ⎛
⎝x

2 + 5⎞
⎠ ⋅ x3 = x7 ⋅ x3 = x7 + 3 = x10

Notice we get the same result by adding the three exponents in one step.

x2 ⋅ x5 ⋅ x3 = x2 + 5 + 3 = x10

Write each of the following products with a single base. Do not simplify further.

a. k6 ⋅ k9

b. ⎛
⎝
2
y

⎞
⎠
4

⋅ ⎛
⎝
2
y

⎞
⎠

c. t3 ⋅ t6 ⋅ t5

Using the Quotient Rule of Exponents
The quotient rule of exponents allows us to simplify an expression that divides two numbers with the same base but different

exponents. In a similar way to the product rule, we can simplify an expression such as  y
m

yn , where  m > n. Consider the

example  y
9

y5.  Perform the division by canceling common factors.
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y9

y5 = y ⋅ y ⋅ y ⋅ y ⋅ y ⋅ y ⋅ y ⋅ y ⋅ y
y ⋅ y ⋅ y ⋅ y ⋅ y

= y ⋅ y ⋅ y ⋅ y ⋅ y ⋅ y ⋅ y ⋅ y ⋅ y
y ⋅ y ⋅ y ⋅ y ⋅ y

= y ⋅ y ⋅ y ⋅ y
1

= y4

Notice that the exponent of the quotient is the difference between the exponents of the divisor and dividend.

am

an = am − n

In other words, when dividing exponential expressions with the same base, we write the result with the common base and
subtract the exponents.

y9

y5 = y9 − 5 = y4

For the time being, we must be aware of the condition  m > n. Otherwise, the difference  m − n  could be zero or negative.
Those possibilities will be explored shortly. Also, instead of qualifying variables as nonzero each time, we will simplify
matters and assume from here on that all variables represent nonzero real numbers.

The Quotient Rule of Exponents

For any real number  a  and natural numbers  m  and  n, such that  m > n, the quotient rule of exponents states that

(1.2)am

an = am − n

Example 1.15

Using the Quotient Rule

Write each of the following products with a single base. Do not simplify further.

a. (−2)14

(−2)9

b. t23

t15

c.
⎛
⎝z 2⎞

⎠
5

z 2

Solution
Use the quotient rule to simplify each expression.

a. (−2)14

(−2)9 = (−2)14 − 9 = (−2)5

b. t23

t15 = t23 − 15 = t8
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1.15

c.
⎛
⎝z 2⎞

⎠
5

z 2
= ⎛

⎝z 2⎞
⎠
5 − 1 = ⎛

⎝z 2⎞
⎠
4

Write each of the following products with a single base. Do not simplify further.

a. s75

s68

b. (−3)6

−3

c.
⎛
⎝e f 2⎞

⎠
5

⎛
⎝e f 2⎞

⎠
3

Using the Power Rule of Exponents
Suppose an exponential expression is raised to some power. Can we simplify the result? Yes. To do this, we use the power

rule of exponents. Consider the expression  ⎛⎝x2⎞
⎠
3
. The expression inside the parentheses is multiplied twice because it has

an exponent of 2. Then the result is multiplied three times because the entire expression has an exponent of 3.

⎛
⎝x2⎞

⎠
3

= ⎛
⎝x2⎞

⎠ ⋅ ⎛
⎝x2⎞

⎠ ⋅ ⎛
⎝x2⎞

⎠

3 factors

=
⎛

⎝
⎜ x ⋅ x

⎧⎩ ⎨2 factors⎞

⎠
⎟ ⋅

⎛

⎝
⎜ x ⋅ x

⎧⎩ ⎨2 factors⎞

⎠
⎟ ⋅

⎛

⎝
⎜ x ⋅ x

⎧⎩ ⎨2 factors⎞

⎠
⎟

3 factors

= x ⋅ x ⋅ x ⋅ x ⋅ x ⋅ x
= x6

The exponent of the answer is the product of the exponents:  ⎛⎝x2⎞
⎠
3

= x2 ⋅ 3 = x6.  In other words, when raising an

exponential expression to a power, we write the result with the common base and the product of the exponents.

(am)n = am ⋅ n

Be careful to distinguish between uses of the product rule and the power rule. When using the product rule, different terms
with the same bases are raised to exponents. In this case, you add the exponents. When using the power rule, a term in
exponential notation is raised to a power. In this case, you multiply the exponents.

Product Rule  Power Rule
53 ⋅ 54 = 53 + 4 = 57 but  (53)4 = 53 ⋅ 4 = 512

x5 ⋅ x2 = x5 + 2 = x7 but (x5)2 = x5 ⋅ 2 = x10

(3a)7 ⋅ (3a)10 = (3a)7 + 10 = (3a)17 but ((3a)7)10 = (3a)7 ⋅ 10 = (3a)70

The Power Rule of Exponents

For any real number  a  and positive integers  m  and  n, the power rule of exponents states that

(1.3)(am)n = am ⋅ n
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Example 1.16

Using the Power Rule

Write each of the following products with a single base. Do not simplify further.

a. ⎛
⎝x2⎞

⎠
7

b. ⎛
⎝(2t)5⎞

⎠
3

c. ⎛
⎝(−3)5⎞

⎠
11

Solution
Use the power rule to simplify each expression.

a. ⎛
⎝x2⎞

⎠
7

= x2 ⋅ 7 = x14

b. ⎛
⎝(2t)5⎞

⎠
3

= (2t)5 ⋅ 3 = (2t)15

c. ⎛
⎝(−3)5⎞

⎠
11

= (−3)5 ⋅ 11 = (−3)55

Write each of the following products with a single base. Do not simplify further.

a. ⎛
⎝

⎛
⎝3y⎞

⎠
8⎞

⎠
3

b. ⎛
⎝t

5⎞
⎠
7

c. ⎛
⎝(−g)4⎞

⎠
4

Using the Zero Exponent Rule of Exponents
Return to the quotient rule. We made the condition that  m > n  so that the difference  m − n would never be zero or
negative. What would happen if  m = n? In this case, we would use the zero exponent rule of exponents to simplify the
expression to 1. To see how this is done, let us begin with an example.

t8

t8 = t8

t8
= 1

If we were to simplify the original expression using the quotient rule, we would have

t8

t8 = t8 − 8 = t0

If we equate the two answers, the result is  t0 = 1. This is true for any nonzero real number, or any variable representing a
real number.

a0 = 1
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The sole exception is the expression  00. This appears later in more advanced courses, but for now, we will consider the
value to be undefined.

The Zero Exponent Rule of Exponents

For any nonzero real number  a, the zero exponent rule of exponents states that

(1.4)a0 = 1

Example 1.17

Using the Zero Exponent Rule

Simplify each expression using the zero exponent rule of exponents.

a. c3

c3

b. −3x5

x5

c.
⎛
⎝j2 k⎞

⎠
4

⎛
⎝j2 k⎞

⎠ ⋅ ⎛
⎝j2 k⎞

⎠
3

d.
5⎛

⎝rs2⎞
⎠
2

⎛
⎝rs2⎞

⎠
2

Solution
Use the zero exponent and other rules to simplify each expression.

a.
c3

c3 = c3 − 3

= c3 − 3

= c3 − 3

b.
−3x5

x5 = −3 ⋅ x5

x5

= −3 ⋅ x5 − 5

= −3 ⋅ x0

= −3 ⋅ 1
= −3
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c.
⎛
⎝j2 k⎞

⎠
4

⎛
⎝j2 k⎞

⎠ ⋅ ⎛
⎝j2 k⎞

⎠
3 =

⎛
⎝j2 k⎞

⎠
4

⎛
⎝j2 k⎞

⎠
1 + 3 Use the product rule in the denominator.

=
⎛
⎝j2 k⎞

⎠
4

⎛
⎝j2 k⎞

⎠
4 Simplify.

= ⎛
⎝j2 k⎞

⎠
4 − 4

Use the quotient rule.

= ⎛
⎝j2 k⎞

⎠
0

Simplify.
= 1

d.

5⎛
⎝rs2⎞

⎠
2

⎛
⎝rs2⎞

⎠
2 = 5⎛

⎝rs2⎞
⎠
2 − 2

Use the quotient rule.

= 5⎛
⎝rs2⎞

⎠
0

Simplify.
= 5 ⋅ 1 Use the zero exponent rule.
= 5 Simplify.

Simplify each expression using the zero exponent rule of exponents.

a. t7

t7

b.
⎛
⎝de2⎞

⎠
11

2⎛
⎝de2⎞

⎠
11

c. w4 ⋅ w2

w6

d. t3 ⋅ t4

t2 ⋅ t5

Using the Negative Rule of Exponents
Another useful result occurs if we relax the condition that  m > n  in the quotient rule even further. For example, can we

simplify  h3

h5 ?  When  m < n —that is, where the difference  m − n  is negative—we can use the negative rule of exponents

to simplify the expression to its reciprocal.

Divide one exponential expression by another with a larger exponent. Use our example,  h3

h5.

38 Chapter 1 Prerequisites

This content is available for free at https://cnx.org/content/col11758/1.5



h3

h5 = h ⋅ h ⋅ h
h ⋅ h ⋅ h ⋅ h ⋅ h

= h ⋅ h ⋅ h
h ⋅ h ⋅ h ⋅ h ⋅ h

= 1
h ⋅ h

= 1
h2

If we were to simplify the original expression using the quotient rule, we would have

h3

h5 = h3 − 5

=  h−2

Putting the answers together, we have  h−2 = 1
h2. This is true for any nonzero real number, or any variable representing a

nonzero real number.

A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction
bar—from numerator to denominator or vice versa.

a−n = 1
an and an = 1

a−n

We have shown that the exponential expression  an   is defined when  n  is a natural number, 0, or the negative of a natural
number. That means that  an   is defined for any integer  n. Also, the product and quotient rules and all of the rules we will
look at soon hold for any integer  n.

The Negative Rule of Exponents

For any nonzero real number  a  and natural number  n, the negative rule of exponents states that

(1.5)a−n = 1
an

Example 1.18

Using the Negative Exponent Rule

Write each of the following quotients with a single base. Do not simplify further. Write answers with positive
exponents.

a. θ3

θ10

b. z2 ⋅ z
z4

c.
⎛
⎝−5t3⎞

⎠
4

⎛
⎝−5t3⎞

⎠
8

Solution
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a. θ3

θ10 = θ3 − 10 = θ−7 = 1
θ7

b. z2 ⋅ z
z4 = z2 + 1

z4 = z3

z4 = z3 − 4 = z−1 = 1
z

c.
⎛
⎝−5t3⎞

⎠
4

⎛
⎝−5t3⎞

⎠
8 = ⎛

⎝−5t3⎞
⎠
4 − 8

= ⎛
⎝−5t3⎞

⎠
−4

= 1
⎛
⎝−5t3⎞

⎠
4

Write each of the following quotients with a single base. Do not simplify further. Write answers with
positive exponents.

a. (−3t)2

(−3t)8

b. f 47

f 49 ⋅ f

c. 2k4

5k7

Example 1.19

Using the Product and Quotient Rules

Write each of the following products with a single base. Do not simplify further. Write answers with positive
exponents.

a. b2 ⋅ b−8

b. (−x)5 ⋅ (−x)−5

c. −7z
(−7z)5

Solution

a. b2 ⋅ b−8 = b2 − 8 = b−6 = 1
b6

b. (−x)5 ⋅ (−x)−5 = (−x)5 − 5 = (−x)0 = 1

c. −7z
(−7z)5 = (−7z)1

(−7z)5 = (−7z)1 − 5 = (−7z)−4 = 1
(−7z)4
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1.19 Write each of the following products with a single base. Do not simplify further. Write answers with
positive exponents.

a. t−11 ⋅ t6

b. 2512

2513

Finding the Power of a Product
To simplify the power of a product of two exponential expressions, we can use the power of a product rule of exponents,
which breaks up the power of a product of factors into the product of the powers of the factors. For instance, consider
 (pq)3. We begin by using the associative and commutative properties of multiplication to regroup the factors.

(pq)3 = (pq) ⋅ (pq) ⋅ (pq)
3 factors

= p ⋅ q ⋅ p ⋅ q ⋅ p ⋅ q

= p ⋅ p ⋅ p3 factors ⋅ q ⋅ q ⋅ q3 factors

= p3 ⋅ q3

In other words,  (pq)3 = p3 ⋅ q3.

The Power of a Product Rule of Exponents

For any real numbers  a  and  b  and any integer  n, the power of a product rule of exponents states that

(1.6)(ab)n = an bn

Example 1.20

Using the Power of a Product Rule

Simplify each of the following products as much as possible using the power of a product rule. Write answers
with positive exponents.

a. ⎛
⎝ab2⎞

⎠
3

b. (2t)15

c. ⎛
⎝−2w3⎞

⎠
3

d. 1
(−7z)4

e. ⎛
⎝e−2 f 2⎞

⎠
7

Solution
Use the product and quotient rules and the new definitions to simplify each expression.
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a. ⎛
⎝ab2⎞

⎠
3

= (a)3 ⋅ ⎛
⎝b2⎞

⎠
3

= a1 ⋅ 3 ⋅ b2 ⋅ 3 = a3 b6

b. 2t15 = (2)15 ⋅ (t)15 = 215 t15 = 32, 768t15

c. ⎛
⎝−2w3⎞

⎠
3

= (−2)3 ⋅ ⎛
⎝w

3⎞
⎠
3

= −8 ⋅ w3 ⋅ 3 = −8w9

d. 1
(−7z)4 = 1

(−7)4 ⋅ (z)4 = 1
2, 401z4

e. ⎛
⎝e−2 f 2⎞

⎠
7

= ⎛
⎝e−2⎞

⎠
7

⋅ ⎛
⎝ f 2⎞

⎠
7

= e−2 ⋅ 7 ⋅ f 2 ⋅ 7 = e−14 f 14 = f 14

e14

Simplify each of the following products as much as possible using the power of a product rule. Write
answers with positive exponents.

a. ⎛
⎝g2 h3⎞

⎠
5

b. (5t)3

c. ⎛
⎝−3y5⎞

⎠
3

d. 1
⎛
⎝a

6 b7⎞
⎠
3

e. ⎛
⎝r

3 s−2⎞
⎠
4

Finding the Power of a Quotient
To simplify the power of a quotient of two expressions, we can use the power of a quotient rule, which states that the power
of a quotient of factors is the quotient of the powers of the factors. For example, let’s look at the following example.

⎛
⎝e−2 f 2⎞

⎠
7

= f 14

e14

Let’s rewrite the original problem differently and look at the result.

⎛
⎝e−2 f 2⎞

⎠
7

=
⎛

⎝
⎜ f 2

e2

⎞

⎠
⎟

7

= f 14

e14

It appears from the last two steps that we can use the power of a product rule as a power of a quotient rule.
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⎛
⎝e−2 f 2⎞

⎠
7

=
⎛

⎝
⎜ f 2

e2

⎞

⎠
⎟

7

= ( f 2)7

(e2)7

= f 2 ⋅ 7

e2 ⋅ 7

= f 14

e14

The Power of a Quotient Rule of Exponents

For any real numbers  a  and  b  and any integer  n, the power of a quotient rule of exponents states that

(1.7)⎛
⎝
a
b

⎞
⎠

n
= an

bn

Example 1.21

Using the Power of a Quotient Rule

Simplify each of the following quotients as much as possible using the power of a quotient rule. Write answers
with positive exponents.

a.
⎛
⎝

4
z11

⎞
⎠

3

b.
⎛

⎝
⎜ p
q3

⎞

⎠
⎟

6

c. ⎛
⎝

−1
t2

⎞
⎠

27

d. ⎛
⎝j3 k−2⎞

⎠
4

e. ⎛
⎝m−2 n−2⎞

⎠
3

Solution

a.
⎛
⎝

4
z11

⎞
⎠

3
= (4)3

⎛
⎝z11⎞

⎠
3 = 64

z11 ⋅ 3 = 64
z33

b.
⎛

⎝
⎜ p
q3

⎞

⎠
⎟

6

= (p)6

⎛
⎝q

3⎞
⎠
6 = p1 ⋅ 6

q3 ⋅ 6 = p6

q18
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c. ⎛
⎝

−1
t2

⎞
⎠

27
= (−1)27

⎛
⎝t2⎞

⎠
27 = −1

t2 ⋅ 27 = −1
t54 = − 1

t54

d. ⎛
⎝j3 k−2⎞

⎠
4

=
⎛

⎝
⎜ j3

k2

⎞

⎠
⎟

4

=
⎛
⎝j3⎞

⎠
4

⎛
⎝k2⎞

⎠
4 = j3 ⋅ 4

k2 ⋅ 4 = j12

k8

e. ⎛
⎝m−2 n−2⎞

⎠
3

= ⎛
⎝

1
m2 n2

⎞
⎠

3
= (1)3

⎛
⎝m2 n2⎞

⎠
3 = 1

⎛
⎝m2⎞

⎠
3 ⎛

⎝n2⎞
⎠
3 = 1

m2 ⋅ 3 ⋅ n2 ⋅ 3 = 1
m6 n6

Simplify each of the following quotients as much as possible using the power of a quotient rule. Write
answers with positive exponents.

a. ⎛
⎝
b5
c

⎞
⎠

3

b. ⎛
⎝

5
u8

⎞
⎠

4

c. ⎛
⎝

−1
w3

⎞
⎠

35

d. ⎛
⎝p−4 q3⎞

⎠
8

e. ⎛
⎝c

−5 d−3⎞
⎠
4

Simplifying Exponential Expressions
Recall that to simplify an expression means to rewrite it by combing terms or exponents; in other words, to write the
expression more simply with fewer terms. The rules for exponents may be combined to simplify expressions.

Example 1.22

Simplifying Exponential Expressions

Simplify each expression and write the answer with positive exponents only.

a. ⎛
⎝6m2 n−1⎞

⎠
3

b. 175 ⋅ 17−4 ⋅ 17−3

c. ⎛
⎝

u−1 v
v−1

⎞
⎠

2
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d. ⎛
⎝−2a3 b−1⎞

⎠
⎛
⎝5a−2 b2⎞

⎠

e. ⎛
⎝x2 2⎞

⎠
4 ⎛

⎝x2 2⎞
⎠
−4

f.
⎛
⎝3w2⎞

⎠
5

⎛
⎝6w−2⎞

⎠
2

Solution
a.

⎛
⎝6m2 n−1⎞

⎠
3

= (6)3 ⎛
⎝m2⎞

⎠
3 ⎛

⎝n−1⎞
⎠
3

The power of a product rule

= 63 m2 ⋅ 3 n−1 ⋅ 3 The power rule

=  216m6 n−3 Simplify.

= 216m6

n3 The negative exponent rule

b.
175 ⋅ 17−4 ⋅ 17−3 = 175 − 4 − 3 The product rule

= 17−2 Simplify.

= 1
172 or 1

289 The negative exponent rule

c.

⎛
⎝

u−1 v
v−1

⎞
⎠

2
= (u−1 v)2

(v−1)2 The power of a quotient rule

= u−2 v2

v−2 The power of a product rule

= u−2 v2 − (−2) The quotient rule

= u−2 v4 Simplify.

= v4

u2 The negative exponent rule

d.
⎛
⎝−2a3 b−1⎞

⎠
⎛
⎝5a−2 b2⎞

⎠ = −2 ⋅ 5 ⋅ a3 ⋅ a−2 ⋅ b−1 ⋅ b2 Commutative and associative laws of multiplication

= −10 ⋅ a3 − 2 ⋅ b−1 + 2 The product rule
= −10ab Simplify.

e.
⎛
⎝x2 2⎞

⎠
4 ⎛

⎝x2 2⎞
⎠
−4

= ⎛
⎝x2 2⎞

⎠
4 − 4

The product rule

=  ⎛⎝x2 2⎞
⎠
0

Simplify.
= 1 The zero exponent rule
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f.
(3w2)5

(6w−2)2 = (3)5 ⋅ (w2)5

(6)2 ⋅ (w−2)2 The power of a product rule

= 35 w2 ⋅ 5

62 w−2 ⋅ 2 The power rule

= 243w10

36w−4 Simplify.

= 27w10 − (−4)

4 The quotient rule and reduce fraction

= 27w14

4 Simplify.

Simplify each expression and write the answer with positive exponents only.

a. ⎛
⎝2uv−2⎞

⎠
−3

b. x8 ⋅ x−12 ⋅ x

c.
⎛

⎝
⎜e2 f −3

f −1

⎞

⎠
⎟

2

d. ⎛
⎝9r−5 s3⎞

⎠
⎛
⎝3r6 s−4⎞

⎠

e. ⎛
⎝
4
9tw−2⎞

⎠
−3 ⎛

⎝
4
9tw−2⎞

⎠
3

f.
⎛
⎝2h2 k⎞

⎠
4

⎛
⎝7h−1 k2⎞

⎠
2

Using Scientific Notation
Recall at the beginning of the section that we found the number  1.3 × 1013  when describing bits of information in digital
images. Other extreme numbers include the width of a human hair, which is about 0.00005 m, and the radius of an electron,
which is about 0.00000000000047 m. How can we effectively work read, compare, and calculate with numbers such as
these?

A shorthand method of writing very small and very large numbers is called scientific notation, in which we express
numbers in terms of exponents of 10. To write a number in scientific notation, move the decimal point to the right of the
first digit in the number. Write the digits as a decimal number between 1 and 10. Count the number of places n that you
moved the decimal point. Multiply the decimal number by 10 raised to a power of n. If you moved the decimal left as in a
very large number,  n  is positive. If you moved the decimal right as in a small large number,  n  is negative.

For example, consider the number 2,780,418. Move the decimal left until it is to the right of the first nonzero digit, which
is 2.
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We obtain 2.780418 by moving the decimal point 6 places to the left. Therefore, the exponent of 10 is 6, and it is positive
because we moved the decimal point to the left. This is what we should expect for a large number.

2.780418 × 106

Working with small numbers is similar. Take, for example, the radius of an electron, 0.00000000000047 m. Perform the
same series of steps as above, except move the decimal point to the right.

Be careful not to include the leading 0 in your count. We move the decimal point 13 places to the right, so the exponent of
10 is 13. The exponent is negative because we moved the decimal point to the right. This is what we should expect for a
small number.

4.7 × 10−13

Scientific Notation

A number is written in scientific notation if it is written in the form  a × 10n, where  1 ≤ |a| < 10  and  n  is an integer.

Example 1.23

Converting Standard Notation to Scientific Notation

Write each number in scientific notation.

a. Distance to Andromeda Galaxy from Earth: 24,000,000,000,000,000,000,000 m

b. Diameter of Andromeda Galaxy: 1,300,000,000,000,000,000,000 m

c. Number of stars in Andromeda Galaxy: 1,000,000,000,000

d. Diameter of electron: 0.00000000000094 m

e. Probability of being struck by lightning in any single year: 0.00000143

Solution
a.

24,000,000,000,000,000,000,000 m
24,000,000,000,000,000,000,000 m

← 22 places

2.4 × 1022  m

b.
1,300,000,000,000,000,000,000 m
1,300,000,000,000,000,000,000 m

← 21 places

1.3 × 1021  m

c.
1,000,000,000,000
1,000,000,000,000

← 12 places

1 × 1012
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d.
0.00000000000094 m
0.00000000000094 m

→ 6 places

9.4 × 10−13  m

e.
0.00000143
0.00000143

→ 6 places

1.43 × 10−6

Analysis
Observe that, if the given number is greater than 1, as in examples a–c, the exponent of 10 is positive; and if the
number is less than 1, as in examples d–e, the exponent is negative.

Write each number in scientific notation.

a. U.S. national debt per taxpayer (April 2014): $152,000

b. World population (April 2014): 7,158,000,000

c. World gross national income (April 2014): $85,500,000,000,000

d. Time for light to travel 1 m: 0.00000000334 s

e. Probability of winning lottery (match 6 of 49 possible numbers): 0.0000000715

Converting from Scientific to Standard Notation
To convert a number in scientific notation to standard notation, simply reverse the process. Move the decimal  n  places to
the right if  n  is positive or  n  places to the left if  n  is negative and add zeros as needed. Remember, if  n  is positive, the
value of the number is greater than 1, and if  n  is negative, the value of the number is less than one.

Example 1.24

Converting Scientific Notation to Standard Notation

Convert each number in scientific notation to standard notation.

a. 3.547 × 1014

b. −2 × 106

c. 7.91 × 10−7

d. −8.05 × 10−12

Solution
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a.
3.547 × 1014

3.54700000000000
→ 14 places

354,700,000,000,000

b.
−2 × 106

−2.000000
→ 6 places

−2,000,000

c.
7.91 × 10−7

0000007.91
→ 7 places

0.000000791

d.
−8.05 × 10−12

−000000000008.05
→ 12 places

−0.00000000000805

Convert each number in scientific notation to standard notation.

a. 7.03 × 105

b. −8.16 × 1011

c. −3.9 × 10−13

d. 8 × 10−6

Using Scientific Notation in Applications
Scientific notation, used with the rules of exponents, makes calculating with large or small numbers much easier than doing
so using standard notation. For example, suppose we are asked to calculate the number of atoms in 1 L of water. Each
water molecule contains 3 atoms (2 hydrogen and 1 oxygen). The average drop of water contains around  1.32 × 1021  
molecules of water and 1 L of water holds about  1.22 × 104   average drops. Therefore, there are approximately

 3 ⋅ ⎛
⎝1.32 × 1021⎞

⎠ ⋅ ⎛
⎝1.22 × 104⎞

⎠ ≈ 4.83 × 1025   atoms in 1 L of water. We simply multiply the decimal terms and add the

exponents. Imagine having to perform the calculation without using scientific notation!

When performing calculations with scientific notation, be sure to write the answer in proper scientific notation. For
example, consider the product  ⎛⎝7 × 104⎞

⎠ ⋅ ⎛
⎝5 × 106⎞

⎠ = 35 × 1010. The answer is not in proper scientific notation because

35 is greater than 10. Consider 35 as  3.5 × 10. That adds a ten to the exponent of the answer.

(35) × 1010 = (3.5 × 10) × 1010 = 3.5 × ⎛⎝10 × 1010⎞
⎠ = 3.5 × 1011
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Using Scientific Notation

Perform the operations and write the answer in scientific notation.

a. ⎛
⎝8.14 × 10−7⎞

⎠
⎛
⎝6.5 × 1010⎞

⎠

b. ⎛
⎝4 × 105⎞

⎠ ÷ ⎛
⎝−1.52 × 109⎞

⎠

c. ⎛
⎝2.7 × 105⎞

⎠
⎛
⎝6.04 × 1013⎞

⎠

d. ⎛
⎝1.2 × 108⎞

⎠ ÷ ⎛
⎝9.6 × 105⎞

⎠

e. ⎛
⎝3.33 × 104⎞

⎠
⎛
⎝−1.05 × 107⎞

⎠
⎛
⎝5.62 × 105⎞

⎠

Solution
a.

⎛
⎝8.14 × 10−7⎞

⎠
⎛
⎝6.5 × 1010⎞

⎠ = (8.14 × 6.5)⎛
⎝10−7  × 1010⎞

⎠
Commutative and associative
properties of multiplication

= (52.91)⎛
⎝103⎞

⎠ Product rule of exponents

= 5.291 × 104 Scientific n tation

b.
⎛
⎝4 × 105⎞

⎠ ÷ ⎛
⎝−1.52 × 109⎞

⎠ = ⎛
⎝

4
−1.52

⎞
⎠
⎛
⎝

105

109
⎞
⎠

Commutative and associative
properties of multiplication

≈ (−2.63)⎛
⎝10−4⎞

⎠ Quotient rule of exponents

= −2.63 × 10−4 Scientific n tation

c.
⎛
⎝2.7 × 105⎞

⎠
⎛
⎝6.04 × 1013⎞

⎠ = (2.7 × 6.04)⎛
⎝105  × 1013⎞

⎠
Commutative and associative
properties of multiplication

= (16.308)⎛
⎝1018⎞

⎠ Product rule of exponents

= 1.6308 × 1019 Scientific n tation

d.
⎛
⎝1.2 × 108⎞

⎠ ÷ ⎛
⎝9.6 × 105⎞

⎠ = ⎛
⎝
1.2
9.6

⎞
⎠
⎛
⎝

108

105
⎞
⎠

Commutative and associative
properties of multiplication

= (0.125)⎛
⎝103⎞

⎠ Quotient rule of exponents

= 1.25 × 102 Scientific n tation

e.
⎛
⎝3.33 × 104⎞

⎠
⎛
⎝−1.05 × 107⎞

⎠
⎛
⎝5.62 × 105⎞

⎠ = [3.33 × (−1.05) × 5.62]⎛
⎝104  × 107  × 105⎞

⎠

≈ (−19.65)⎛
⎝1016⎞

⎠

= −1.965 × 1017
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1.26

Perform the operations and write the answer in scientific notation.

a. ⎛
⎝−7.5 × 108⎞

⎠
⎛
⎝1.13 × 10−2⎞

⎠

b. ⎛
⎝1.24 × 1011⎞

⎠ ÷ ⎛
⎝1.55 × 1018⎞

⎠

c. ⎛
⎝3.72 × 109⎞

⎠
⎛
⎝8 × 103⎞

⎠

d. ⎛
⎝9.933 × 1023⎞

⎠ ÷ ⎛
⎝−2.31 × 1017⎞

⎠

e. ⎛
⎝−6.04 × 109⎞

⎠
⎛
⎝7.3 × 102⎞

⎠
⎛
⎝−2.81 × 102⎞

⎠

Example 1.26

Applying Scientific Notation to Solve Problems

In April 2014, the population of the United States was about 308,000,000 people. The national debt was about
$17,547,000,000,000. Write each number in scientific notation, rounding figures to two decimal places, and find
the amount of the debt per U.S. citizen. Write the answer in both scientific and standard notations.

Solution

The population was  308,000,000 = 3.08 × 108.

The national debt was  $17,547,000,000,000 ≈ $1.75 × 1013.

To find the amount of debt per citizen, divide the national debt by the number of citizens.

⎛
⎝1.75 × 1013⎞

⎠ ÷ ⎛
⎝3.08 × 108⎞

⎠ = ⎛
⎝
1.75
3.08

⎞
⎠ ⋅ ⎛

⎝
1013

108
⎞
⎠

≈ 0.57 × 105

= 5.7 × 104

The debt per citizen at the time was about  $5.7 × 104, or $57,000.

An average human body contains around 30,000,000,000,000 red blood cells. Each cell measures
approximately 0.000008 m long. Write each number in scientific notation and find the total length if the cells
were laid end-to-end. Write the answer in both scientific and standard notations.

Access these online resources for additional instruction and practice with exponents and scientific notation.

• Exponential Notation (http://openstaxcollege.org/l/exponnot)

• Properties of Exponents (http://openstaxcollege.org/l/exponprops)

• Zero Exponent (http://openstaxcollege.org/l/zeroexponent)

• Simplify Exponent Expressions (http://openstaxcollege.org/l/exponexpres)

• Quotient Rule for Exponents (http://openstaxcollege.org/l/quotofexpon)

• Scientific Notation (http://openstaxcollege.org/l/scientificnota)

• Converting to Decimal Notation (http://openstaxcollege.org/l/decimalnota)
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69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

1.2 EXERCISES
Verbal

Is  23   the same as  32?  Explain.

When can you add two exponents?

What is the purpose of scientific notation?

Explain what a negative exponent does.

Numeric
For the following exercises, simplify the given expression.
Write answers with positive exponents.

 92  

15−2

32  × 33

44 ÷ 4

⎛
⎝22⎞

⎠
−2

(5 − 8)0

113 ÷ 114

65  × 6−7

⎛
⎝80⎞

⎠
2

5−2 ÷ 52

For the following exercises, write each expression with a
single base. Do not simplify further. Write answers with
positive exponents.

42  × 43 ÷ 4−4

612

69

⎛
⎝123  × 12⎞

⎠
10

106 ÷ ⎛
⎝1010⎞

⎠
−2

7−6  × 7−3

⎛
⎝33 ÷ 34⎞

⎠
5

For the following exercises, express the decimal in
scientific notation.

0.0000314

148,000,000

For the following exercises, convert each number in
scientific notation to standard notation.

1.6 × 1010

9.8 × 10−9

Algebraic
For the following exercises, simplify the given expression.
Write answers with positive exponents.

a3 a2
a

mn2

m−2

⎛
⎝b

3 c4⎞
⎠
2

⎛

⎝
⎜x−3

y2

⎞

⎠
⎟

−5

ab2 ÷ d−3

⎛
⎝w

0 x5⎞
⎠
−1

m4

n0

y−4 ⎛
⎝y2⎞

⎠
2

p−4 q2

p2 q−3

(l × w)2

⎛
⎝y7⎞

⎠
3

÷ x14
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105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

⎛
⎝

a
23

⎞
⎠

2

52 m ÷ 50 m

(16 x)2

y−1

23

(3a)−2

⎛
⎝ma6⎞

⎠
2 1

m3 a2

⎛
⎝b

−3 c⎞
⎠
3

⎛
⎝x2 y13 ÷ y0⎞

⎠
2

⎛
⎝9z3⎞

⎠
−2

y

Real-World Applications

To reach escape velocity, a rocket must travel at the
rate of  2.2 × 106   ft/min. Rewrite the rate in standard
notation.

A dime is the thinnest coin in U.S. currency. A dime’s
thickness measures  2.2 × 106  m. Rewrite the number in
standard notation.

The average distance between Earth and the Sun is
92,960,000 mi. Rewrite the distance using scientific
notation.

A terabyte is made of approximately
1,099,500,000,000 bytes. Rewrite in scientific notation.

The Gross Domestic Product (GDP) for the United
States in the first quarter of 2014 was  $1.71496 × 1013. 
Rewrite the GDP in standard notation.

One picometer is approximately  3.397 × 10−11   in.
Rewrite this length using standard notation.

The value of the services sector of the U.S. economy
in the first quarter of 2012 was $10,633.6 billion. Rewrite
this amount in scientific notation.

Technology
For the following exercises, use a graphing calculator to
simplify. Round the answers to the nearest hundredth.

⎛
⎝

123 m33

4−3
⎞
⎠

2

173 ÷ 152 x3

Extensions
For the following exercises, simplify the given expression.
Write answers with positive exponents.

⎛
⎝

32

a3
⎞
⎠

−2 ⎛
⎝

a4

22
⎞
⎠

2

⎛
⎝62 −24⎞

⎠
2

÷ ⎛
⎝
x
y

⎞
⎠
−5

m2 n3

a2 c−3 ⋅ a−7 n−2

m2 c4

⎛

⎝
⎜ x6 y3

x3 y−3 ⋅ y−7

x−3

⎞

⎠
⎟

10

⎛

⎝
⎜
⎜

⎛
⎝ab2 c⎞

⎠
−3

b−3

⎞

⎠
⎟
⎟

2

Avogadro’s constant is used to calculate the number
of particles in a mole. A mole is a basic unit in chemistry to
measure the amount of a substance. The constant is
 6.0221413 × 1023. Write Avogadro’s constant in
standard notation.

Planck’s constant is an important unit of measure in
quantum physics. It describes the relationship between
energy and frequency. The constant is written as
 6.62606957 × 10−34. Write Planck’s constant in standard
notation.
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1.3 | Radicals and Rational Expressions

Learning Objectives

In this section students will:

1.3.1 Evaluate square roots.
1.3.2 Use the product rule to simplify square roots.
1.3.3 Use the quotient rule to simplify square roots.
1.3.4 Add and subtract square roots.
1.3.5 Rationalize denominators.
1.3.6 Use rational roots.

A hardware store sells 16-ft ladders and 24-ft ladders. A window is located 12 feet above the ground. A ladder needs to be
purchased that will reach the window from a point on the ground 5 feet from the building. To find out the length of ladder
needed, we can draw a right triangle as shown in Figure 1.6, and use the Pythagorean Theorem.

Figure 1.6

a2 + b2 = c2

52 + 122 = c2

169 = c2

Now, we need to find out the length that, when squared, is 169, to determine which ladder to choose. In other words, we
need to find a square root. In this section, we will investigate methods of finding solutions to problems such as this one.

Evaluating Square Roots
When the square root of a number is squared, the result is the original number. Since  42 = 16, the square root of  16  is
 4. The square root function is the inverse of the squaring function just as subtraction is the inverse of addition. To undo
squaring, we take the square root.

In general terms, if  a  is a positive real number, then the square root of  a  is a number that, when multiplied by itself, gives
 a. The square root could be positive or negative because multiplying two negative numbers gives a positive number. The
principal square root is the nonnegative number that when multiplied by itself equals  a. The square root obtained using a
calculator is the principal square root.

The principal square root of  a  is written as   a. The symbol is called a radical, the term under the symbol is called the
radicand, and the entire expression is called a radical expression.
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Principal Square Root

The principal square root of  a  is the nonnegative number that, when multiplied by itself, equals  a.  It is written as a
radical expression, with a symbol called a radical over the term called the radicand:   a.

Does   25 = ± 5?

No. Although both  52   and  (−5)2   are  25, the radical symbol implies only a nonnegative root, the principal

square root. The principal square root of 25 is   25 = 5.

Example 1.27

Evaluating Square Roots

Evaluate each expression.

a. 100

b. 16

c. 25 + 144

d. 49 − 81

Solution

a. 100 = 10  because  102 = 100

b. 16 = 4 = 2  because  42 = 16  and  22 = 4

c. 25 + 144 = 169 = 13  because  132 = 169

d. 49 − 81 = 7 − 9 = −2  because  72 = 49  and  92 = 81

For   25 + 144, can we find the square roots before adding?

No.   25 + 144 = 5 + 12 = 17.  This is not equivalent to   25 + 144 = 13.  The order of operations requires us
to add the terms in the radicand before finding the square root.

Evaluate each expression.

a. 225

b. 81

c. 25 − 9

d. 36 + 121
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Using the Product Rule to Simplify Square Roots
To simplify a square root, we rewrite it such that there are no perfect squares in the radicand. There are several properties of
square roots that allow us to simplify complicated radical expressions. The first rule we will look at is the product rule for
simplifying square roots, which allows us to separate the square root of a product of two numbers into the product of two
separate rational expressions. For instance, we can rewrite   15  as   3 ⋅ 5. We can also use the product rule to express the
product of multiple radical expressions as a single radical expression.

The Product Rule for Simplifying Square Roots

If  a  and  b  are nonnegative, the square root of the product  ab  is equal to the product of the square roots of  a  and  b.

ab = a ⋅ b

Given a square root radical expression, use the product rule to simplify it.

1. Factor any perfect squares from the radicand.

2. Write the radical expression as a product of radical expressions.

3. Simplify.

Example 1.28

Using the Product Rule to Simplify Square Roots

Simplify the radical expression.

a. 300

b. 162a5 b4

Solution
a.

100 ⋅ 3 Factor perfect square from radicand.
100 ⋅ 3 Write radical expression as product of radical expressions.

10 3 Simplify.

b.

81a4 b4 ⋅ 2a Factor perfect square from radicand.

81a4 b4 ⋅ 2a Write radical expression as product of radical expressions.

9a2 b2 2a Simplify.

Simplify   50x2 y3 z.

Given the product of multiple radical expressions, use the product rule to combine them into one radical
expression.

1. Express the product of multiple radical expressions as a single radical expression.

2. Simplify.
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1.29

Example 1.29

Using the Product Rule to Simplify the Product of Multiple Square Roots

Simplify the radical expression.
12 ⋅ 3

Solution

12 ⋅ 3 Express the product as a single radical expression.
36 Simplify.

6

Simplify   50x ⋅ 2x  assuming  x > 0.

Using the Quotient Rule to Simplify Square Roots
Just as we can rewrite the square root of a product as a product of square roots, so too can we rewrite the square root of a
quotient as a quotient of square roots, using the quotient rule for simplifying square roots. It can be helpful to separate the
numerator and denominator of a fraction under a radical so that we can take their square roots separately. We can rewrite

  5
2   as   5

2
.

The Quotient Rule for Simplifying Square Roots

The square root of the quotient  ab   is equal to the quotient of the square roots of  a  and  b, where  b ≠ 0.

a
b = a

b

Given a radical expression, use the quotient rule to simplify it.

1. Write the radical expression as the quotient of two radical expressions.

2. Simplify the numerator and denominator.

Example 1.30

Using the Quotient Rule to Simplify Square Roots

Simplify the radical expression.

5
36

Solution
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1.31

5
36

Write as quotient of two radical expressions.

5
6 Simplify denominator.

Simplify 2x2

9y4.

Example 1.31

Using the Quotient Rule to Simplify an Expression with Two Square Roots

Simplify the radical expression.

234x11 y
26x7 y

Solution

234x11 y
26x7 y

Combine numerator and denominator into one radical expression.

9x4 Simplify fraction.

3x2   Simplify square root.

Simplify   9a5 b14

3a4 b5
.

Adding and Subtracting Square Roots
We can add or subtract radical expressions only when they have the same radicand and when they have the same radical
type such as square roots. For example, the sum of   2  and  3 2  is  4 2. However, it is often possible to simplify radical
expressions, and that may change the radicand. The radical expression   18  can be written with a  2  in the radicand, as
 3 2, so   2 + 18 = 2 + 3 2 = 4 2.

Given a radical expression requiring addition or subtraction of square roots, solve.

1. Simplify each radical expression.

2. Add or subtract expressions with equal radicands.

Example 1.32
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1.33

Adding Square Roots

Add  5 12 + 2 3.

Solution

We can rewrite  5 12  as  5 4 · 3. According the product rule, this becomes  5 4 3. The square root of   4  is 2,
so the expression becomes  5(2) 3, which is  10 3. Now we can the terms have the same radicand so we can
add.

10 3 + 2 3 = 12 3

Add   5 + 6 20.

Example 1.33

Subtracting Square Roots

Subtract  20 72a3 b4 c − 14 8a3 b4 c.

Solution
Rewrite each term so they have equal radicands.

20 72a3 b4 c = 20 9 4 2 a a2 ⎛
⎝b2⎞

⎠
2

c

= 20(3)(2)|a|b2 2ac

= 120|a|b2 2ac

14 8a3 b4 c = 14 2 4 a a2 ⎛
⎝b2⎞

⎠
2

c

= 14(2)|a|b2 2ac

= 28|a|b2 2ac

Now the terms have the same radicand so we can subtract.

120|a|b2 2ac − 28|a|b2 2ac = 92|a|b2 2ac

Subtract  3 80x − 4 45x.

Rationalizing Denominators
When an expression involving square root radicals is written in simplest form, it will not contain a radical in the
denominator. We can remove radicals from the denominators of fractions using a process called rationalizing the
denominator.
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We know that multiplying by 1 does not change the value of an expression. We use this property of multiplication to change
expressions that contain radicals in the denominator. To remove radicals from the denominators of fractions, multiply by
the form of 1 that will eliminate the radical.

For a denominator containing a single term, multiply by the radical in the denominator over itself. In other words, if the
denominator is  b c, multiply by   c

c.

For a denominator containing the sum or difference of a rational and an irrational term, multiply the numerator and
denominator by the conjugate of the denominator, which is found by changing the sign of the radical portion of the
denominator. If the denominator is  a + b c, then the conjugate is  a − b c.

Given an expression with a single square root radical term in the denominator, rationalize the denominator.

a. Multiply the numerator and denominator by the radical in the denominator.

b. Simplify.

Example 1.34

Rationalizing a Denominator Containing a Single Term

Write   2 3
3 10

  in simplest form.

Solution

The radical in the denominator is   10.  So multiply the fraction by   10
10

. Then simplify.

2 3
3 10

⋅ 10
10

    

2 30
30            

30
15

Write  12 3
2
  in simplest form.

Given an expression with a radical term and a constant in the denominator, rationalize the denominator.

1. Find the conjugate of the denominator.

2. Multiply the numerator and denominator by the conjugate.

3. Use the distributive property.

4. Simplify.

Example 1.35

Rationalizing a Denominator Containing Two Terms
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Write   4
1 + 5

  in simplest form.

Solution
Begin by finding the conjugate of the denominator by writing the denominator and changing the sign. So the

conjugate of  1 + 5  is  1 − 5. Then multiply the fraction by  1 − 5
1 − 5

.

4
1 + 5

⋅ 1 − 5
1 − 5

4 − 4 5
−4 Use the distributive property.

5 − 1 Simplify.

Write   7
2 + 3

  in simplest form.

Using Rational Roots
Although square roots are the most common rational roots, we can also find cube roots, 4th roots, 5th roots, and more.
Just as the square root function is the inverse of the squaring function, these roots are the inverse of their respective power
functions. These functions can be useful when we need to determine the number that, when raised to a certain power, gives
a certain number.

Understanding nth Roots

Suppose we know that  a3 = 8. We want to find what number raised to the 3rd power is equal to 8. Since  23 = 8, we say
that 2 is the cube root of 8.

The nth root of  a  is a number that, when raised to the nth power, gives  a.  For example,  −3  is the 5th root of  −243 
because  (−3)5 = −243.  If  a  is a real number with at least one nth root, then the principal nth root of  a  is the number
with the same sign as  a  that, when raised to the nth power, equals  a.

The principal nth root of  a  is written as   an , where  n  is a positive integer greater than or equal to 2. In the radical
expression,  n  is called the index of the radical.

Principal nth Root

If  a  is a real number with at least one nth root, then the principal nth root of  a, written as   an , is the number with
the same sign as  a  that, when raised to the nth power, equals  a. The index of the radical is  n.

Example 1.36

Simplifying nth Roots

Simplify each of the following:

a. −325
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b. 44 ⋅ 1, 0244

c. − 8x6

125
3

d. 8 34 − 484

Solution

a. −325 = −2  because  (−2)5 = −32

b. First, express the product as a single radical expression.   4,0964 = 8  because  84 = 4,096

c.
− 8x63

1253 Write as quotient of two radical expressions.

−2x2

5 Simplify.

d.
8 34 − 2 34 Simplify to get equal radicands.

6 34 Add.

Simplify.

a. −2163

b. 3 804

54

c. 6 9, 0003 + 7 5763

Using Rational Exponents
Radical expressions can also be written without using the radical symbol. We can use rational (fractional) exponents. The
index must be a positive integer. If the index  n  is even, then  a  cannot be negative.

a
1
n = an

We can also have rational exponents with numerators other than 1. In these cases, the exponent must be a fraction in lowest
terms. We raise the base to a power and take an nth root. The numerator tells us the power and the denominator tells us the
root.

a
m
n = ( an )m = amn

All of the properties of exponents that we learned for integer exponents also hold for rational exponents.

Rational Exponents

Rational exponents are another way to express principal nth roots. The general form for converting between a radical
expression with a radical symbol and one with a rational exponent is

a
m
n = ( an )m = amn
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1.38

Given an expression with a rational exponent, write the expression as a radical.

1. Determine the power by looking at the numerator of the exponent.

2. Determine the root by looking at the denominator of the exponent.

3. Using the base as the radicand, raise the radicand to the power and use the root as the index.

Example 1.37

Writing Rational Exponents as Radicals

Write  343
2
3   as a radical. Simplify.

Solution
The 2 tells us the power and the 3 tells us the root.

343
2
3 = ⎛

⎝ 3433 ⎞
⎠

2
= 34323

We know that   3433 = 7  because  73 = 343. Because the cube root is easy to find, it is easiest to find the cube
root before squaring for this problem. In general, it is easier to find the root first and then raise it to a power.

343
2
3 = ⎛

⎝ 3433 ⎞
⎠

2
= 72 = 49

Write  9
5
2   as a radical. Simplify.

Example 1.38

Writing Radicals as Rational Exponents

Write   4
a27   using a rational exponent.

Solution

The power is 2 and the root is 7, so the rational exponent will be  27. We get   4

a
2
7

. Using properties of exponents,

we get   4
a27 = 4a

−2
7 .

Write  x (5y)9  using a rational exponent.
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Example 1.39

Simplifying Rational Exponents

Simplify:

a. 5
⎛

⎝
⎜2x

3
4
⎞

⎠
⎟
⎛

⎝
⎜3x

1
5
⎞

⎠
⎟

b. ⎛
⎝
16
9

⎞
⎠

− 1
2

Solution
a.

30x
3
4 x

1
5 Multiply the coefficien .

30x
3
4 + 1

5 Use properties of exponents.

30x
19
20 Simplify.

b.

⎛
⎝

9
16

⎞
⎠

1
2

  Use definition of ne ative exponents.

9
16   Rewrite as a radical.

9
16

  Use the quotient rule.

3
4   Simplify.

Simplify  (8x)
1
3

⎛

⎝
⎜14x

6
5
⎞

⎠
⎟.

Access these online resources for additional instruction and practice with radicals and rational exponents.

• Radicals (http://openstaxcollege.org/l/introradical)

• Rational Exponents (http://openstaxcollege.org/l/rationexpon)

• Simplify Radicals (http://openstaxcollege.org/l/simpradical)

• Rationalize Denominator (http://openstaxcollege.org/l/rationdenom)
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128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

1.3 EXERCISES
Verbal

What does it mean when a radical does not have an
index? Is the expression equal to the radicand? Explain.

Where would radicals come in the order of
operations? Explain why.

Every number will have two square roots. What is the
principal square root?

Can a radical with a negative radicand have a real
square root? Why or why not?

Numeric
For the following exercises, simplify each expression.

256

256

4(9 + 16)

289 − 121

196

1

98

27
64

81
5

800

169 + 144

8
50

18
162

192

14 6 − 6 24

15 5 + 7 45

150

96
100

( 42)⎛
⎝ 30⎞

⎠

12 3 − 4 75

4
225

405
324

360
361

5
1 + 3

8
1 − 17

164

1283 + 3 23

−32
243

5

15 1254

54

3 −4323 + 163

Algebraic
For the following exercises, simplify each expression.

400x4

4y2

49p

⎛
⎝144p2 q6⎞

⎠

1
2

m
5
2 289

9 3m2 + 27
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168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

3 ab2 − b a

4 2n
16n4

225x3

49x

3 44z + 99z

50y8

490bc2

32
14d

q
3
2 63p

8
1 − 3x

20
121d4

w
3
2 32 − w

3
2 50

108x4 + 27x4

12x
2 + 2 3

147k3

125n10

42q
36q3

81m
361m2

72c − 2 2c

144
324d2

24x63
+ 81x63

162x6

16x4

4

64y3

128z33
− −16z33

1,024c105

Real-World Applications

A guy wire for a suspension bridge runs from the
ground diagonally to the top of the closest pylon to make a
triangle. We can use the Pythagorean Theorem to find the
length of guy wire needed. The square of the distance
between the wire on the ground and the pylon on the ground
is 90,000 feet. The square of the height of the pylon is
160,000 feet. So the length of the guy wire can be found by
evaluating   90,000 + 160,000. What is the length of the
guy wire?

A car accelerates at a rate of  6 − 4
t  m/s2  where t is

the time in seconds after the car moves from rest. Simplify
the expression.

Extensions
For the following exercises, simplify each expression.

8 − 16
4 − 2

− 2
1
2

4
3
2 − 16

3
2

8
1
3

mn3

a2 c−3
⋅ a−7 n−2

m2 c4

a
a − c

x 64y + 4 y
128y

⎛

⎝
⎜ 250x2

100b3

⎞

⎠
⎟⎛⎝

7 b
125x

⎞
⎠

643 + 2564

64 + 256
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1.4 | Polynomials

Learning Objectives

In this section students will:

1.4.1 Identify the degree and leading coefficient of polynomials.
1.4.2 Add and subtract polynomials.
1.4.3 Multiply polynomials.
1.4.4 Use FOIL to multiply binomials.
1.4.5 Perform operations with polynomials of several variables.

Earl is building a doghouse, whose front is in the shape of a square topped with a triangle. There will be a rectangular door
through which the dog can enter and exit the house. Earl wants to find the area of the front of the doghouse so that he can
purchase the correct amount of paint. Using the measurements of the front of the house, shown in Figure 1.7, we can create
an expression that combines several variable terms, allowing us to solve this problem and others like it.

Figure 1.7

First find the area of the square in square feet.

A = s2

= (2x)2

= 4x2

Then find the area of the triangle in square feet.

A = 1
2bh

=   12(2x)⎛
⎝
3
2

⎞
⎠

=   32x

Next find the area of the rectangular door in square feet.

A = lw
= x ⋅ 1
= x

The area of the front of the doghouse can be found by adding the areas of the square and the triangle, and then subtracting
the area of the rectangle. When we do this, we get  4x2 + 3

2x − x ft2, or  4x2 + 1
2x  ft2.

In this section, we will examine expressions such as this one, which combine several variable terms.
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Identifying the Degree and Leading Coefficient of Polynomials
The formula just found is an example of a polynomial, which is a sum of or difference of terms, each consisting of a variable
raised to a nonnegative integer power. A number multiplied by a variable raised to an exponent, such as  384π, is known
as a coefficient. Coefficients can be positive, negative, or zero, and can be whole numbers, decimals, or fractions. Each
product  ai x i, such as  384πw, is a term of a polynomial. If a term does not contain a variable, it is called a constant.

A polynomial containing only one term, such as  5x4, is called a monomial. A polynomial containing two terms, such as

 2x − 9, is called a binomial. A polynomial containing three terms, such as  −3x2 + 8x − 7, is called a trinomial.

We can find the degree of a polynomial by identifying the highest power of the variable that occurs in the polynomial. The
term with the highest degree is called the leading term because it is usually written first. The coefficient of the leading
term is called the leading coefficient. When a polynomial is written so that the powers are descending, we say that it is in
standard form.

Polynomials

A polynomial is an expression that can be written in the form

an xn + ... + a2 x2 + a1 x + a0

Each real number ai is called a coefficient. The number  a0   that is not multiplied by a variable is called a constant.

Each product  ai x i   is a term of a polynomial. The highest power of the variable that occurs in the polynomial is

called the degree of a polynomial. The leading term is the term with the highest power, and its coefficient is called
the leading coefficient.

Given a polynomial expression, identify the degree and leading coefficient.

1. Find the highest power of x to determine the degree.

2. Identify the term containing the highest power of x to find the leading term.

3. Identify the coefficient of the leading term.

Example 1.40

Identifying the Degree and Leading Coefficient of a Polynomial

For the following polynomials, identify the degree, the leading term, and the leading coefficient.

a. 3 + 2x2 − 4x3

b. 5t5 − 2t3 + 7t

c. 6p − p3 − 2

Solution
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1.41

a. The highest power of x is 3, so the degree is 3. The leading term is the term containing that degree,  −4x3. 
The leading coefficient is the coefficient of that term,  −4.

b. The highest power of t is  5, so the degree is  5. The leading term is the term containing that degree,  5t5. 
The leading coefficient is the coefficient of that term,  5.

c. The highest power of p is  3, so the degree is  3. The leading term is the term containing that degree,

 − p3, The leading coefficient is the coefficient of that term,  −1.

Identify the degree, leading term, and leading coefficient of the polynomial  4x2 − x6 + 2x − 6.

Adding and Subtracting Polynomials
We can add and subtract polynomials by combining like terms, which are terms that contain the same variables raised to the
same exponents. For example,  5x2   and  −2x2   are like terms, and can be added to get  3x2, but  3x  and  3x2   are not like
terms, and therefore cannot be added.

Given multiple polynomials, add or subtract them to simplify the expressions.

1. Combine like terms.

2. Simplify and write in standard form.

Example 1.41

Adding Polynomials

Find the sum.
⎛
⎝12x2 + 9x − 21⎞

⎠ + ⎛
⎝4x3 + 8x2 − 5x + 20⎞

⎠

Solution

4x3 + ⎛
⎝12x2 + 8x2⎞

⎠ + (9x − 5x) + (−21 + 20)    Combine like terms.

4x3 + 20x2 + 4x − 1   Simplify.

Analysis
We can check our answers to these types of problems using a graphing calculator. To check, graph the problem as
given along with the simplified answer. The two graphs should be equivalent. Be sure to use the same window to
compare the graphs. Using different windows can make the expressions seem equivalent when they are not.

Find the sum.
⎛
⎝2x3 + 5x2 − x + 1⎞

⎠ + ⎛
⎝2x2 − 3x − 4⎞

⎠
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Example 1.42

Subtracting Polynomials

Find the difference.
⎛
⎝7x4 − x2 + 6x + 1⎞

⎠ − ⎛
⎝5x3 − 2x2 + 3x + 2⎞

⎠

Solution

7x4 − 5x3 + ⎛
⎝−x2 + 2x2⎞

⎠ + (6x − 3x) + (1 − 2)  Combine like terms.

7x4 − 5x3 + x2 + 3x − 1 Simplify.

Analysis
Note that finding the difference between two polynomials is the same as adding the opposite of the second
polynomial to the first.

Find the difference.
⎛
⎝−7x3 − 7x2 + 6x − 2⎞

⎠ − ⎛
⎝4x3 − 6x2 − x + 7⎞

⎠

Multiplying Polynomials
Multiplying polynomials is a bit more challenging than adding and subtracting polynomials. We must use the distributive
property to multiply each term in the first polynomial by each term in the second polynomial. We then combine like terms.
We can also use a shortcut called the FOIL method when multiplying binomials. Certain special products follow patterns
that we can memorize and use instead of multiplying the polynomials by hand each time. We will look at a variety of ways
to multiply polynomials.

Multiplying Polynomials Using the Distributive Property
To multiply a number by a polynomial, we use the distributive property. The number must be distributed to each term
of the polynomial. We can distribute the  2  in  2(x + 7)  to obtain the equivalent expression  2x + 14. When multiplying
polynomials, the distributive property allows us to multiply each term of the first polynomial by each term of the second.
We then add the products together and combine like terms to simplify.

Given the multiplication of two polynomials, use the distributive property to simplify the expression.

1. Multiply each term of the first polynomial by each term of the second.

2. Combine like terms.

3. Simplify.

Example 1.43

Multiplying Polynomials Using the Distributive Property

Find the product.

(2x + 1)⎛
⎝3x2 − x + 4⎞

⎠

Solution
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2x⎛
⎝3x2 − x + 4⎞

⎠ + 1⎛
⎝3x2 − x + 4⎞

⎠    Use the distributive property.
⎛
⎝6x3 − 2x2 + 8x⎞

⎠ + ⎛
⎝3x2 − x + 4⎞

⎠   Multiply.

6x3 + ⎛
⎝−2x2 + 3x2⎞

⎠ + (8x − x) + 4   Combine like terms.

6x3 + x2 + 7x + 4    Simplify.

Analysis
We can use a table to keep track of our work, as shown in Table 1.2. Write one polynomial across the top and the
other down the side. For each box in the table, multiply the term for that row by the term for that column. Then
add all of the terms together, combine like terms, and simplify.

3x2 −x +4

2x 6x3 −2x2 8x

+1 3x2 −x 4

Table 1.2

Find the product.

(3x + 2)⎛
⎝x

3 − 4x2 + 7⎞
⎠

Using FOIL to Multiply Binomials
A shortcut called FOIL is sometimes used to find the product of two binomials. It is called FOIL because we multiply the
first terms, the outer terms, the inner terms, and then the last terms of each binomial.

The FOIL method arises out of the distributive property. We are simply multiplying each term of the first binomial by each
term of the second binomial, and then combining like terms.

Given two binomials, use FOIL to simplify the expression.

1. Multiply the first terms of each binomial.

2. Multiply the outer terms of the binomials.

3. Multiply the inner terms of the binomials.

4. Multiply the last terms of each binomial.

5. Add the products.

6. Combine like terms and simplify.
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Example 1.44

Using FOIL to Multiply Binomials

Use FOIL to find the product.

(2x - 10)(3x + 3)

Solution
Find the product of the first terms.

Find the product of the outer terms.

Find the product of the inner terms.

Find the product of the last terms.

6x2 + 6x − 54x − 54 Add the products.

6x2 + (6x − 54x) − 54 Combine like terms.
6x2 − 48x − 54 Simplify.

Use FOIL to find the product.

(x + 7)(3x − 5)

Perfect Square Trinomials
Certain binomial products have special forms. When a binomial is squared, the result is called a perfect square trinomial.
We can find the square by multiplying the binomial by itself. However, there is a special form that each of these perfect
square trinomials takes, and memorizing the form makes squaring binomials much easier and faster. Let’s look at a few
perfect square trinomials to familiarize ourselves with the form.

 (x + 5)2 = x2 + 10x + 25
(x − 3)2 =   x2 − 6x + 9

(4x − 1)2 = 4x2 − 8x + 1
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1.45

Notice that the first term of each trinomial is the square of the first term of the binomial and, similarly, the last term of each
trinomial is the square of the last term of the binomial. The middle term is double the product of the two terms. Lastly, we
see that the first sign of the trinomial is the same as the sign of the binomial.

Perfect Square Trinomials

When a binomial is squared, the result is the first term squared added to double the product of both terms and the last
term squared.

(1.8)(x + a)2 = (x + a)(x + a) = x2 + 2ax + a2

Given a binomial, square it using the formula for perfect square trinomials.

1. Square the first term of the binomial.

2. Square the last term of the binomial.

3. For the middle term of the trinomial, double the product of the two terms.

4. Add and simplify.

Example 1.45

Expanding Perfect Squares

Expand  (3x − 8)2.

Solution
Begin by squaring the first term and the last term. For the middle term of the trinomial, double the product of the
two terms.

(3x)2 − 2(3x)(8) + (−8)2

Simplify

 9x2 − 48x + 64.

Expand  (4x − 1)2.

Difference of Squares
Another special product is called the difference of squares, which occurs when we multiply a binomial by another binomial
with the same terms but the opposite sign. Let’s see what happens when we multiply  (x + 1)(x − 1)  using the FOIL
method.

(x + 1)(x − 1) = x2 − x + x − 1
= x2 − 1

The middle term drops out, resulting in a difference of squares. Just as we did with the perfect squares, let’s look at a few
examples.
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(x + 5)(x − 5) = x2 − 25
(x + 11)(x − 11) = x2 − 121
(2x + 3)(2x − 3) = 4x2 − 9

Because the sign changes in the second binomial, the outer and inner terms cancel each other out, and we are left only with
the square of the first term minus the square of the last term.

Is there a special form for the sum of squares?

No. The difference of squares occurs because the opposite signs of the binomials cause the middle terms to
disappear. There are no two binomials that multiply to equal a sum of squares.

Difference of Squares

When a binomial is multiplied by a binomial with the same terms separated by the opposite sign, the result is the square
of the first term minus the square of the last term.

(1.10)(a + b)(a − b) = a2 − b2

Given a binomial multiplied by a binomial with the same terms but the opposite sign, find the difference of
squares.

1. Square the first term of the binomials.

2. Square the last term of the binomials.

3. Subtract the square of the last term from the square of the first term.

Example 1.46

Multiplying Binomials Resulting in a Difference of Squares

Multiply  (9x + 4)(9x − 4).

Solution

Square the first term to get  (9x)2 = 81x2.  Square the last term to get  42 = 16.  Subtract the square of the last

term from the square of the first term to find the product of  81x2 − 16.

Multiply  (2x + 7)(2x − 7).

Performing Operations with Polynomials of Several Variables
We have looked at polynomials containing only one variable. However, a polynomial can contain several variables. All of
the same rules apply when working with polynomials containing several variables. Consider an example:

(a + 2b)(4a − b − c)
a(4a − b − c) + 2b(4a − b − c) Use the distributive property.

4a2 − ab − ac + 8ab − 2b2 − 2bc Multiply.

4a2 + ( − ab + 8ab) − ac − 2b2 − 2bc Combine like terms.
4a2 + 7ab − ac − 2bc − 2b2 Simplify.
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Example 1.47

Multiplying Polynomials Containing Several Variables

Multiply  (x + 4)(3x − 2y + 5).

Solution
Follow the same steps that we used to multiply polynomials containing only one variable.

x(3x − 2y + 5) + 4(3x − 2y + 5)  Use the distributive property.

3x2 − 2xy + 5x + 12x − 8y + 20 Multiply.

3x2 − 2xy + (5x + 12x) − 8y + 20 Combine like terms.

3x2 − 2xy + 17x − 8y + 20  Simplify.

Multiply (3x − 1)(2x + 7y − 9).

Access these online resources for additional instruction and practice with polynomials.

• Adding and Subtracting Polynomials (http://openstaxcollege.org/l/addsubpoly)

• Multiplying Polynomials (http://openstaxcollege.org/l/multiplpoly)

• Special Products of Polynomials (http://openstaxcollege.org/l/specialpolyprod)
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1.4 EXERCISES
Verbal

Evaluate the following statement: The degree of a
polynomial in standard form is the exponent of the leading
term. Explain why the statement is true or false.

Many times, multiplying two binomials with two
variables results in a trinomial. This is not the case when
there is a difference of two squares. Explain why the
product in this case is also a binomial.

You can multiply polynomials with any number of
terms and any number of variables using four basic steps
over and over until you reach the expanded polynomial.
What are the four steps?

State whether the following statement is true and
explain why or why not: A trinomial is always a higher
degree than a monomial.

Algebraic
For the following exercises, identify the degree of the
polynomial.

7x − 2x2 + 13

14m3 + m2 − 16m + 8

−625a8 + 16b4

200p − 30p2 m + 40m3

x2 + 4x + 4

6y4 − y5 + 3y − 4

For the following exercises, find the sum or difference.

⎛
⎝12x2 + 3x⎞

⎠ − ⎛
⎝8x2 −19⎞

⎠

⎛
⎝4z3 + 8z2 − z⎞

⎠ + ⎛
⎝−2z2 + z + 6⎞

⎠

⎛
⎝6w2 + 24w + 24⎞

⎠ − (3w − 6w + 3)

⎛
⎝7a3 + 6a2 − 4a − 13⎞

⎠ + ⎛
⎝−3a3 − 4a2 + 6a + 17⎞

⎠

⎛
⎝11b4 − 6b3 + 18b2 − 4b + 8⎞

⎠ − ⎛
⎝3b3 + 6b2 + 3b⎞

⎠

⎛
⎝49p2 − 25⎞

⎠ + ⎛
⎝16p4 − 32p2 + 16⎞

⎠

For the following exercises, find the product.

(4x + 2)(6x − 4)

⎛
⎝14c2 + 4c⎞

⎠
⎛
⎝2c2 − 3c⎞

⎠

⎛
⎝6b2 − 6⎞

⎠
⎛
⎝4b2 − 4⎞

⎠

(3d − 5)(2d + 9)

(9v − 11)(11v − 9)

⎛
⎝4t2 + 7t⎞

⎠
⎛
⎝−3t2 + 4⎞

⎠

(8n − 4)⎛
⎝n2 + 9⎞

⎠

For the following exercises, expand the binomial.

(4x + 5)2

(3y − 7)2

(12 − 4x)2

⎛
⎝4p + 9⎞

⎠
2

(2m − 3)2

(3y − 6)2

(9b + 1)2

For the following exercises, multiply the binomials.

(4c + 1)(4c − 1)

(9a − 4)(9a + 4)

(15n − 6)(15n + 6)

(25b + 2)(25b − 2)

(4 + 4m)(4 − 4m)

(14p + 7)(14p − 7)

(11q − 10)(11q + 10)

For the following exercises, multiply the polynomials.

⎛
⎝2x2 + 2x + 1⎞

⎠(4x − 1)
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247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

⎛
⎝4t2 + t − 7⎞

⎠
⎛
⎝4t2 − 1⎞

⎠

(x − 1)⎛
⎝x2 − 2x + 1⎞

⎠

(y − 2)⎛
⎝y2 − 4y − 9⎞

⎠

(6k − 5)⎛
⎝6k2 + 5k − 1⎞

⎠

⎛
⎝3p2 + 2p − 10⎞

⎠(p − 1)

(4m − 13)⎛
⎝2m2 − 7m + 9⎞

⎠

(a + b)(a − b)

(4x − 6y)(6x − 4y)

(4t − 5u)2

(9m + 4n − 1)(2m + 8)

(4t − x)(t − x + 1)

⎛
⎝b2 − 1⎞

⎠
⎛
⎝a2 + 2ab + b2⎞

⎠

(4r − d)(6r + 7d)

(x + y)⎛
⎝x2 − xy + y2⎞

⎠

Real-World Applications

A developer wants to purchase a plot of land to build
a house. The area of the plot can be described by the
following expression:  (4x + 1)(8x − 3) where x is
measured in meters. Multiply the binomials to find the area
of the plot in standard form.

A prospective buyer wants to know how much grain a
specific silo can hold. The area of the floor of the silo is
 (2x + 9)2. The height of the silo is  10x + 10, where x is
measured in feet. Expand the square and multiply by the
height to find the expression that shows how much grain
the silo can hold.

Extensions
For the following exercises, perform the given operations.

(4t − 7)2(2t + 1) − ⎛
⎝4t2 + 2t + 11⎞

⎠

(3b + 6)(3b − 6)⎛
⎝9b2 − 36⎞

⎠

⎛
⎝a2 + 4ac + 4c2⎞

⎠
⎛
⎝a2 − 4c2⎞

⎠
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1.5 | Factoring Polynomials

Learning Objectives

In this section students will:

1.5.1 Factor the greatest common factor of a polynomial.
1.5.2 Factor a trinomial.
1.5.3 Factor by grouping.
1.5.4 Factor a perfect square trinomial.
1.5.5 Factor a difference of squares.
1.5.6 Factor the sum and difference of cubes.
1.5.7 Factor expressions using fractional or negative exponents.

Imagine that we are trying to find the area of a lawn so that we can determine how much grass seed to purchase. The lawn
is the green portion in Figure 1.8.

Figure 1.8

The area of the entire region can be found using the formula for the area of a rectangle.

A = lw
= 10x ⋅ 6x
= 60x2  units2

The areas of the portions that do not require grass seed need to be subtracted from the area of the entire region. The two
square regions each have an area of  A = s2 = 42 = 16  units2. The other rectangular region has one side of length  10x − 8 
and one side of length  4, giving an area of  A = lw = 4(10x − 8) = 40x − 32  units2. So the region that must be subtracted

has an area of  2(16) + 40x − 32 = 40x  units2.

The area of the region that requires grass seed is found by subtracting  60x2 − 40x  units2. This area can also be expressed

in factored form as  20x(3x − 2)  units2. We can confirm that this is an equivalent expression by multiplying.

Many polynomial expressions can be written in simpler forms by factoring. In this section, we will look at a variety of
methods that can be used to factor polynomial expressions.

Factoring the Greatest Common Factor of a Polynomial
When we study fractions, we learn that the greatest common factor (GCF) of two numbers is the largest number that
divides evenly into both numbers. For instance,  4  is the GCF of  16  and  20  because it is the largest number that divides

evenly into both  16  and  20 The GCF of polynomials works the same way:  4x  is the GCF of  16x  and  20x2   because it is

the largest polynomial that divides evenly into both  16x  and  20x2.
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When factoring a polynomial expression, our first step should be to check for a GCF. Look for the GCF of the coefficients,
and then look for the GCF of the variables.

Greatest Common Factor

The greatest common factor (GCF) of polynomials is the largest polynomial that divides evenly into the polynomials.

Given a polynomial expression, factor out the greatest common factor.

1. Identify the GCF of the coefficients.

2. Identify the GCF of the variables.

3. Combine to find the GCF of the expression.

4. Determine what the GCF needs to be multiplied by to obtain each term in the expression.

5. Write the factored expression as the product of the GCF and the sum of the terms we need to multiply by.

Example 1.48

Factoring the Greatest Common Factor

Factor  6x3 y3 + 45x2 y2 + 21xy.

Solution

First, find the GCF of the expression. The GCF of  6, 45, and  21  is  3. The GCF of  x3, x2, and  x  is  x.  (Note

that the GCF of a set of expressions in the form  xn  will always be the exponent of lowest degree.) And the GCF

of  y3, y2, and  y  is  y. Combine these to find the GCF of the polynomial,  3xy.

Next, determine what the GCF needs to be multiplied by to obtain each term of the polynomial. We find that
 3xy⎛

⎝2x2 y2⎞
⎠ = 6x3 y3, 3xy(15xy) = 45x2 y2, and  3xy(7) = 21xy.

Finally, write the factored expression as the product of the GCF and the sum of the terms we needed to multiply
by.

(3xy)⎛
⎝2x2 y2 + 15xy + 7⎞

⎠

Analysis
After factoring, we can check our work by multiplying. Use the distributive property to confirm that
 (3xy)⎛

⎝2x2 y2 + 15xy + 7⎞
⎠ = 6x3 y3 + 45x2 y2 + 21xy.

Factor  x⎛
⎝b2 − a⎞

⎠ + 6⎛
⎝b2 − a⎞

⎠  by pulling out the GCF.

Factoring a Trinomial with Leading Coefficient 1
Although we should always begin by looking for a GCF, pulling out the GCF is not the only way that polynomial
expressions can be factored. The polynomial  x2 + 5x + 6  has a GCF of 1, but it can be written as the product of the factors
 (x + 2)  and  (x + 3).

Chapter 1 Prerequisites 79



Trinomials of the form  x2 + bx + c  can be factored by finding two numbers with a product of c  and a sum of  b. The

trinomial  x2 + 10x + 16, for example, can be factored using the numbers  2  and  8  because the product of those numbers
is  16  and their sum is  10. The trinomial can be rewritten as the product of  (x + 2)  and  (x + 8).

Factoring a Trinomial with Leading Coefficient 1

A trinomial of the form  x2 + bx + c  can be written in factored form as  (x + p)(x + q) where  pq = c  and

 p + q = b.

Can every trinomial be factored as a product of binomials?

No. Some polynomials cannot be factored. These polynomials are said to be prime.

Given a trinomial in the form  x2 + bx + c, factor it.

1. List factors of  c.

2. Find  p  and  q, a pair of factors of  c with a sum of  b.

3. Write the factored expression  (x + p)(x + q).

Example 1.49

Factoring a Trinomial with Leading Coefficient 1

Factor  x2 + 2x − 15.

Solution
We have a trinomial with leading coefficient  1, b = 2, and  c = −15. We need to find two numbers with a
product of  −15  and a sum of  2.  In Table 1.3, we list factors until we find a pair with the desired sum.

Factors of  −15 Sum of Factors

1, −15 −14

−1, 15 14

3, −5 −2

−3, 5 2

Table 1.3

Now that we have identified  p  and  q  as  −3  and  5, write the factored form as  (x − 3)(x + 5).
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Analysis
We can check our work by multiplying. Use FOIL to confirm that  (x − 3)(x + 5) = x2 + 2x − 15.

Does the order of the factors matter?

No. Multiplication is commutative, so the order of the factors does not matter.

Factor  x2 − 7x + 6.

Factoring by Grouping
Trinomials with leading coefficients other than 1 are slightly more complicated to factor. For these trinomials, we can factor
by grouping by dividing the x term into the sum of two terms, factoring each portion of the expression separately, and then
factoring out the GCF of the entire expression. The trinomial  2x2 + 5x + 3  can be rewritten as  (2x + 3)(x + 1)  using this

process. We begin by rewriting the original expression as  2x2 + 2x + 3x + 3  and then factor each portion of the expression
to obtain  2x(x + 1) + 3(x + 1). We then pull out the GCF of  (x + 1)  to find the factored expression.

Factor by Grouping

To factor a trinomial in the form  ax2 + bx + c  by grouping, we find two numbers with a product of  ac  and a sum of
 b. We use these numbers to divide the  x  term into the sum of two terms and factor each portion of the expression
separately, then factor out the GCF of the entire expression.

Given a trinomial in the form  ax2 + bx + c, factor by grouping.
1. List factors of  ac.

2. Find  p  and  q, a pair of factors of  ac with a sum of  b.

3. Rewrite the original expression as  ax2 + px + qx + c.

4. Pull out the GCF of  ax2 + px.

5. Pull out the GCF of  qx + c.

6. Factor out the GCF of the expression.

Example 1.50

Factoring a Trinomial by Grouping

Factor  5x2 + 7x − 6  by grouping.

Solution
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We have a trinomial with  a = 5, b = 7, and  c = −6.  First, determine  ac = −30. We need to find two numbers
with a product of  −30  and a sum of  7.  In Table 1.4, we list factors until we find a pair with the desired sum.

Factors of  −30 Sum of Factors

1, −30 −29

−1, 30 29

2, −15 −13

−2, 15 13

3, −10 −7

−3, 10 7

Table 1.4

So  p = −3  and  q = 10.

5x2 − 3x + 10x − 6  Rewrite the original expression as ax2 + px + qx + c.
x(5x − 3) + 2(5x − 3) Factor out the GCF of each part.
(5x − 3)(x + 2) Factor out the GCF of the expression.

Analysis
We can check our work by multiplying. Use FOIL to confirm that  (5x − 3)(x + 2) = 5x2 + 7x − 6.

Factor a.  2x2 + 9x + 9  b.  6x2 + x − 1

Factoring a Perfect Square Trinomial
A perfect square trinomial is a trinomial that can be written as the square of a binomial. Recall that when a binomial is
squared, the result is the square of the first term added to twice the product of the two terms and the square of the last term.

a2 + 2ab + b2 = (a + b)2

and
a2 − 2ab + b2 = (a − b)2

We can use this equation to factor any perfect square trinomial.

Perfect Square Trinomials

A perfect square trinomial can be written as the square of a binomial:
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(1.11)a2 + 2ab + b2 = (a + b)2

Given a perfect square trinomial, factor it into the square of a binomial.

1. Confirm that the first and last term are perfect squares.

2. Confirm that the middle term is twice the product of  ab.

3. Write the factored form as  (a + b)2.

Example 1.51

Factoring a Perfect Square Trinomial

Factor  25x2 + 20x + 4.

Solution

Notice that  25x2   and  4  are perfect squares because  25x2 = (5x)2   and  4 = 22. Then check to see if the middle
term is twice the product of  5x  and  2. The middle term is, indeed, twice the product:  2(5x)(2) = 20x. 
Therefore, the trinomial is a perfect square trinomial and can be written as  (5x + 2)2.

Factor  49x2 − 14x + 1.

Factoring a Difference of Squares
A difference of squares is a perfect square subtracted from a perfect square. Recall that a difference of squares can be
rewritten as factors containing the same terms but opposite signs because the middle terms cancel each other out when the
two factors are multiplied.

a2 − b2 = (a + b)(a − b)

We can use this equation to factor any differences of squares.

Differences of Squares

A difference of squares can be rewritten as two factors containing the same terms but opposite signs.

(1.12)a2 − b2 = (a + b)(a − b)

Given a difference of squares, factor it into binomials.

1. Confirm that the first and last term are perfect squares.

2. Write the factored form as  (a + b)(a − b).

Example 1.52
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Factoring a Difference of Squares

Factor  9x2 − 25.

Solution

Notice that  9x2   and  25  are perfect squares because  9x2 = (3x)2   and  25 = 52. The polynomial represents a
difference of squares and can be rewritten as  (3x + 5)(3x − 5).

Factor  81y2 − 100.

Is there a formula to factor the sum of squares?

No. A sum of squares cannot be factored.

Factoring the Sum and Difference of Cubes
Now, we will look at two new special products: the sum and difference of cubes. Although the sum of squares cannot be
factored, the sum of cubes can be factored into a binomial and a trinomial.

a3 + b3 = (a + b)⎛
⎝a2 − ab + b2⎞

⎠

Similarly, the sum of cubes can be factored into a binomial and a trinomial, but with different signs.

a3 − b3 = (a − b)⎛
⎝a2 + ab + b2⎞

⎠

We can use the acronym SOAP to remember the signs when factoring the sum or difference of cubes. The first letter of each
word relates to the signs: Same Opposite Always Positive. For example, consider the following example.

x3 − 23 = (x − 2)⎛
⎝x2 + 2x + 4⎞

⎠

The sign of the first 2 is the same as the sign between  x3 − 23. The sign of the  2x  term is opposite the sign between

 x3 − 23. And the sign of the last term, 4, is always positive.

Sum and Difference of Cubes

We can factor the sum of two cubes as

(1.13)a3 + b3 = (a + b)⎛
⎝a2 − ab + b2⎞

⎠

We can factor the difference of two cubes as

(1.14)a3 − b3 = (a − b)⎛
⎝a2 + ab + b2⎞

⎠

Given a sum of cubes or difference of cubes, factor it.

1. Confirm that the first and last term are cubes,  a3 + b3   or  a3 − b3.

2. For a sum of cubes, write the factored form as  (a + b)⎛
⎝a2 − ab + b2⎞

⎠.  For a difference of cubes, write the

factored form as  (a − b)⎛
⎝a2 + ab + b2⎞

⎠.
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1.54

Example 1.53

Factoring a Sum of Cubes

Factor  x3 + 512.

Solution

Notice that  x3   and  512  are cubes because  83 = 512. Rewrite the sum of cubes as  (x + 8)⎛
⎝x2 − 8x + 64⎞

⎠.

Analysis
After writing the sum of cubes this way, we might think we should check to see if the trinomial portion can be
factored further. However, the trinomial portion cannot be factored, so we do not need to check.

Factor the sum of cubes:  216a3 + b3.

Example 1.54

Factoring a Difference of Cubes

Factor  8x3 − 125.

Solution

Notice that  8x3   and  125  are cubes because  8x3 = (2x)3   and  125 = 53. Write the difference of cubes as

 (2x − 5)⎛
⎝4x2 + 10x + 25⎞

⎠.

Analysis
Just as with the sum of cubes, we will not be able to further factor the trinomial portion.

Factor the difference of cubes:  1,000x3 − 1.

Factoring Expressions with Fractional or Negative Exponents
Expressions with fractional or negative exponents can be factored by pulling out a GCF. Look for the variable or exponent
that is common to each term of the expression and pull out that variable or exponent raised to the lowest power. These

expressions follow the same factoring rules as those with integer exponents. For instance,  2x
1
4 + 5x

3
4   can be factored by

pulling out  x
1
4   and being rewritten as  x

1
4
⎛

⎝
⎜2 + 5x

1
2
⎞

⎠
⎟.

Example 1.55
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Factoring an Expression with Fractional or Negative Exponents

Factor  3x(x + 2)
−1
3 + 4(x + 2)

2
3.

Solution

Factor out the term with the lowest value of the exponent. In this case, that would be  (x + 2)
− 1

3.

(x + 2)
− 1

3(3x + 4(x + 2)) Factor out the GCF.

(x + 2)
− 1

3(3x + 4x + 8) Simplify.

(x + 2)
− 1

3(7x + 8)

Factor  2(5a − 1)
3
4 + 7a(5a − 1)

− 1
4.

Access these online resources for additional instruction and practice with factoring polynomials.

• Identify GCF (http://openstaxcollege.org/l/findgcftofact)

• Factor Trinomials when a Equals 1 (http://openstaxcollege.org/l/facttrinom1)

• Factor Trinomials when a is not equal to 1 (http://openstaxcollege.org/l/facttrinom2)

• Factor Sum or Difference of Cubes (http://openstaxcollege.org/l/sumdifcube)
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260.
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262.

263.

264.
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266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

1.5 EXERCISES
Verbal

If the terms of a polynomial do not have a GCF, does
that mean it is not factorable? Explain.

A polynomial is factorable, but it is not a perfect
square trinomial or a difference of two squares. Can you
factor the polynomial without finding the GCF?

How do you factor by grouping?

Algebraic
For the following exercises, find the greatest common
factor.

14x + 4xy − 18xy2

49mb2 − 35m2 ba + 77ma2

30x3 y − 45x2 y2 + 135xy3

200p3 m3 − 30p2 m3 + 40m3

36 j4 k2 − 18 j3 k3 + 54 j2 k4

6y4 − 2y3 + 3y2 − y

For the following exercises, factor by grouping.

6x2 + 5x − 4

2a2 + 9a − 18

6c2 + 41c + 63

6n2 − 19n − 11

20w2 − 47w + 24

2p2 − 5p − 7

For the following exercises, factor the polynomial.

7x2 + 48x − 7

10h2 − 9h − 9

2b2 − 25b − 247

9d2 −73d + 8

90v2 −181v + 90

12t2 + t − 13

2n2 − n − 15

16x2 − 100

25y2 − 196

121p2 − 169

4m2 − 9

361d2 − 81

324x2 − 121

144b2 − 25c2

16a2 − 8a + 1

49n2 + 168n + 144

121x2 − 88x + 16

225y2 + 120y + 16

m2 − 20m + 100

m2 − 20m + 100

36q2 + 60q + 25

For the following exercises, factor the polynomials.

x3 + 216

27y3 − 8

125a3 + 343

b3 − 8d3

64x3 −125

729q3 + 1331

125r3 + 1,728s3
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301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

4x(x − 1)
− 2

3 + 3(x − 1)
1
3

3c(2c + 3)
− 1

4 − 5(2c + 3)
3
4

3t(10t + 3)
1
3 + 7(10t + 3)

4
3

14x(x + 2)
− 2

5 + 5(x + 2)
3
5

9y(3y − 13)
1
5 − 2(3y − 13)

6
5

5z(2z − 9)
− 3

2 + 11(2z − 9)
− 1

2

6d(2d + 3)
− 1

6 + 5(2d + 3)
5
6

Real-World Applications
For the following exercises, consider this scenario:

Charlotte has appointed a chairperson to lead a city
beautification project. The first act is to install statues and
fountains in one of the city’s parks. The park is a rectangle
with an area of  98x2 + 105x − 27 m2, as shown in the
figure below. The length and width of the park are perfect
factors of the area.

Factor by grouping to find the length and width of the
park.

A statue is to be placed in the center of the park. The
area of the base of the statue is  4x2 + 12x + 9m2.  Factor
the area to find the lengths of the sides of the statue.

At the northwest corner of the park, the city is going
to install a fountain. The area of the base of the fountain is
 9x2 − 25m2.  Factor the area to find the lengths of the
sides of the fountain.

For the following exercise, consider the following scenario:

A school is installing a flagpole in the central plaza. The
plaza is a square with side length 100 yd. as shown in the
figure below. The flagpole will take up a square plot with
area  x2 − 6x + 9 yd2.

Find the length of the base of the flagpole by
factoring.

Extensions
For the following exercises, factor the polynomials
completely.

16x4 − 200x2 + 625

81y4 − 256

16z4 − 2,401a4

5x(3x + 2)
− 2

4 + (12x + 8)
3
2

⎛
⎝32x3 + 48x2 − 162x − 243⎞

⎠
−1
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1.6 | Rational Expressions

Learning Objectives

In this section students will:

1.6.1 Simplify rational expressions.
1.6.2 Multiply rational expressions.
1.6.3 Divide rational expressions.
1.6.4 Add and subtract rational expressions.
1.6.5 Simplify complex rational expressions.

A pastry shop has fixed costs of  $280  per week and variable costs of  $9  per box of pastries. The shop’s costs per week in
terms of  x, the number of boxes made, is  280 + 9x. We can divide the costs per week by the number of boxes made to
determine the cost per box of pastries.

280 + 9x
x

Notice that the result is a polynomial expression divided by a second polynomial expression. In this section, we will explore
quotients of polynomial expressions.

Simplifying Rational Expressions
The quotient of two polynomial expressions is called a rational expression. We can apply the properties of fractions
to rational expressions, such as simplifying the expressions by canceling common factors from the numerator and the
denominator. To do this, we first need to factor both the numerator and denominator. Let’s start with the rational expression
shown.

x2 + 8x + 16
x2 + 11x + 28

We can factor the numerator and denominator to rewrite the expression.

(x + 4)2

(x + 4)(x + 7)

Then we can simplify that expression by canceling the common factor  (x + 4).

x + 4
x + 7

Given a rational expression, simplify it.

1. Factor the numerator and denominator.

2. Cancel any common factors.

Example 1.56

Simplifying Rational Expressions

Simplify   x2 − 9
x2 + 4x + 3

.

Solution

Chapter 1 Prerequisites 89



1.56

(x + 3)(x − 3)
(x + 3)(x + 1) Factor the numerator and the denominator.

x − 3
x + 1 Cancel common factor (x + 3).

Analysis
We can cancel the common factor because any expression divided by itself is equal to 1.

Can the  x2   term be cancelled in Example 1.56?

No. A factor is an expression that is multiplied by another expression. The  x2   term is not a factor of the numerator
or the denominator.

Simplify   x − 6
x2 − 36

.

Multiplying Rational Expressions
Multiplication of rational expressions works the same way as multiplication of any other fractions. We multiply the
numerators to find the numerator of the product, and then multiply the denominators to find the denominator of the product.
Before multiplying, it is helpful to factor the numerators and denominators just as we did when simplifying rational
expressions. We are often able to simplify the product of rational expressions.

Given two rational expressions, multiply them.

1. Factor the numerator and denominator.

2. Multiply the numerators.

3. Multiply the denominators.

4. Simplify.

Example 1.57

Multiplying Rational Expressions

Multiply the rational expressions and show the product in simplest form:

(x + 5)(x − 1)
3(x + 6) ⋅ (2x − 1)

(x + 5) Factor the numerator and denominator.

(x + 5)(x − 1)(2x − 1)
3(x + 6)(x + 5) Multiply numerators and denominators.

(x + 5)(x − 1)(2x − 1)
3(x + 6)(x + 5)

Cancel common factors to simplify.

(x − 1)(2x − 1)
3(x + 6)

Solution
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(x + 5)(x − 1)
3(x + 6) ⋅ (2x − 1)

(x + 5) Factor the numerator and denominator.

(x + 5)(x − 1)(2x − 1)
3(x + 6)(x + 5) Multiply numerators and denominators.

(x + 5)(x − 1)(2x − 1)
3(x + 6)(x + 5)

Cancel common factors to simplify.

(x − 1)(2x − 1)
3(x + 6)  

Multiply the rational expressions and show the product in simplest form:

x2 + 11x + 30
x2 + 5x + 6

⋅ x2 + 7x + 12
x2 + 8x + 16

Dividing Rational Expressions
Division of rational expressions works the same way as division of other fractions. To divide a rational expression by
another rational expression, multiply the first expression by the reciprocal of the second. Using this approach, we would

rewrite  1x ÷ x2

3   as the product  1x ⋅ 3
x2. Once the division expression has been rewritten as a multiplication expression, we

can multiply as we did before.

1
x ⋅ 3

x2 = 3
x3

Given two rational expressions, divide them.

1. Rewrite as the first rational expression multiplied by the reciprocal of the second.

2. Factor the numerators and denominators.

3. Multiply the numerators.

4. Multiply the denominators.

5. Simplify.

Example 1.58

Dividing Rational Expressions

Divide the rational expressions and express the quotient in simplest form:

2x2 + x − 6
x2 − 1

÷ x2 − 4
x2 + 2x + 1

Solution

9x2 − 16
3x2 + 17x − 28

÷ 3x2 − 2x − 8
x2 + 5x − 14
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1.58 Divide the rational expressions and express the quotient in simplest form:

9x2 − 16
3x2 + 17x − 28

÷ 3x2 − 2x − 8
x2 + 5x − 14

Adding and Subtracting Rational Expressions
Adding and subtracting rational expressions works just like adding and subtracting numerical fractions. To add fractions,
we need to find a common denominator. Let’s look at an example of fraction addition.

5
24 + 1

40 = 25
120 + 3

120
= 28

120
= 7

30

We have to rewrite the fractions so they share a common denominator before we are able to add. We must do the same thing
when adding or subtracting rational expressions.

The easiest common denominator to use will be the least common denominator, or LCD. The LCD is the smallest multiple
that the denominators have in common. To find the LCD of two rational expressions, we factor the expressions and multiply
all of the distinct factors. For instance, if the factored denominators were  (x + 3)(x + 4)  and  (x + 4)(x + 5), then the LCD
would be  (x + 3)(x + 4)(x + 5).

Once we find the LCD, we need to multiply each expression by the form of 1 that will change the denominator to the

LCD. We would need to multiply the expression with a denominator of  (x + 3)(x + 4)  by  x + 5
x + 5   and the expression with a

denominator of  (x + 4)(x + 5)  by  x + 3
x + 3.

Given two rational expressions, add or subtract them.

1. Factor the numerator and denominator.

2. Find the LCD of the expressions.

3. Multiply the expressions by a form of 1 that changes the denominators to the LCD.

4. Add or subtract the numerators.

5. Simplify.

Example 1.59

Adding Rational Expressions

Add the rational expressions:

5
x + 6

y

Solution
First, we have to find the LCD. In this case, the LCD will be  xy. We then multiply each expression by the

appropriate form of 1 to obtain  xy  as the denominator for each fraction.

5
x ⋅ y

y + 6
y ⋅ x

x
5y
xy + 6x

xy

92 Chapter 1 Prerequisites

This content is available for free at https://cnx.org/content/col11758/1.5



1.59

Now that the expressions have the same denominator, we simply add the numerators to find the sum.

6x + 5y
xy

Analysis
Multiplying by  yy   or  xx   does not change the value of the original expression because any number divided by itself

is 1, and multiplying an expression by 1 gives the original expression.

Example 1.60

Subtracting Rational Expressions

Subtract the rational expressions:

6
x2 + 4x + 4

− 2
x2 −4

Solution
6

(x + 2)2 − 2
(x + 2)(x − 2) Factor.

6
(x + 2)2 ⋅ x − 2

x − 2 − 2
(x + 2)(x − 2) ⋅ x + 2

x + 2 Multiply each fraction to get LCD as denominator.

6(x − 2)
(x + 2)2(x − 2)

− 2(x + 2)
(x + 2)2(x − 2)

Multiply.

6x − 12 − (2x + 4)
(x + 2)2(x − 2)

Apply distributive property.

4x − 16
(x + 2)2(x − 2)

Subtract.

4(x − 4)
(x + 2)2(x − 2)

Simplify.

Do we have to use the LCD to add or subtract rational expressions?

No. Any common denominator will work, but it is easiest to use the LCD.

Subtract the rational expressions:   3
x + 5 − 1

x−3.

Simplifying Complex Rational Expressions
A complex rational expression is a rational expression that contains additional rational expressions in the numerator, the
denominator, or both. We can simplify complex rational expressions by rewriting the numerator and denominator as single
rational expressions and dividing. The complex rational expression   a

1
b + c

  can be simplified by rewriting the numerator
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as the fraction  a1   and combining the expressions in the denominator as  1 + bc
b . We can then rewrite the expression as a

multiplication problem using the reciprocal of the denominator. We get  a1 ⋅ b
1 + bc, which is equal to   ab

1 + bc.

Given a complex rational expression, simplify it.

1. Combine the expressions in the numerator into a single rational expression by adding or subtracting.

2. Combine the expressions in the denominator into a single rational expression by adding or subtracting.

3. Rewrite as the numerator divided by the denominator.

4. Rewrite as multiplication.

5. Multiply.

6. Simplify.

Example 1.61

Simplifying Complex Rational Expressions

Simplify:
y + 1

x
x
y

.

Solution
Begin by combining the expressions in the numerator into one expression.

y ⋅ x
x + 1

x   Multiply by x
x to get LCD as denominator.

xy
x + 1

x
xy + 1

x   Add numerators.

Now the numerator is a single rational expression and the denominator is a single rational expression.
xy + 1

x
x
y

We can rewrite this as division, and then multiplication.

xy + 1
x ÷ x

y
xy + 1

x ⋅ y
x Rewrite as multiplication.

y(xy + 1)
x2 Multiply.

Simplify:
x
y − y

x
y

Can a complex rational expression always be simplified?

Yes. We can always rewrite a complex rational expression as a simplified rational expression.
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Access these online resources for additional instruction and practice with rational expressions.

• Simplify Rational Expressions (http://openstaxcollege.org/l/simpratexpress)

• Multiply and Divide Rational Expressions (http://openstaxcollege.org/l/multdivratex)

• Add and Subtract Rational Expressions (http://openstaxcollege.org/l/addsubratex)

• Simplify a Complex Fraction (http://openstaxcollege.org/l/complexfract)
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343.
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345.
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1.6 EXERCISES
Verbal

How can you use factoring to simplify rational
expressions?

How do you use the LCD to combine two rational
expressions?

Tell whether the following statement is true or false
and explain why: You only need to find the LCD when
adding or subtracting rational expressions.

Algebraic
For the following exercises, simplify the rational
expressions.

x2 − 16
x2 − 5x + 4

y2 + 10y + 25
y2 + 11y + 30

6a2 − 24a + 24
6a2 − 24

9b2 + 18b + 9
3b + 3

m − 12
m2 − 144

2x2 + 7x − 4
4x2 + 2x − 2

6x2 + 5x − 4
3x2 + 19x + 20

a2 + 9a + 18
a2 + 3a − 18

3c2 + 25c − 18
3c2 − 23c + 14

12n2 − 29n − 8
28n2 − 5n − 3

For the following exercises, multiply the rational
expressions and express the product in simplest form.

x2 − x − 6
2x2 + x − 6

⋅ 2x2 + 7x − 15
x2 − 9

c2 + 2c − 24
c2 + 12c + 36

⋅ c2 − 10c + 24
c2 − 8c + 16

2d2 + 9d − 35
d2 + 10d + 21

⋅ 3d2 + 2d − 21
3d2 + 14d − 49

10h2 − 9h − 9
2h2 − 19h + 24

⋅ h2 − 16h + 64
5h2 − 37h − 24

6b2 + 13b + 6
4b2 − 9

⋅ 6b2 + 31b − 30
18b2 − 3b − 10

2d2 + 15d + 25
4d2 − 25

⋅ 2d2 − 15d + 25
25d2 − 1

6x2 − 5x − 50
15x2 − 44x − 20

⋅ 20x2 − 7x − 6
2x2 + 9x + 10

t2 − 1
t2 + 4t + 3

⋅ t2 + 2t − 15
t2 − 4t + 3

2n2 − n − 15
6n2 + 13n − 5

⋅ 12n2 − 13n + 3
4n2 − 15n + 9

36x2 − 25
6x2 + 65x + 50

⋅ 3x2 + 32x + 20
18x2 + 27x + 10

For the following exercises, divide the rational expressions.

3y2 − 7y − 6
2y2 − 3y − 9

÷ y2 + y − 2
2y2 + y − 3

6p2 + p − 12
8p2 + 18p + 9

÷ 6p2 − 11p + 4
2p2 + 11p − 6

q2 − 9
q2 + 6q + 9

÷ q2 − 2q − 3
q2 + 2q − 3

18d2 + 77d − 18
27d2 − 15d + 2

÷ 3d2 + 29d − 44
9d2 − 15d + 4

16x2 + 18x − 55
32x2 − 36x − 11

÷ 2x2 + 17x + 30
4x2 + 25x + 6

144b2 − 25
72b2 − 6b − 10

÷ 18b2 − 21b + 5
36b2 − 18b − 10

16a2 − 24a + 9
4a2 + 17a − 15

÷ 16a2 − 9
4a2 + 11a + 6
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351.

352.
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363.

364.

365.
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367.

368.

369.

370.

371.

372.

22y2 + 59y + 10
12y2 + 28y − 5

÷ 11y2 + 46y + 8
24y2 − 10y + 1

9x2 + 3x − 20
3x2 − 7x + 4

÷ 6x2 + 4x − 10
x2 − 2x + 1

For the following exercises, add and subtract the rational
expressions, and then simplify.

4
x + 10

y

12
2q − 6

3p

4
a + 1 + 5

a − 3

c + 2
3 − c − 4

4

y + 3
y − 2 + y − 3

y + 1

x − 1
x + 1 − 2x + 3

2x + 1

3z
z + 1 + 2z + 5

z − 2

4p
p + 1 − p + 1

4p

x
x + 1 + y

y + 1

For the following exercises, simplify the rational
expression.

6
y − 4

x
y

2
a + 7

b
b

x
4 − p

8
p

3
a + b

6
2b
3a

3
x + 1 + 2

x − 1
x − 1
x + 1

a
b − b

a
a + b

ab

2x
3 + 4x

7
x
2

2c
c + 2 + c − 1

c + 1
2c + 1
c + 1

x
y − y

x
x
y + y

x

Real-World Applications

Brenda is placing tile on her bathroom floor. The area
of the floor is  15x2 − 8x − 7  ft2. The area of one tile is

 x2 − 2x + 1ft2. To find the number of tiles needed,

simplify the rational expression:  15x2 − 8x − 7
x2 − 2x + 1

.

The area of Sandy’s yard is  25x2 − 625  ft2. A patch

of sod has an area of  x2 − 10x + 25  ft2. Divide the two
areas and simplify to find how many pieces of sod Sandy
needs to cover her yard.

Aaron wants to mulch his garden. His garden is
 x2 + 18x + 81  ft2. One bag of mulch covers  x2 − 81  ft2.
Divide the expressions and simplify to find how many bags
of mulch Aaron needs to mulch his garden.

Extensions
For the following exercises, perform the given operations
and simplify.

x2 + x − 6
x2 − 2x − 3

⋅ 2x2 − 3x − 9
x2 − x − 2

÷ 10x2 + 27x + 18
x2 + 2x + 1

3y2 − 10y + 3
3y2 + 5y − 2

⋅ 2y2 − 3y − 20
2y2 − y − 15

y − 4
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373.

4a + 1
2a − 3 + 2a − 3

2a + 3
4a2 + 9

a

x2 + 7x + 12
x2 + x − 6

÷ 3x2 + 19x + 28
8x2 − 4x − 24

÷ 2x2 + x − 3
3x2 + 4x − 7
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algebraic expression

associative property of addition

associative property of multiplication

base

binomial

coefficient

commutative property of addition

commutative property of multiplication

constant

degree

difference of squares

distributive property

equation

exponent

exponential notation

factor by grouping

formula

greatest common factor

identity property of addition

identity property of multiplication

index

integers

inverse property of addition

CHAPTER 1 REVIEW

KEY TERMS
constants and variables combined using addition, subtraction, multiplication, and division

the sum of three numbers may be grouped differently without affecting the result; in
symbols,  a + (b + c) = (a + b) + c

the product of three numbers may be grouped differently without affecting the
result; in symbols,  a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

in exponential notation, the expression that is being multiplied

a polynomial containing two terms

any real number  ai   in a polynomial in the form  an xn + ... + a2 x2 + a1 x + a0

two numbers may be added in either order without affecting the result; in symbols,
 a + b = b + a

two numbers may be multiplied in any order without affecting the result; in
symbols,  a ⋅ b = b ⋅ a

a quantity that does not change value

the highest power of the variable that occurs in a polynomial

the binomial that results when a binomial is multiplied by a binomial with the same terms, but the
opposite sign

the product of a factor times a sum is the sum of the factor times each term in the sum; in symbols,
 a ⋅ (b + c) = a ⋅ b + a ⋅ c

a mathematical statement indicating that two expressions are equal

in exponential notation, the raised number or variable that indicates how many times the base is being
multiplied

a shorthand method of writing products of the same factor

a method for factoring a trinomial in the form  ax2 + bx + c  by dividing the x term into the sum of
two terms, factoring each portion of the expression separately, and then factoring out the GCF of the entire expression

an equation expressing a relationship between constant and variable quantities

the largest polynomial that divides evenly into each polynomial

there is a unique number, called the additive identity, 0, which, when added to a number,
results in the original number; in symbols,  a + 0 = a

there is a unique number, called the multiplicative identity, 1, which, when
multiplied by a number, results in the original number; in symbols,  a ⋅ 1 = a

the number above the radical sign indicating the nth root

the set consisting of the natural numbers, their opposites, and 0: { … , −3, −2, −1, 0, 1, 2, 3,…}

for every real number  a, there is a unique number, called the additive inverse (or
opposite), denoted  − a, which, when added to the original number, results in the additive identity, 0; in symbols,
 a + (−a) = 0
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inverse property of multiplication

irrational numbers

leading coefficient

leading term

least common denominator

monomial

natural numbers

order of operations

perfect square trinomial

polynomial

principal nth root

principal square root

radical

radical expression

radicand

rational expression

rational numbers

real number line

real numbers

scientific notation

term of a polynomial

trinomial

variable

whole numbers

for every non-zero real number  a, there is a unique number, called the

multiplicative inverse (or reciprocal), denoted  1a, which, when multiplied by the original number, results in the

multiplicative identity, 1; in symbols,  a ⋅ 1
a = 1

the set of all numbers that are not rational; they cannot be written as either a terminating or repeating
decimal; they cannot be expressed as a fraction of two integers

the coefficient of the leading term

the term containing the highest degree

the smallest multiple that two denominators have in common

a polynomial containing one term

the set of counting numbers:  {1, 2, 3,…}

a set of rules governing how mathematical expressions are to be evaluated, assigning priorities to
operations

the trinomial that results when a binomial is squared

a sum of terms each consisting of a variable raised to a nonnegative integer power

the number with the same sign as  a  that when raised to the nth power equals  a
the nonnegative square root of a number  a  that, when multiplied by itself, equals  a

the symbol used to indicate a root

an expression containing a radical symbol

the number under the radical symbol

the quotient of two polynomial expressions

the set of all numbers of the form  mn , where  m  and  n  are integers and  n ≠ 0. Any rational number

may be written as a fraction or a terminating or repeating decimal.

a horizontal line used to represent the real numbers. An arbitrary fixed point is chosen to represent 0;
positive numbers lie to the right of 0 and negative numbers to the left.

the sets of rational numbers and irrational numbers taken together

a shorthand notation for writing very large or very small numbers in the form  a × 10n  where
 1 ≤ |a| < 10  and  n  is an integer

any  ai x i   of a polynomial in the form  an xn + ... + a2 x2 + a1 x + a0

a polynomial containing three terms

a quantity that may change value

the set consisting of 0 plus the natural numbers:  {0, 1, 2, 3,…}

KEY EQUATIONS
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Rules of Exponents
For nonzero real numbers  a  and  b  and integers  m  and  n 

Product rule am ⋅ an = am + n

Quotient rule
am

an = am − n

Power rule (am)n = am ⋅ n

Zero exponent rule a0 = 1

Negative rule a−n = 1
an

Power of a product rule (a ⋅ b)n = an ⋅ bn

Power of a quotient rule
⎛
⎝
a
b

⎞
⎠

n
= an

bn

perfect square trinomial (x + a)2 = (x + a)(x + a) = x2 + 2ax + a2

difference of squares (a + b)(a − b) = a2 − b2

difference of squares a2 − b2 = (a + b)(a − b)

perfect square trinomial a2 + 2ab + b2 = (a + b)2

sum of cubes a3 + b3 = (a + b)⎛
⎝a2 − ab + b2⎞

⎠

difference of cubes a3 − b3 = (a − b)⎛
⎝a2 + ab + b2⎞

⎠

KEY CONCEPTS
1.1 Real Numbers: Algebra Essentials

• Rational numbers may be written as fractions or terminating or repeating decimals. See Example 1.1 and
Example 1.2.

• Determine whether a number is rational or irrational by writing it as a decimal. See Example 1.3.

• The rational numbers and irrational numbers make up the set of real numbers. See Example 1.4. A number can be
classified as natural, whole, integer, rational, or irrational. See Example 1.5.
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• The order of operations is used to evaluate expressions. See Example 1.6.

• The real numbers under the operations of addition and multiplication obey basic rules, known as the properties of
real numbers. These are the commutative properties, the associative properties, the distributive property, the identity
properties, and the inverse properties. See Example 1.7.

• Algebraic expressions are composed of constants and variables that are combined using addition, subtraction,
multiplication, and division. See Example 1.8. They take on a numerical value when evaluated by replacing
variables with constants. See Example 1.9, Example 1.10, and Example 1.12

• Formulas are equations in which one quantity is represented in terms of other quantities. They may be simplified or
evaluated as any mathematical expression. See Example 1.11 and Example 1.13.

1.2 Exponents and Scientific Notation

• Products of exponential expressions with the same base can be simplified by adding exponents. See Example 1.14.

• Quotients of exponential expressions with the same base can be simplified by subtracting exponents. See Example
1.15.

• Powers of exponential expressions with the same base can be simplified by multiplying exponents. See Example
1.16.

• An expression with exponent zero is defined as 1. See Example 1.17.

• An expression with a negative exponent is defined as a reciprocal. See Example 1.18 and Example 1.19.

• The power of a product of factors is the same as the product of the powers of the same factors. See Example 1.20.

• The power of a quotient of factors is the same as the quotient of the powers of the same factors. See Example 1.21.

• The rules for exponential expressions can be combined to simplify more complicated expressions. See Example
1.22.

• Scientific notation uses powers of 10 to simplify very large or very small numbers. See Example 1.23 and
Example 1.24.

• Scientific notation may be used to simplify calculations with very large or very small numbers. See Example 1.25
and Example 1.26.

1.3 Radicals and Rational Expressions

• The principal square root of a number  a  is the nonnegative number that when multiplied by itself equals  a.  See
Example 1.27.

• If  a  and  b  are nonnegative, the square root of the product  ab  is equal to the product of the square roots of  a  and
 b  See Example 1.28 and Example 1.29.

• If  a  and  b  are nonnegative, the square root of the quotient  ab   is equal to the quotient of the square roots of  a  and

 b  See Example 1.30 and Example 1.31.

• We can add and subtract radical expressions if they have the same radicand and the same index. See Example 1.32
and Example 1.33.

• Radical expressions written in simplest form do not contain a radical in the denominator. To eliminate the square
root radical from the denominator, multiply both the numerator and the denominator by the conjugate of the
denominator. See Example 1.34 and Example 1.35.

• The principal nth root of  a  is the number with the same sign as  a  that when raised to the nth power equals  a. 
These roots have the same properties as square roots. See Example 1.36.

• Radicals can be rewritten as rational exponents and rational exponents can be rewritten as radicals. See Example
1.37 and Example 1.38.

• The properties of exponents apply to rational exponents. See Example 1.39.
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1.4 Polynomials

• A polynomial is a sum of terms each consisting of a variable raised to a non-negative integer power. The degree is
the highest power of the variable that occurs in the polynomial. The leading term is the term containing the highest
degree, and the leading coefficient is the coefficient of that term. See Example 1.40.

• We can add and subtract polynomials by combining like terms. See Example 1.41 and Example 1.42.

• To multiply polynomials, use the distributive property to multiply each term in the first polynomial by each term in
the second. Then add the products. See Example 1.43.

• FOIL (First, Outer, Inner, Last) is a shortcut that can be used to multiply binomials. See Example 1.44.

• Perfect square trinomials and difference of squares are special products. See Example 1.45 and Example 1.46.

• Follow the same rules to work with polynomials containing several variables. See Example 1.47.

1.5 Factoring Polynomials

• The greatest common factor, or GCF, can be factored out of a polynomial. Checking for a GCF should be the first
step in any factoring problem. See Example 1.48.

• Trinomials with leading coefficient 1 can be factored by finding numbers that have a product of the third term and
a sum of the second term. See Example 1.49.

• Trinomials can be factored using a process called factoring by grouping. See Example 1.50.

• Perfect square trinomials and the difference of squares are special products and can be factored using equations. See
Example 1.51 and Example 1.52.

• The sum of cubes and the difference of cubes can be factored using equations. See Example 1.53 and Example
1.54.

• Polynomials containing fractional and negative exponents can be factored by pulling out a GCF. See Example
1.55.

1.6 Rational Expressions

• Rational expressions can be simplified by cancelling common factors in the numerator and denominator. See
Example 1.56.

• We can multiply rational expressions by multiplying the numerators and multiplying the denominators. See
Example 1.57.

• To divide rational expressions, multiply by the reciprocal of the second expression. See Example 1.58.

• Adding or subtracting rational expressions requires finding a common denominator. See Example 1.59 and
Example 1.60.

• Complex rational expressions have fractions in the numerator or the denominator. These expressions can be
simplified. See Example 1.61.

CHAPTER 1 REVIEW EXERCISES
Real Numbers: Algebra Essentials

For the following exercises, perform the given operations.

374. (5 − 3 ⋅ 2)2 − 6

375. 64 ÷ (2 ⋅ 8) + 14 ÷ 7

376. 2 ⋅ 52 + 6 ÷ 2

For the following exercises, solve the equation.

377. 5x + 9 = −11

378. 2y + 42 = 64

For the following exercises, simplify the expression.

379. 9⎛
⎝y + 2⎞

⎠ ÷ 3 ⋅ 2 + 1

380. 3m(4 + 7) − m
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For the following exercises, identify the number as rational,
irrational, whole, or natural. Choose the most descriptive
answer.

381. 11

382. 0

383. 5
6

384. 11

Exponents and Scientific Notation

For the following exercises, simplify the expression.

385. 22 ⋅ 24

386. 45

43

387. ⎛
⎝

a2

b3
⎞
⎠

4

388. 6a2 ⋅ a0

2a−4

389. (xy)4

y3 ⋅ 2
x5

390. 4−2 x3 y−3

2x0

391. ⎛
⎝
2x2

y
⎞
⎠

−2

392. ⎛
⎝

16a3

b2
⎞
⎠

⎛
⎝4ab−1⎞

⎠
−2

393. Write the number in standard notation:
 2.1314 × 10−6

394. Write the number in scientific notation: 16,340,000

Radicals and Rational Expressions

For the following exercises, find the principal square root.

395. 121

396. 196

397. 361

398. 75

399. 162

400. 32
25

401. 80
81

402. 49
1250

403. 2
4 + 2

404. 4 3 + 6 3

405. 12 5 − 13 5

406. −2435

407. 2503

−83

Polynomials

For the following exercises, perform the given operations
and simplify.

408. ⎛
⎝3x3 + 2x − 1⎞

⎠ + ⎛
⎝4x2 − 2x + 7⎞

⎠

409. ⎛
⎝2y + 1⎞

⎠ − ⎛
⎝2y2 − 2y − 5⎞

⎠

410. ⎛
⎝2x2 + 3x − 6⎞

⎠ + ⎛
⎝3x2 − 4x + 9⎞

⎠

411. ⎛
⎝6a2 + 3a + 10⎞

⎠ − ⎛
⎝6a2 −3a + 5⎞

⎠

412. (k + 3)(k − 6)

413. (2h + 1)(3h − 2)

414. (x + 1)⎛
⎝x2 + 1⎞

⎠
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415. (m − 2)⎛
⎝m2 + 2m − 3⎞

⎠

416. (a + 2b)(3a − b)

417. (x + y)(x − y)

Factoring Polynomials

For the following exercises, find the greatest common
factor.

418. 81p + 9pq − 27p2 q2

419. 12x2 y + 4xy2 −18xy

420. 88a3 b + 4a2 b − 144a2

For the following exercises, factor the polynomial.

421. 2x2 − 9x − 18

422. 8a2 + 30a − 27

423. d2 − 5d − 66

424. x2 + 10x + 25

425. y2 − 6y + 9

426. 4h2 − 12hk + 9k2

427. 361x2 − 121

428. p3 + 216

429. 8x3 − 125

430. 64q3 − 27p3

431. 4x(x − 1)
− 1

4 + 3(x − 1)
3
4

432. 3p⎛
⎝p + 3⎞

⎠

1
3 −8⎛

⎝p + 3⎞
⎠

4
3

433. 4r(2r − 1)
− 2

3 − 5(2r − 1)
1
3

Rational Expressions

For the following exercises, simplify the expression.

434. x2 − x − 12
x2 − 8x + 16

435. 4y2 − 25
4y2 − 20y + 25

436. 2a2 − a − 3
2a2 − 6a − 8

⋅ 5a2 − 19a − 4
10a2 − 13a − 3

437. d − 4
d2 − 9

⋅ d − 3
d2 − 16

438. m2 + 5m + 6
2m2 − 5m − 3

÷ 2m2 + 3m − 9
4m2 − 4m − 3

439. 4d2 − 7d − 2
6d2 − 17d + 10

÷ 8d2 + 6d + 1
6d2 + 7d − 10

440. 10
x + 6

y

441. 12
a2 + 2a + 1

− 3
a2 −1

442.
1
d + 2

c
6c + 12d

dc

443.
3
x − 7

y
2
x
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CHAPTER 1 PRACTICE TEST
For the following exercises, identify the number as rational,
irrational, whole, or natural. Choose the most descriptive
answer.

444. −13

445. 2

For the following exercises, evaluate the equations.

446. 2(x + 3) − 12 = 18

447. y(3 + 3)2 − 26 = 10

448. Write the number in standard notation: 3.1415 × 106

449. Write the number in scientific notation:
0.0000000212.

For the following exercises, simplify the expression.

450. −2 ⋅ (2 + 3 ⋅ 2)2 + 144

451. 4(x + 3) − (6x + 2)

452. 35 ⋅ 3−3

453. ⎛
⎝
2
3

⎞
⎠

3

454. 8x3

(2x)2

455. ⎛
⎝16y0⎞

⎠2y−2

456. 441

457. 490

458. 9x
16

459. 121b2

1 + b

460. 6 24 + 7 54 − 12 6

461. −83

6254

462. ⎛
⎝13q3 + 2q2 − 3⎞

⎠ − ⎛
⎝6q2 + 5q − 3⎞

⎠

463. ⎛
⎝6p2 + 2p + 1⎞

⎠ + ⎛
⎝9p2 −1⎞

⎠

464. (n − 2)⎛
⎝n2 − 4n + 4⎞

⎠

465. (a − 2b)(2a + b)

For the following exercises, factor the polynomial.

466. 16x2 − 81

467. y2 + 12y + 36

468. 27c3 − 1331

469. 3x(x − 6)
− 1

4 + 2(x − 6)
3
4

For the following exercises, simplify the expression.

470. 2z2 + 7z + 3
z2 − 9

⋅ 4z2 − 15z + 9
4z2 − 1

471. x
y + 2

x

472.
a
2b − 2b

9a
3a − 2b

6a
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2 | EQUATIONS AND
INEQUALITIES

Figure 2.1

Chapter Outline
2.1 The Rectangular Coordinate Systems and Graphs

2.2 Linear Equations in One Variable

2.3 Models and Applications

2.4 Complex Numbers

2.5 Quadratic Equations

2.6 Other Types of Equations

2.7 Linear Inequalities and Absolute Value Inequalities

Introduction
For most people, the term territorial possession indicates restrictions, usually dealing with trespassing or rite of passage
and takes place in some foreign location. What most Americans do not realize is that from September through December,
territorial possession dominates our lifestyles while watching the NFL. In this area, territorial possession is governed by the
referees who make their decisions based on what the chains reveal. If the ball is at point A  (x1, y1), then it is up to the

quarterback to decide which route to point B  (x2, y2), the end zone, is most feasible.

Chapter 2 Equations and Inequalities 107



2.1 | The Rectangular Coordinate Systems and Graphs

Learning Objectives

In this section you will:

2.1.1 Plot ordered pairs in a Cartesian coordinate system.
2.1.2 Graph equations by plotting points.
2.1.3 Graph equations with a graphing utility.
2.1.4 Find x -intercepts and y -intercepts.

2.1.5 Use the distance formula.
2.1.6 Use the midpoint formula.

Figure 2.2

Tracie set out from Elmhurst, IL, to go to Franklin Park. On the way, she made a few stops to do errands. Each stop is
indicated by a red dot in Figure 2.2. Laying a rectangular coordinate grid over the map, we can see that each stop aligns
with an intersection of grid lines. In this section, we will learn how to use grid lines to describe locations and changes in
locations.

Plotting Ordered Pairs in the Cartesian Coordinate System
An old story describes how seventeenth-century philosopher/mathematician René Descartes invented the system that has
become the foundation of algebra while sick in bed. According to the story, Descartes was staring at a fly crawling on
the ceiling when he realized that he could describe the fly’s location in relation to the perpendicular lines formed by the
adjacent walls of his room. He viewed the perpendicular lines as horizontal and vertical axes. Further, by dividing each axis
into equal unit lengths, Descartes saw that it was possible to locate any object in a two-dimensional plane using just two
numbers—the displacement from the horizontal axis and the displacement from the vertical axis.

While there is evidence that ideas similar to Descartes’ grid system existed centuries earlier, it was Descartes who
introduced the components that comprise the Cartesian coordinate system, a grid system having perpendicular axes.
Descartes named the horizontal axis the x-axis and the vertical axis the y-axis.

The Cartesian coordinate system, also called the rectangular coordinate system, is based on a two-dimensional plane
consisting of the x-axis and the y-axis. Perpendicular to each other, the axes divide the plane into four sections. Each section
is called a quadrant; the quadrants are numbered counterclockwise as shown in Figure 2.3
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Figure 2.3

The center of the plane is the point at which the two axes cross. It is known as the origin, or point (0, 0). From the origin,
each axis is further divided into equal units: increasing, positive numbers to the right on the x-axis and up the y-axis;
decreasing, negative numbers to the left on the x-axis and down the y-axis. The axes extend to positive and negative infinity
as shown by the arrowheads in Figure 2.4.

Figure 2.4

Each point in the plane is identified by its x-coordinate, or horizontal displacement from the origin, and its y-coordinate,
or vertical displacement from the origin. Together, we write them as an ordered pair indicating the combined distance
from the origin in the form  (x, y). An ordered pair is also known as a coordinate pair because it consists of x- and y-

coordinates. For example, we can represent the point  (3, −1)  in the plane by moving three units to the right of the origin in

the horizontal direction, and one unit down in the vertical direction. See Figure 2.5.
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Figure 2.5

When dividing the axes into equally spaced increments, note that the x-axis may be considered separately from the y-axis.
In other words, while the x-axis may be divided and labeled according to consecutive integers, the y-axis may be divided
and labeled by increments of 2, or 10, or 100. In fact, the axes may represent other units, such as years against the balance
in a savings account, or quantity against cost, and so on. Consider the rectangular coordinate system primarily as a method
for showing the relationship between two quantities.

Cartesian Coordinate System

A two-dimensional plane where the

• x-axis is the horizontal axis

• y-axis is the vertical axis

A point in the plane is defined as an ordered pair,  (x, y), such that x is determined by its horizontal distance from the

origin and y is determined by its vertical distance from the origin.

Example 2.1

Plotting Points in a Rectangular Coordinate System

Plot the points  (−2, 4), (3, 3), and  (0, −3)  in the plane.

Solution
To plot the point  (−2, 4), begin at the origin. The x-coordinate is –2, so move two units to the left. The y-
coordinate is 4, so then move four units up in the positive y direction.

To plot the point  (3, 3), begin again at the origin. The x-coordinate is 3, so move three units to the right. The
y-coordinate is also 3, so move three units up in the positive y direction.

To plot the point  (0, −3), begin again at the origin. The x-coordinate is 0. This tells us not to move in either
direction along the x-axis. The y-coordinate is –3, so move three units down in the negative y direction. See the
graph in Figure 2.6.
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Figure 2.6

Analysis
Note that when either coordinate is zero, the point must be on an axis. If the x-coordinate is zero, the point is on
the y-axis. If the y-coordinate is zero, the point is on the x-axis.

Graphing Equations by Plotting Points
We can plot a set of points to represent an equation. When such an equation contains both an x variable and a y variable, it is
called an equation in two variables. Its graph is called a graph in two variables. Any graph on a two-dimensional plane
is a graph in two variables.

Suppose we want to graph the equation  y = 2x − 1. We can begin by substituting a value for x into the equation and

determining the resulting value of y. Each pair of x- and y-values is an ordered pair that can be plotted. Table 2.1 lists
values of x from –3 to 3 and the resulting values for y.
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x y = 2x − 1 (x, y)

−3 y = 2(−3) − 1 = −7 (−3, −7)

−2 y = 2(−2) − 1 = −5 (−2, −5)

−1 y = 2(−1) − 1 = −3 (−1, −3)

0 y = 2(0) − 1 = −1 (0, −1)

1 y = 2(1) − 1 = 1 (1, 1)

2 y = 2(2) − 1 = 3 (2, 3)

3 y = 2(3) − 1 = 5 (3, 5)

Table 2.1

We can plot the points in the table. The points for this particular equation form a line, so we can connect them. See Figure
2.7. This is not true for all equations.
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Figure 2.7

Note that the x-values chosen are arbitrary, regardless of the type of equation we are graphing. Of course, some situations
may require particular values of x to be plotted in order to see a particular result. Otherwise, it is logical to choose values
that can be calculated easily, and it is always a good idea to choose values that are both negative and positive. There is no
rule dictating how many points to plot, although we need at least two to graph a line. Keep in mind, however, that the more
points we plot, the more accurately we can sketch the graph.

Given an equation, graph by plotting points.

1. Make a table with one column labeled x, a second column labeled with the equation, and a third column
listing the resulting ordered pairs.

2. Enter x-values down the first column using positive and negative values. Selecting the x-values in
numerical order will make the graphing simpler.

3. Select x-values that will yield y-values with little effort, preferably ones that can be calculated mentally.

4. Plot the ordered pairs.

5. Connect the points if they form a line.

Example 2.2

Graphing an Equation in Two Variables by Plotting Points

Graph the equation  y = − x + 2  by plotting points.
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Solution
First, we construct a table similar to Table 2.2. Choose x values and calculate y.

x y = − x + 2 (x, y)

−5 y = − (−5) + 2 = 7 (−5, 7)

−3 y = − (−3) + 2 = 5 (−3, 5)

−1 y = − (−1) + 2 = 3 (−1, 3)

0 y = − (0) + 2 = 2 (0, 2)

1 y = − (1) + 2 = 1 (1, 1)

3 y = − (3) + 2 = −1 (3, −1)

5 y = − (5) + 2 = −3 (5, −3)

Table 2.2

Now, plot the points. Connect them if they form a line. See Figure 2.8
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2.1

Figure 2.8

Construct a table and graph the equation by plotting points:  y = 1
2x + 2.

Graphing Equations with a Graphing Utility
Most graphing calculators require similar techniques to graph an equation. The equations sometimes have to be manipulated
so they are written in the style  y = _____. The TI-84 Plus, and many other calculator makes and models, have a mode

function, which allows the window (the screen for viewing the graph) to be altered so the pertinent parts of a graph can be
seen.

For example, the equation  y = 2x − 20  has been entered in the TI-84 Plus shown in Figure 2.9a. In Figure 2.9b, the

resulting graph is shown. Notice that we cannot see on the screen where the graph crosses the axes. The standard window
screen on the TI-84 Plus shows  −10 ≤ x ≤ 10, and  −10 ≤ y ≤ 10.  See Figure 2.9c.

Figure 2.9 a. Enter the equation. b. This is the graph in the original window. c. These are the
original settings.
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By changing the window to show more of the positive x-axis and more of the negative y-axis, we have a much better view
of the graph and the x- and y-intercepts. See Figure 2.10a and Figure 2.10b.

Figure 2.10 a. This screen shows the new window settings. b.
We can clearly view the intercepts in the new window.

Example 2.3

Using a Graphing Utility to Graph an Equation

Use a graphing utility to graph the equation:  y = − 2
3x − 4

3.

Solution
Enter the equation in the y= function of the calculator. Set the window settings so that both the x- and y- intercepts
are showing in the window. See Figure 2.11.

Figure 2.11

Finding x-intercepts and y-intercepts
The intercepts of a graph are points at which the graph crosses the axes. The x-intercept is the point at which the graph
crosses the x-axis. At this point, the y-coordinate is zero. The y-intercept is the point at which the graph crosses the y-axis.
At this point, the x-coordinate is zero.

To determine the x-intercept, we set y equal to zero and solve for x. Similarly, to determine the y-intercept, we set x equal to
zero and solve for y. For example, lets find the intercepts of the equation  y = 3x − 1.

To find the x-intercept, set  y = 0.
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 y = 3x − 1
 0 = 3x − 1
 1 = 3x
1
3 = x

⎛
⎝
1
3, 0⎞

⎠ x−intercept

To find the y-intercept, set  x = 0.

y = 3x − 1
y = 3(0) − 1
y = −1
(0, −1) y−intercept

We can confirm that our results make sense by observing a graph of the equation as in Figure 2.12. Notice that the graph
crosses the axes where we predicted it would.

Figure 2.12

Given an equation, find the intercepts.

1. Find the x-intercept by setting  y = 0  and solving for  x.

2. Find the y-intercept by setting  x = 0  and solving for  y.

Example 2.4

Finding the Intercepts of the Given Equation

Find the intercepts of the equation  y = −3x − 4. Then sketch the graph using only the intercepts.

Solution
Set  y = 0  to find the x-intercept.
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2.2

y = −3x − 4
0 = −3x − 4
4 = −3x

−4
3 = x

⎛
⎝−

4
3, 0⎞

⎠ x−intercept

Set  x = 0  to find the y-intercept.

y = −3x − 4
y = −3(0) − 4
y = −4
(0, −4) y−intercept

Plot both points, and draw a line passing through them as in Figure 2.13.

Figure 2.13

Find the intercepts of the equation and sketch the graph:  y = − 3
4x + 3.

Using the Distance Formula
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane.
The Pythagorean Theorem,  a2 + b2 = c2, is based on a right triangle where a and b are the lengths of the legs adjacent to
the right angle, and c is the length of the hypotenuse. See Figure 2.14.
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Figure 2.14

The relationship of sides  |x2 − x1|  and  |y2 − y1|  to side d is the same as that of sides a and b to side c. We use the absolute

value symbol to indicate that the length is a positive number because the absolute value of any number is positive. (For
example,  |−3| = 3.  ) The symbols  |x2 − x1|  and  |y2 − y1|  indicate that the lengths of the sides of the triangle are positive.

To find the length c, take the square root of both sides of the Pythagorean Theorem.

c2 = a2 + b2 → c = a2 + b2

It follows that the distance formula is given as

d2 = (x2 − x1)2 + (y2 − y1)2 → d = (x2 − x1)2 + (y2 − y1)2

We do not have to use the absolute value symbols in this definition because any number squared is positive.

The Distance Formula

Given endpoints  (x1, y1)  and  (x2, y2), the distance between two points is given by

d = (x2 − x1)2 + (y2 − y1)2

Example 2.5

Finding the Distance between Two Points

Find the distance between the points  (−3, −1)  and  (2, 3).

Solution
Let us first look at the graph of the two points. Connect the points to form a right triangle as in Figure 2.15.

Chapter 2 Equations and Inequalities 119



2.3

Figure 2.15

Then, calculate the length of d using the distance formula.

d = (x2 − x1)2 + (y2 − y1)2

d = (2 − (−3))2 + (3 − (−1))2

= (5)2 + (4)2

= 25 + 16
= 41

Find the distance between two points:  (1, 4)  and  (11, 9).

Example 2.6

Finding the Distance between Two Locations

Let’s return to the situation introduced at the beginning of this section.

Tracie set out from Elmhurst, IL, to go to Franklin Park. On the way, she made a few stops to do errands. Each
stop is indicated by a red dot in Figure 2.2. Find the total distance that Tracie traveled. Compare this with the
distance between her starting and final positions.

Solution
The first thing we should do is identify ordered pairs to describe each position. If we set the starting position at
the origin, we can identify each of the other points by counting units east (right) and north (up) on the grid. For
example, the first stop is 1 block east and 1 block north, so it is at  (1, 1). The next stop is 5 blocks to the east,
so it is at  (5, 1). After that, she traveled 3 blocks east and 2 blocks north to  (8, 3). Lastly, she traveled 4 blocks
north to  (8, 7). We can label these points on the grid as in Figure 2.16.
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Figure 2.16

Next, we can calculate the distance. Note that each grid unit represents 1,000 feet.

• From her starting location to her first stop at  (1, 1), Tracie might have driven north 1,000 feet and then
east 1,000 feet, or vice versa. Either way, she drove 2,000 feet to her first stop.

• Her second stop is at  (5, 1).  So from  (1, 1)  to  (5, 1), Tracie drove east 4,000 feet.

• Her third stop is at  (8, 3). There are a number of routes from  (5, 1)  to  (8, 3). Whatever route Tracie
decided to use, the distance is the same, as there are no angular streets between the two points. Let’s say
she drove east 3,000 feet and then north 2,000 feet for a total of 5,000 feet.

• Tracie’s final stop is at  (8, 7). This is a straight drive north from  (8, 3)  for a total of 4,000 feet.

Next, we will add the distances listed in Table 2.3.
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From/To Number of Feet Driven

(0, 0)  to  (1, 1) 2,000

(1, 1)  to (5, 1)  4,000

(5, 1)  to  (8, 3) 5,000

(8, 3)  to  (8, 7) 4,000

Total 15,000

Table 2.3

The total distance Tracie drove is 15,000 feet, or 2.84 miles. This is not, however, the actual distance between her
starting and ending positions. To find this distance, we can use the distance formula between the points  (0, 0) 
and  (8, 7).

d = (8 − 0)2 + (7 − 0)2

= 64 + 49
= 113
= 10.63 units

At 1,000 feet per grid unit, the distance between Elmhurst, IL, to Franklin Park is 10,630.14 feet, or 2.01 miles.
The distance formula results in a shorter calculation because it is based on the hypotenuse of a right triangle, a
straight diagonal from the origin to the point  (8, 7).  Perhaps you have heard the saying “as the crow flies,” which
means the shortest distance between two points because a crow can fly in a straight line even though a person on
the ground has to travel a longer distance on existing roadways.

Using the Midpoint Formula
When the endpoints of a line segment are known, we can find the point midway between them. This point is known as
the midpoint and the formula is known as the midpoint formula. Given the endpoints of a line segment,  (x1, y1)  and

 (x2, y2), the midpoint formula states how to find the coordinates of the midpoint  M.

M = ⎛
⎝
x1 + x2

2 , y1 + y2
2

⎞
⎠

A graphical view of a midpoint is shown in Figure 2.17. Notice that the line segments on either side of the midpoint are
congruent.
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Figure 2.17

Example 2.7

Finding the Midpoint of the Line Segment

Find the midpoint of the line segment with the endpoints  (7, −2)  and  (9, 5).

Solution
Use the formula to find the midpoint of the line segment.

⎛
⎝
x1 + x2

2 , y1 + y2
2

⎞
⎠ = ⎛

⎝
7 + 9

2 , −2 + 5
2

⎞
⎠

= ⎛
⎝8, 3

2
⎞
⎠

Find the midpoint of the line segment with endpoints  (−2, −1)  and  (−8, 6).

Example 2.8

Finding the Center of a Circle

The diameter of a circle has endpoints  (−1, −4)  and  (5, −4).  Find the center of the circle.

Solution
The center of a circle is the center, or midpoint, of its diameter. Thus, the midpoint formula will yield the center
point.

⎛
⎝
x1 + x2

2 , y1 + y2
2

⎞
⎠

⎛
⎝
−1 + 5

2 , −4 − 4
2

⎞
⎠ = ⎛

⎝
4
2, − 8

2
⎞
⎠ = (2, −4)
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Access these online resources for additional instruction and practice with the Cartesian coordinate system.

• Plotting points on the coordinate plane (http://Openstaxcollege.org/l/coordplotpnts)

• Find x and y intercepts based on the graph of a line (http://Openstaxcollege.org/l/
xyintsgraph)

124 Chapter 2 Equations and Inequalities

This content is available for free at https://cnx.org/content/col11758/1.5

http://Openstaxcollege.org/l/coordplotpnts
http://Openstaxcollege.org/l/xyintsgraph
http://Openstaxcollege.org/l/xyintsgraph


1.

2.

3.

4.

5.

6.

7.

8.
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10.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

2.1 EXERCISES
Verbal

Is it possible for a point plotted in the Cartesian
coordinate system to not lie in one of the four quadrants?
Explain.

Describe the process for finding the x-intercept and the
y-intercept of a graph algebraically.

Describe in your own words what the y-intercept of a
graph is.

When using the distance formula

 d = (x2 − x1)2 + (y2 − y1)2, explain the correct order

of operations that are to be performed to obtain the correct
answer.

Algebraic
For each of the following exercises, find the x-intercept and
the y-intercept without graphing. Write the coordinates of
each intercept.

y = −3x + 6

4y = 2x − 1

3x − 2y = 6

4x − 3 = 2y

3x + 8y = 9

2x − 2
3 = 3

4y + 3

For each of the following exercises, solve the equation for
y in terms of x.

4x + 2y = 8

3x − 2y = 6

2x = 5 − 3y

x − 2y = 7

5y + 4 = 10x

5x + 2y = 0

For each of the following exercises, find the distance
between the two points. Simplify your answers, and write
the exact answer in simplest radical form for irrational
answers.

(−4, 1)  and  (3, −4)

(2, −5)  and  (7, 4)

(5, 0)  and  (5, 6)

(−4, 3)  and  (10, 3)

Find the distance between the two points given using
your calculator, and round your answer to the nearest
hundredth.

(19, 12)  and  (41, 71)

For each of the following exercises, find the coordinates of
the midpoint of the line segment that joins the two given
points.

(−5, −6)  and  (4, 2)

(−1, 1)  and  (7, −4)

(−5, −3)  and  (−2, −8)

(0, 7)  and  (4, −9)

(−43, 17)  and  (23, −34)

Graphical
For each of the following exercises, identify the
information requested.

What are the coordinates of the origin?

If a point is located on the y-axis, what is the x-
coordinate?

If a point is located on the x-axis, what is the y-
coordinate?

For each of the following exercises, plot the three points on
the given coordinate plane. State whether the three points
you plotted appear to be collinear (on the same line).

(4, 1)(−2, −3)(5, 0)
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31.

32.

33.

34.

35.

36.

37.

(−1, 2)(0, 4)(2, 1)

(−3, 0)(−3, 4)(−3, −3)

Name the coordinates of the points graphed.

Name the quadrant in which the following points
would be located. If the point is on an axis, name the axis.
a.(−3, −4)
b.(−5, 0)
c.(1, −4)
d.(−2, 7)
e.(0, −3)

For each of the following exercises, construct a table and
graph the equation by plotting at least three points.

y = 1
3x + 2

y = −3x + 1

2y = x + 3
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38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Numeric
For each of the following exercises, find and plot the x- and
y-intercepts, and graph the straight line based on those two
points.

4x − 3y = 12

x − 2y = 8

y − 5 = 5x

3y = −2x + 6

y = x − 3
2

For each of the following exercises, use the graph in the
figure below.

Find the distance between the two endpoints using the
distance formula. Round to three decimal places.

Find the coordinates of the midpoint of the line
segment connecting the two points.

Find the distance that  (−3, 4)  is from the origin.

Find the distance that  (5, 2)  is from the origin. Round
to three decimal places.

Which point is closer to the origin?

Technology
For the following exercises, use your graphing calculator to
input the linear graphs in the Y= graph menu.

After graphing it, use the 2nd CALC button and 1:value
button, hit enter. At the lower part of the screen you will see
“x=” and a blinking cursor. You may enter any number for

x and it will display the y value for any x value you input.
Use this and plug in x = 0, thus finding the y-intercept, for
each of the following graphs.

Y1 = −2x + 5

Y1 = 3x − 8
4

Y1 = x + 5
2

For the following exercises, use your graphing calculator to
input the linear graphs in the Y= graph menu.

After graphing it, use the 2nd CALC button and 2:zero
button, hit enter. At the lower part of the screen you will see
“left bound?” and a blinking cursor on the graph of the line.
Move this cursor to the left of the x-intercept, hit ENTER.
Now it says “right bound?” Move the cursor to the right of
the x-intercept, hit enter. Now it says “guess?” Move your
cursor to the left somewhere in between the left and right
bound near the x-intercept. Hit enter. At the bottom of your
screen it will display the coordinates of the x-intercept or
the “zero” to the y-value. Use this to find the x-intercept.

Note: With linear/straight line functions the zero is not
really a “guess,” but it is necessary to enter a “guess” so
it will search and find the exact x-intercept between your
right and left boundaries. With other types of functions
(more than one x-intercept), they may be irrational numbers
so “guess” is more appropriate to give it the correct limits to
find a very close approximation between the left and right
boundaries.

Y1 = −8x + 6

Y1 = 4x − 7

Y1 = 3x + 5
4  Round your answer to the nearest

thousandth.

Extensions

A man drove 10 mi directly east from his home, made a
left turn at an intersection, and then traveled 5 mi north to
his place of work. If a road was made directly from his
home to his place of work, what would its distance be to the
nearest tenth of a mile?

If the road was made in the previous exercise, how
much shorter would the man’s one-way trip be every day?

Given these four points:
 A(1, 3), B(−3, 5), C(4, 7),  and  D(5, −4), find the

coordinates of the midpoint of line segments  AB  and  CD.
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59.

60.

61.

62.

63.

64.

After finding the two midpoints in the previous exercise,
find the distance between the two midpoints to the nearest
thousandth.

Given the graph of the rectangle shown and the
coordinates of its vertices, prove that the diagonals of the
rectangle are of equal length.

In the previous exercise, find the coordinates of the
midpoint for each diagonal.

Real-World Applications

The coordinates on a map for San Francisco are
 (53, 17)  and those for Sacramento are  (123, 78). Note
that coordinates represent miles. Find the distance between
the cities to the nearest mile.

If San Jose’s coordinates are  (76, −12), where the
coordinates represent miles, find the distance between San
Jose and San Francisco to the nearest mile.

A small craft in Lake Ontario sends out a distress
signal. The coordinates of the boat in trouble were
 (49, 64). One rescue boat is at the coordinates  (60, 82) 
and a second Coast Guard craft is at coordinates  (58, 47). 
Assuming both rescue craft travel at the same rate, which
one would get to the distressed boat the fastest?

A man on the top of a building wants to have a guy
wire extend to a point on the ground 20 ft from the building.
To the nearest foot, how long will the wire have to be if the
building is 50 ft tall?

If we rent a truck and pay a $75/day fee plus $.20 for every
mile we travel, write a linear equation that would express
the total cost  y, using  x  to represent the number of miles

we travel. Graph this function on your graphing calculator
and find the total cost for one day if we travel 70 mi.
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2.2 | Linear Equations in One Variable

Learning Objectives

In this section you will:

2.2.1 Solve equations in one variable algebraically.
2.2.2 Solve a rational equation.
2.2.3 Find a linear equation.
2.2.4 Given the equations of two lines, determine whether their graphs are parallel or
perpendicular.
2.2.5 Write the equation of a line parallel or perpendicular to a given line.

Caroline is a full-time college student planning a spring break vacation. To earn enough money for the trip, she has taken
a part-time job at the local bank that pays $15.00/hr, and she opened a savings account with an initial deposit of $400 on
January 15. She arranged for direct deposit of her payroll checks. If spring break begins March 20 and the trip will cost
approximately $2,500, how many hours will she have to work to earn enough to pay for her vacation? If she can only work
4 hours per day, how many days per week will she have to work? How many weeks will it take? In this section, we will
investigate problems like this and others, which generate graphs like the line in Figure 2.18.

Figure 2.18

Solving Linear Equations in One Variable
A linear equation is an equation of a straight line, written in one variable. The only power of the variable is 1. Linear
equations in one variable may take the form  ax + b = 0  and are solved using basic algebraic operations.

We begin by classifying linear equations in one variable as one of three types: identity, conditional, or inconsistent. An
identity equation is true for all values of the variable. Here is an example of an identity equation.

3x = 2x + x

The solution set consists of all values that make the equation true. For this equation, the solution set is all real numbers
because any real number substituted for  x will make the equation true.

A conditional equation is true for only some values of the variable. For example, if we are to solve the equation
 5x + 2 = 3x − 6, we have the following:

5x + 2 = 3x − 6
2x = −8

x = −4

The solution set consists of one number:  {−4}.  It is the only solution and, therefore, we have solved a conditional equation.
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An inconsistent equation results in a false statement. For example, if we are to solve  5x − 15 = 5(x − 4), we have the
following:

5x − 15 = 5x − 20
5x − 15 − 5x = 5x − 20 − 5x Subtract 5x from both sides.

−15 ≠ −20 False statement

Indeed,  −15 ≠  −20. There is no solution because this is an inconsistent equation.

Solving linear equations in one variable involves the fundamental properties of equality and basic algebraic operations. A
brief review of those operations follows.

Linear Equation in One Variable

A linear equation in one variable can be written in the form

ax + b = 0

where a and b are real numbers,  a ≠ 0.

Given a linear equation in one variable, use algebra to solve it.

The following steps are used to manipulate an equation and isolate the unknown variable, so that the last line reads
 x = _________, if x is the unknown. There is no set order, as the steps used depend on what is given:

1. We may add, subtract, multiply, or divide an equation by a number or an expression as long as we do the
same thing to both sides of the equal sign. Note that we cannot divide by zero.

2. Apply the distributive property as needed:  a(b + c) = ab + ac.

3. Isolate the variable on one side of the equation.

4. When the variable is multiplied by a coefficient in the final stage, multiply both sides of the equation by
the reciprocal of the coefficient.

Example 2.9

Solving an Equation in One Variable

Solve the following equation:  2x + 7 = 19.

Solution
This equation can be written in the form  ax + b = 0  by subtracting  19  from both sides. However, we may
proceed to solve the equation in its original form by performing algebraic operations.

2x + 7 = 19
2x = 12 Subtract 7 from both sides.

x = 6 Multiply both sides by 12 or divide by 2.

The solution is  x = 6.

Solve the linear equation in one variable:  2x + 1 = −9.
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Example 2.10

Solving an Equation Algebraically When the Variable Appears on Both Sides

Solve the following equation:  4(x−3) + 12 = 15−5(x + 6).

Solution
Apply standard algebraic properties.

4(x − 3) + 12 = 15 − 5(x + 6)
4x − 12 + 12 = 15 − 5x − 30 Apply the distributive property.

4x = −15 − 5x Combine like terms.
9x = −15 Place x − terms on one side and simplify.

x = −15
9 Multiply both sides by 19, the reciprocal of 9.

x = −5
3

Analysis
This problem requires the distributive property to be applied twice, and then the properties of algebra are used to
reach the final line,  x = − 5

3.

Solve the equation in one variable:  −2(3x − 1) + x = 14 − x.

Solving a Rational Equation
In this section, we look at rational equations that, after some manipulation, result in a linear equation. If an equation contains
at least one rational expression, it is a considered a rational equation.

Recall that a rational number is the ratio of two numbers, such as  23   or  72. A rational expression is the ratio, or quotient, of

two polynomials. Here are three examples.

x + 1
x2 − 4

,   1
x − 3,  or  4

x2 + x − 2

Rational equations have a variable in the denominator in at least one of the terms. Our goal is to perform algebraic
operations so that the variables appear in the numerator. In fact, we will eliminate all denominators by multiplying both
sides of the equation by the least common denominator (LCD).

Finding the LCD is identifying an expression that contains the highest power of all of the factors in all of the denominators.
We do this because when the equation is multiplied by the LCD, the common factors in the LCD and in each denominator
will equal one and will cancel out.

Example 2.11

Solving a Rational Equation

Solve the rational equation:   7
2x − 5

3x = 22
3 .

Chapter 2 Equations and Inequalities 131



Solution
We have three denominators;  2x, 3x, and 3. The LCD must contain  2x, 3x, and 3. An LCD of  6x  contains all
three denominators. In other words, each denominator can be divided evenly into the LCD. Next, multiply both
sides of the equation by the LCD  6x.

(6x)⎡⎣
7
2x − 5

3x
⎤
⎦ = ⎡

⎣
22
3

⎤
⎦(6x)

(6x)⎛
⎝

7
2x

⎞
⎠ − (6x)⎛⎝

5
3x

⎞
⎠ = ⎛

⎝
22
3

⎞
⎠(6x) Use the distributive property.

(6x )⎛⎝
7
2x

⎞
⎠ − (6x )⎛⎝

5
3x

⎞
⎠ = ⎛

⎝
22
3

⎞
⎠(6 x) Cancel out the common factors.

3(7) − 2(5) = 22(2x) Multiply remaining factors by each numerator.
21 − 10 = 44x

11 = 44x
11
44 = x

1
4 = x

A common mistake made when solving rational equations involves finding the LCD when one of the denominators is a
binomial—two terms added or subtracted—such as  (x + 1). Always consider a binomial as an individual factor—the terms
cannot be separated. For example, suppose a problem has three terms and the denominators are  x, x − 1, and  3x − 3. 
First, factor all denominators. We then have  x, (x − 1), and  3(x − 1)  as the denominators. (Note the parentheses placed
around the second denominator.) Only the last two denominators have a common factor of  (x − 1). The  x  in the first
denominator is separate from the  x  in the  (x − 1)  denominators. An effective way to remember this is to write factored and
binomial denominators in parentheses, and consider each parentheses as a separate unit or a separate factor. The LCD in
this instance is found by multiplying together the  x, one factor of  (x − 1), and the 3. Thus, the LCD is the following:

x(x − 1)3 = 3x(x − 1)

So, both sides of the equation would be multiplied by  3x(x − 1). Leave the LCD in factored form, as this makes it easier to
see how each denominator in the problem cancels out.

Another example is a problem with two denominators, such as  x  and  x2 + 2x. Once the second denominator is factored as

 x2 + 2x = x(x + 2), there is a common factor of x in both denominators and the LCD is  x(x + 2).

Sometimes we have a rational equation in the form of a proportion; that is, when one fraction equals another fraction and
there are no other terms in the equation.

a
b = c

d

We can use another method of solving the equation without finding the LCD: cross-multiplication. We multiply terms by
crossing over the equal sign.

Multiply  a(d)  and  b(c), which results in  ad = bc.

Any solution that makes a denominator in the original expression equal zero must be excluded from the possibilities.

Rational Equations

A rational equation contains at least one rational expression where the variable appears in at least one of the
denominators.
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Given a rational equation, solve it.

1. Factor all denominators in the equation.

2. Find and exclude values that set each denominator equal to zero.

3. Find the LCD.

4. Multiply the whole equation by the LCD. If the LCD is correct, there will be no denominators left.

5. Solve the remaining equation.

6. Make sure to check solutions back in the original equations to avoid a solution producing zero in a
denominator

Example 2.12

Solving a Rational Equation without Factoring

Solve the following rational equation:

2
x − 3

2 = 7
2x

Solution
We have three denominators:  x, 2, and  2x. No factoring is required. The product of the first two denominators
is equal to the third denominator, so, the LCD is  2x. Only one value is excluded from a solution set,  x = 0. 
Next, multiply the whole equation (both sides of the equal sign) by  2x.

2x⎡
⎣
2
x − 3

2
⎤
⎦ = ⎡

⎣
7
2x

⎤
⎦2x

2 x⎛
⎝
2
x

⎞
⎠ − 2 x⎛

⎝
3
2

⎞
⎠ = ⎛

⎝
7
2x

⎞
⎠2x Distribute 2x.

2(2) − 3x = 7 Denominators cancel out.
4 − 3x = 7

−3x = 3
x = −1

or {−1}

The proposed solution is  x = −1, which is not an excluded value, so the solution set contains one number,
 x = −1, or  {−1} written in set notation.

Solve the rational equation:   2
3x = 1

4 − 1
6x.

Example 2.13

Solving a Rational Equation by Factoring the Denominator

Solve the following rational equation:  1x = 1
10 − 3

4x.
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Solution
First find the common denominator. The three denominators in factored form are  x, 10 = 2 ⋅ 5, and
 4x = 2 ⋅ 2 ⋅ x. The smallest expression that is divisible by each one of the denominators is  20x. Only  x = 0  is
an excluded value. Multiply the whole equation by  20x.

20x⎛
⎝
1
x

⎞
⎠ = ⎛

⎝
1
10 − 3

4x
⎞
⎠20x

20 = 2x − 15
35 = 2x
35
2 = x

The solution is  x = 35
2 .

Solve the rational equation:  − 5
2x + 3

4x = − 7
4.

Example 2.14

Solving Rational Equations with a Binomial in the Denominator

Solve the following rational equations and state the excluded values:

a. 3
x − 6 = 5

x

b. x
x − 3 = 5

x − 3 − 1
2

c. x
x − 2 = 5

x − 2 − 1
2

Solution
a. The denominators  x  and  x − 6  have nothing in common. Therefore, the LCD is the product  x(x − 6). 

However, for this problem, we can cross-multiply.

3
x − 6 = 5

x
3x = 5(x − 6) Distribute.
3x = 5x − 30

−2x = −30
x = 15

The solution is  x = 15. The excluded values are  x = 6  and  x = 0.

b. The LCD is  2(x − 3). Multiply both sides of the equation by  2(x − 3).

134 Chapter 2 Equations and Inequalities

This content is available for free at https://cnx.org/content/col11758/1.5



2.9

2(x − 3)⎡⎣
x

x − 3
⎤
⎦ = ⎡

⎣
5

x − 3 − 1
2

⎤
⎦2(x − 3)

2(x − 3) x
x − 3

= 2(x − 3)5
x − 3

− 2(x − 3)
2

2x = 10 − (x − 3)
2x = 10 − x + 3
2x = 13 − x
3x = 13

x = 13
3

The solution is  x = 13
3 . The excluded value is  x = 3.

c. The least common denominator is  2(x − 2). Multiply both sides of the equation by  x(x − 2).

2(x − 2)⎡
⎣

x
x − 2

⎤
⎦ = ⎡

⎣
5

x − 2 − 1
2

⎤
⎦2(x − 2)

2x = 10 − (x − 2)
2x = 12 − x
3x = 12

x = 4
The solution is  x = 4. The excluded value is  x = 2.

Solve   −3
2x + 1 = 4

3x + 1.  State the excluded values.

Example 2.15

Solving a Rational Equation with Factored Denominators and Stating Excluded
Values

Solve the rational equation after factoring the denominators:   2
x + 1 − 1

x − 1 = 2x
x2 − 1

.  State the excluded values.

Solution

We must factor the denominator  x2 −1. We recognize this as the difference of squares, and factor it as
 (x − 1)(x + 1). Thus, the LCD that contains each denominator is  (x − 1)(x + 1). Multiply the whole equation
by the LCD, cancel out the denominators, and solve the remaining equation.

(x − 1)(x + 1)⎡⎣
2

x + 1 − 1
x − 1

⎤
⎦ = ⎡

⎣
2x

(x − 1)(x + 1)
⎤
⎦(x − 1)(x + 1)

2(x − 1) − 1(x + 1) = 2x
2x − 2 − x − 1 = 2x Distribute the negative sign.

−3 − x = 0
−3 = x

The solution is  x = −3. The excluded values are  x = 1  and  x = −1.

Chapter 2 Equations and Inequalities 135



2.10 Solve the rational equation:   2
x − 2 + 1

x + 1 = 1
x2 − x − 2

.

Finding a Linear Equation
Perhaps the most familiar form of a linear equation is the slope-intercept form, written as  y = mx + b, where  m = slope 
and  b = y−intercept. Let us begin with the slope.

The Slope of a Line
The slope of a line refers to the ratio of the vertical change in y over the horizontal change in x between any two points on
a line. It indicates the direction in which a line slants as well as its steepness. Slope is sometimes described as rise over run.

m = y2 − y1
x2 − x1

If the slope is positive, the line slants to the right. If the slope is negative, the line slants to the left. As the slope increases,
the line becomes steeper. Some examples are shown in Figure 2.19. The lines indicate the following slopes:  m = −3,

m = 2, and  m = 1
3.

Figure 2.19

The Slope of a Line

The slope of a line, m, represents the change in y over the change in x. Given two points,  (x1, y1)  and  (x2, y2), the

following formula determines the slope of a line containing these points:

m = y2 − y1
x2 − x1

Example 2.16

Finding the Slope of a Line Given Two Points

Find the slope of a line that passes through the points  (2, −1)  and  (−5, 3).
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Solution
We substitute the y-values and the x-values into the formula.

m = 3 − (−1)
−5 − 2

= 4
−7

= −4
7

The slope is  − 4
7.

Analysis
It does not matter which point is called  (x1, y1)  or  (x2, y2). As long as we are consistent with the order of the y

terms and the order of the x terms in the numerator and denominator, the calculation will yield the same result.

Find the slope of the line that passes through the points  (−2, 6)  and  (1, 4).

Example 2.17

Identifying the Slope and y-intercept of a Line Given an Equation

Identify the slope and y-intercept, given the equation  y = − 3
4x − 4.

Solution

As the line is in  y = mx + b  form, the given line has a slope of  m = − 3
4. The y-intercept is  b = −4.

Analysis
The y-intercept is the point at which the line crosses the y-axis. On the y-axis,  x = 0. We can always identify the
y-intercept when the line is in slope-intercept form, as it will always equal b. Or, just substitute  x = 0  and solve
for y.

The Point-Slope Formula
Given the slope and one point on a line, we can find the equation of the line using the point-slope formula.

y − y1 = m(x − x1)

This is an important formula, as it will be used in other areas of college algebra and often in calculus to find the equation
of a tangent line. We need only one point and the slope of the line to use the formula. After substituting the slope and the
coordinates of one point into the formula, we simplify it and write it in slope-intercept form.

The Point-Slope Formula

Given one point and the slope, the point-slope formula will lead to the equation of a line:

y − y1 = m(x − x1)
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Example 2.18

Finding the Equation of a Line Given the Slope and One Point

Write the equation of the line with slope  m = −3  and passing through the point  (4, 8). Write the final equation
in slope-intercept form.

Solution
Using the point-slope formula, substitute  −3  for m and the point  (4, 8)  for  (x1, y1).

y − y1 = m(x − x1)
y − 8 = −3(x − 4)
y − 8 = −3x + 12

y = −3x + 20

Analysis
Note that any point on the line can be used to find the equation. If done correctly, the same final equation will be
obtained.

Given  m = 4, find the equation of the line in slope-intercept form passing through the point  (2, 5).

Example 2.19

Finding the Equation of a Line Passing Through Two Given Points

Find the equation of the line passing through the points  (3, 4)  and  (0, −3). Write the final equation in slope-
intercept form.

Solution
First, we calculate the slope using the slope formula and two points.

m = −3 − 4
0 − 3

= −7
−3

= 7
3

Next, we use the point-slope formula with the slope of  73, and either point. Let’s pick the point  (3, 4)  for

 (x1, y1).

y − 4 = 7
3(x − 3)

y − 4 = 7
3x − 7 Distribute the 73.

y = 7
3x − 3
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In slope-intercept form, the equation is written as  y = 7
3x − 3.

Analysis
To prove that either point can be used, let us use the second point  (0, −3)  and see if we get the same equation.

y − ( − ) = 7
3(x − 0)

y + 3 = 7
3x

y = 7
3x − 3

We see that the same line will be obtained using either point. This makes sense because we used both points to
calculate the slope.

Standard Form of a Line
Another way that we can represent the equation of a line is in standard form. Standard form is given as

Ax + By = C

where  A, B, and  C are integers. The x- and y-terms are on one side of the equal sign and the constant term is on the other
side.

Example 2.20

Finding the Equation of a Line and Writing It in Standard Form

Find the equation of the line with  m = −6  and passing through the point  ⎛⎝1
4, −2⎞

⎠. Write the equation in standard

form.

Solution
We begin using the point-slope formula.

y − (−2) = −6⎛
⎝x − 1

4
⎞
⎠

y + 2 = −6x + 3
2

From here, we multiply through by 2, as no fractions are permitted in standard form, and then move both variables
to the left aside of the equal sign and move the constants to the right.

2(y + 2) = ⎛
⎝−6x + 3

2
⎞
⎠2

2y + 4 = −12x + 3
12x + 2y = −1

This equation is now written in standard form.

Find the equation of the line in standard form with slope  m = − 1
3   and passing through the point

 ⎛⎝1, 1
3

⎞
⎠.
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Vertical and Horizontal Lines
The equations of vertical and horizontal lines do not require any of the preceding formulas, although we can use the
formulas to prove that the equations are correct. The equation of a vertical line is given as

x = c

where c is a constant. The slope of a vertical line is undefined, and regardless of the y-value of any point on the line, the
x-coordinate of the point will be c.

Suppose that we want to find the equation of a line containing the following points:  (−3, −5), (−3, 1), (−3, 3), and
 (−3, 5).  First, we will find the slope.

m = 5 − 3
−3 − (−3) = 2

0

Zero in the denominator means that the slope is undefined and, therefore, we cannot use the point-slope formula. However,
we can plot the points. Notice that all of the x-coordinates are the same and we find a vertical line through  x = −3.  See
Figure 2.20.

The equation of a horizontal line is given as

y = c

where c is a constant. The slope of a horizontal line is zero, and for any x-value of a point on the line, the y-coordinate will
be c.

Suppose we want to find the equation of a line that contains the following set of points:  (−2, −2), (0, −2), (3, −2), and
 (5, −2). We can use the point-slope formula. First, we find the slope using any two points on the line.

m = −2 − (−2)
0 − (−2)

= 0
2

= 0

Use any point for  (x1, y1)  in the formula, or use the y-intercept.

y − (−2) = 0(x − 3)
y + 2 = 0

y = −2

The graph is a horizontal line through  y = −2. Notice that all of the y-coordinates are the same. See Figure 2.20.

Figure 2.20 The line x = −3 is a vertical line. The line y = −2
is a horizontal line.
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Example 2.21

Finding the Equation of a Line Passing Through the Given Points

Find the equation of the line passing through the given points:  (1, −3)  and  (1, 4).

Solution
The x-coordinate of both points is 1. Therefore, we have a vertical line,  x = 1.

Find the equation of the line passing through  (−5, 2)  and  (2, 2).

Determining Whether Graphs of Lines are Parallel or Perpendicular
Parallel lines have the same slope and different y-intercepts. Lines that are parallel to each other will never intersect. For
example, Figure 2.21 shows the graphs of various lines with the same slope,  m = 2.

Figure 2.21 Parallel lines

All of the lines shown in the graph are parallel because they have the same slope and different y-intercepts.

Lines that are perpendicular intersect to form a  90° -angle. The slope of one line is the negative reciprocal of the other. We
can show that two lines are perpendicular if the product of the two slopes is  −1 : m1 ⋅ m2 = −1.  For example, Figure

2.22 shows the graph of two perpendicular lines. One line has a slope of 3; the other line has a slope of  − 1
3.
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m1 ⋅ m2 = −1

3 ⋅ ⎛
⎝−

1
3

⎞
⎠ = −1

Figure 2.22 Perpendicular lines

Example 2.22

Graphing Two Equations, and Determining Whether the Lines are Parallel,
Perpendicular, or Neither

Graph the equations of the given lines, and state whether they are parallel, perpendicular, or neither:
 3y = − 4x + 3  and  3x − 4y = 8.

Solution
The first thing we want to do is rewrite the equations so that both equations are in slope-intercept form.

First equation:

3y = −4x + 3

y = −4
3x + 1

Second equation:

3x − 4y = 8
−4y = −3x + 8

y = 3
4

See the graph of both lines in Figure 2.23
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Figure 2.23

From the graph, we can see that the lines appear perpendicular, but we must compare the slopes.

m1 = −4
3

m2 = 3
4

m1 ⋅ m2 = ⎛
⎝−

4
3

⎞
⎠
⎛
⎝
3
4

⎞
⎠ = −1

The slopes are negative reciprocals of each other, confirming that the lines are perpendicular.

Graph the two lines and determine whether they are parallel, perpendicular, or neither:  2y − x = 10  and

 2y = x + 4.

Writing the Equations of Lines Parallel or Perpendicular to a Given
Line
As we have learned, determining whether two lines are parallel or perpendicular is a matter of finding the slopes. To write
the equation of a line parallel or perpendicular to another line, we follow the same principles as we do for finding the
equation of any line. After finding the slope, use the point-slope formula to write the equation of the new line.

Given an equation for a line, write the equation of a line parallel or perpendicular to it.

1. Find the slope of the given line. The easiest way to do this is to write the equation in slope-intercept form.

2. Use the slope and the given point with the point-slope formula.

3. Simplify the line to slope-intercept form and compare the equation to the given line.

Example 2.23

Writing the Equation of a Line Parallel to a Given Line Passing Through a Given
Point
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Write the equation of line parallel to a  5x + 3y = 1  and passing through the point  (3, 5).

Solution
First, we will write the equation in slope-intercept form to find the slope.

5x + 3y = 1
3y = 5x + 1

y = −5
3x + 1

3

The slope is  m = − 5
3. The y-intercept is  13, but that really does not enter into our problem, as the only thing we

need for two lines to be parallel is the same slope. The one exception is that if the y-intercepts are the same, then
the two lines are the same line. The next step is to use this slope and the given point with the point-slope formula.

y − 5 = −5
3(x − 3)

y − 5 = −5
3x + 5

y = −5
3x + 10

The equation of the line is  y = − 5
3x + 10.  See Figure 2.24.

Figure 2.24

Find the equation of the line parallel to  5x = 7 + y  and passing through the point  (−1, −2).

Example 2.24

Finding the Equation of a Line Perpendicular to a Given Line Passing Through a
Given Point

Find the equation of the line perpendicular to  5x − 3y + 4 = 0  (−4, 1).
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Solution
The first step is to write the equation in slope-intercept form.

5x − 3y + 4 = 0
−3y = −5x − 4

y = 5
3x + 4

3

We see that the slope is  m = 5
3. This means that the slope of the line perpendicular to the given line is the

negative reciprocal, or −3
5. Next, we use the point-slope formula with this new slope and the given point.

y − 1 = −3
5

⎛
⎝x − (−4)⎞

⎠

y − 1 = −3
5x − 12

5
y = −3

5x − 12
5 + 5

5
y = −3

5x − 7
5

Access these online resources for additional instruction and practice with linear equations.

• Solving rational equations (http://openstaxcollege.org/l/rationaleqs)

• Equation of a line given two points (http://openstaxcollege.org/l/twopointsline)

• Finding the equation of a line perpendicular to another line through a given point
(http://openstaxcollege.org/l/findperpline)

• Finding the equation of a line parallel to another line through a given point
(http://openstaxcollege.org/l/findparaline)
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2.2 EXERCISES
Verbal

What does it mean when we say that two lines are
parallel?

What is the relationship between the slopes of
perpendicular lines (assuming neither is horizontal nor
vertical)?

How do we recognize when an equation, for example
 y = 4x + 3, will be a straight line (linear) when graphed?

What does it mean when we say that a linear equation
is inconsistent?

When solving the following equation:

2
x − 5 = 4

x + 1

explain why we must exclude  x = 5  and  x = −1  as
possible solutions from the solution set.

Algebraic
For the following exercises, solve the equation for  x.

7x + 2 = 3x − 9

4x − 3 = 5

3(x + 2) − 12 = 5(x + 1)

12 − 5(x + 3) = 2x − 5

1
2 − 1

3x = 4
3

x
3 − 3

4 = 2x + 3
12

2
3x + 1

2 = 31
6

3(2x − 1) + x = 5x + 3

2x
3 − 3

4 = x
6 + 21

4

x + 2
4 − x − 1

3 = 2

For the following exercises, solve each rational equation
for  x.  State all x-values that are excluded from the solution
set.

3
x − 1

3 = 1
6

2 − 3
x + 4 = x + 2

x + 4

3
x − 2 = 1

x − 1 + 7
(x − 1)(x − 2)

3x
x − 1 + 2 = 3

x − 1

5
x + 1 + 1

x − 3 = −6
x2 − 2x − 3

1
x = 1

5 + 3
2x

For the following exercises, find the equation of the line
using the point-slope formula.

Write all the final equations using the slope-intercept form.

(0, 3) with a slope of 2
3

(1, 2) with a slope of  −4
5

x-intercept is 1, and  (−2, 6)

y-intercept is 2, and  (4, −1)

(−3, 10)  and  (5, −6)

(1, 3)  and  (5, 5)

parallel to  y = 2x + 5  and passes through the point

 (4, 3)

perpendicular to  3y = x − 4  and passes through the

point  (−2, 1) .

For the following exercises, find the equation of the line
using the given information.

(−2, 0)  and  (−2, 5)

(1, 7)  and  (3, 7)

The slope is undefined and it passes through the point
 (2, 3).

The slope equals zero and it passes through the point
 (1, −4).

The slope is  34   and it passes through the point  (1,4).
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99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

(−1, 3)  and  (4, −5)

Graphical
For the following exercises, graph the pair of equations
on the same axes, and state whether they are parallel,
perpendicular, or neither.

y = 2x + 7

y = −1
2 x − 4

3x − 2y = 5
6y − 9x = 6

y = 3x + 1
4

y = 3x + 2

x = 4
y = −3

Numeric
For the following exercises, find the slope of the line that
passes through the given points.

(5, 4)  and  (7, 9)

(−3, 2)  and  (4, −7)

(−5, 4)  and  (2, 4)

(−1, −2)  and  (3, 4)

 (3, −2) and  (3, −2)

For the following exercises, find the slope of the lines that
pass through each pair of points and determine whether the
lines are parallel or perpendicular.

(−1, 3)  and  (5, 1)
(−2, 3)  and  (0, 9)

(2, 5)  and  (5, 9)
(−1, −1)  and  (2, 3)

Technology
For the following exercises, express the equations in slope
intercept form (rounding each number to the thousandths
place). Enter this into a graphing calculator as Y1, then
adjust the ymin and ymax values for your window to
include where the y-intercept occurs. State your ymin and
ymax values.

0.537x − 2.19y = 100

4,500x − 200y = 9,528

200 − 30y
x = 70

Extensions

Starting with the point-slope formula
 y − y1 = m(x − x1), solve this expression for  x  in terms

of  x1, y, y1, and  m.

Starting with the standard form of an equation
 Ax + By = C, solve this expression for y in terms of

 A, B, C,   and  x. Then put the expression in slope-
intercept form.

Use the above derived formula to put the following
standard equation in slope intercept form:  7x − 5y = 25.

Given that the following coordinates are the vertices
of a rectangle, prove that this truly is a rectangle by
showing the slopes of the sides that meet are perpendicular.

(−1, 1), (2, 0), (3, 3), and  (0, 4)

Find the slopes of the diagonals in the previous
exercise. Are they perpendicular?

Real-World Applications

The slope for a wheelchair ramp for a home has to be
  1
12.  If the vertical distance from the ground to the door

bottom is 2.5 ft, find the distance the ramp has to extend
from the home in order to comply with the needed slope.

If the profit equation for a small business selling  x 
number of item one and  y  number of item two is

 p = 3x + 4y, find the  y  value when

 p = $453 and  x = 75.

For the following exercises, use this scenario: The cost
of renting a car is $45/wk plus $0.25/mi traveled during
that week. An equation to represent the cost would be
 y = 45 + .25x, where  x  is the number of miles traveled.

What is your cost if you travel 50 mi?

If your cost were  $63.75, how many miles were you
charged for traveling?
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Suppose you have a maximum of $100 to spend for the car
rental. What would be the maximum number of miles you
could travel?
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2.3 | Models and Applications

Learning Objectives

In this section you will:

2.3.1 Set up a linear equation to solve a real-world application.
2.3.2 Use a formula to solve a real-world application.

Figure 2.25 Credit: Kevin Dooley

Josh is hoping to get an A in his college algebra class. He has scores of 75, 82, 95, 91, and 94 on his first five tests. Only
the final exam remains, and the maximum of points that can be earned is 100. Is it possible for Josh to end the course with
an A? A simple linear equation will give Josh his answer.

Many real-world applications can be modeled by linear equations. For example, a cell phone package may include a
monthly service fee plus a charge per minute of talk-time; it costs a widget manufacturer a certain amount to produce x
widgets per month plus monthly operating charges; a car rental company charges a daily fee plus an amount per mile driven.
These are examples of applications we come across every day that are modeled by linear equations. In this section, we will
set up and use linear equations to solve such problems.

Setting up a Linear Equation to Solve a Real-World Application
To set up or model a linear equation to fit a real-world application, we must first determine the known quantities and define
the unknown quantity as a variable. Then, we begin to interpret the words as mathematical expressions using mathematical
symbols. Let us use the car rental example above. In this case, a known cost, such as $0.10/mi, is multiplied by an unknown
quantity, the number of miles driven. Therefore, we can write  0.10x. This expression represents a variable cost because it
changes according to the number of miles driven.

If a quantity is independent of a variable, we usually just add or subtract it, according to the problem. As these amounts do
not change, we call them fixed costs. Consider a car rental agency that charges $0.10/mi plus a daily fee of $50. We can use
these quantities to model an equation that can be used to find the daily car rental cost  C.

C = 0.10x + 50

When dealing with real-world applications, there are certain expressions that we can translate directly into math. Table 2.4
lists some common verbal expressions and their equivalent mathematical expressions.
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Verbal Translation to Math
Operations

One number exceeds another by a x,  x + a

Twice a number 2x

One number is a more than another number x,  x + a

One number is a less than twice another number x,  2x − a

The product of a number and a, decreased by b ax − b

The quotient of a number and the number plus a is three times the
number

x
x + a = 3x

The product of three times a number and the number decreased by
b is c

3x(x − b) = c

Table 2.4

Given a real-world problem, model a linear equation to fit it.

1. Identify known quantities.

2. Assign a variable to represent the unknown quantity.

3. If there is more than one unknown quantity, find a way to write the second unknown in terms of the first.

4. Write an equation interpreting the words as mathematical operations.

5. Solve the equation. Be sure the solution can be explained in words, including the units of measure.

Example 2.25

Modeling a Linear Equation to Solve an Unknown Number Problem

Find a linear equation to solve for the following unknown quantities: One number exceeds another number by
 17  and their sum is  31.  Find the two numbers.

Solution
Let  x  equal the first number. Then, as the second number exceeds the first by 17, we can write the second number
as  x + 17. The sum of the two numbers is 31. We usually interpret the word is as an equal sign.
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2.17

x + (x + 17) = 31
2x + 17 = 31 Simplify and solve.

2x = 14
x = 7

x + 17 = 7 + 17
= 24

The two numbers are  7  and  24.

Find a linear equation to solve for the following unknown quantities: One number is three more than
twice another number. If the sum of the two numbers is  36, find the numbers.

Example 2.26

Setting Up a Linear Equation to Solve a Real-World Application

There are two cell phone companies that offer different packages. Company A charges a monthly service fee of
$34 plus $.05/min talk-time. Company B charges a monthly service fee of $40 plus $.04/min talk-time.

a. Write a linear equation that models the packages offered by both companies.

b. If the average number of minutes used each month is 1,160, which company offers the better plan?

c. If the average number of minutes used each month is 420, which company offers the better plan?

d. How many minutes of talk-time would yield equal monthly statements from both companies?

Solution
a. The model for Company A can be written as  A = 0.05x + 34. This includes the variable cost of  0.05x 

plus the monthly service charge of $34. Company B’s package charges a higher monthly fee of $40, but a
lower variable cost of  0.04x. Company B’s model can be written as  B = 0.04x + $40.

b. If the average number of minutes used each month is 1,160, we have the following:

Company A = 0.05(1.160) + 34
= 58 + 34
= 92

Company B = 0.04(1, 1600) + 40
= 46.4 + 40
= 86.4

So, Company B offers the lower monthly cost of $86.40 as compared with the $92 monthly cost offered
by Company A when the average number of minutes used each month is 1,160.

c. If the average number of minutes used each month is 420, we have the following:

Company A = 0.05(420) + 34
= 21 + 34
= 55

Company B = 0.04(420) + 40
= 16.8 + 40
= 56.8
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If the average number of minutes used each month is 420, then Company A offers a lower monthly cost
of $55 compared to Company B’s monthly cost of $56.80.

d. To answer the question of how many talk-time minutes would yield the same bill from both companies,
we should think about the problem in terms of  (x, y)  coordinates: At what point are both the x-value and

the y-value equal? We can find this point by setting the equations equal to each other and solving for x.

0.05x + 34 = 0.04x + 40
0.01x = 6

x = 600
Check the x-value in each equation.

0.05(600) + 34 = 64
0.04(600) + 40 = 64

Therefore, a monthly average of 600 talk-time minutes renders the plans equal. See Figure 2.26

Figure 2.26

Find a linear equation to model this real-world application: It costs ABC electronics company $2.50 per
unit to produce a part used in a popular brand of desktop computers. The company has monthly operating
expenses of $350 for utilities and $3,300 for salaries. What are the company’s monthly expenses?

Using a Formula to Solve a Real-World Application
Many applications are solved using known formulas. The problem is stated, a formula is identified, the known quantities
are substituted into the formula, the equation is solved for the unknown, and the problem’s question is answered. Typically,
these problems involve two equations representing two trips, two investments, two areas, and so on. Examples of formulas
include the area of a rectangular region,  A = LW; the perimeter of a rectangle,  P = 2L + 2W; and the volume of a
rectangular solid,  V = LWH. When there are two unknowns, we find a way to write one in terms of the other because we
can solve for only one variable at a time.

Example 2.27
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Solving an Application Using a Formula

It takes Andrew 30 min to drive to work in the morning. He drives home using the same route, but it takes 10 min
longer, and he averages 10 mi/h less than in the morning. How far does Andrew drive to work?

Solution
This is a distance problem, so we can use the formula  d = rt, where distance equals rate multiplied by time.
Note that when rate is given in mi/h, time must be expressed in hours. Consistent units of measurement are key
to obtaining a correct solution.

First, we identify the known and unknown quantities. Andrew’s morning drive to work takes 30 min, or  12   h at

rate  r. His drive home takes 40 min, or  23   h, and his speed averages 10 mi/h less than the morning drive. Both

trips cover distance  d. A table, such as Table 2.5, is often helpful for keeping track of information in these types
of problems.

d r t

To Work d r 1
2

To Home d r − 10 2
3

Table 2.5

Write two equations, one for each trip.

d = r⎛
⎝
1
2

⎞
⎠ To work

d = (r − 10)⎛⎝
2
3

⎞
⎠ To home

As both equations equal the same distance, we set them equal to each other and solve for r.

r⎛
⎝
1
2

⎞
⎠ = (r − 10)⎛⎝

2
3

⎞
⎠

1
2r = 2

3r − 20
3

1
2r − 2

3r = −20
3

−1
6r = −20

3
r = −20

3 (−6)

r = 40

We have solved for the rate of speed to work, 40 mph. Substituting 40 into the rate on the return trip yields 30 mi/
h. Now we can answer the question. Substitute the rate back into either equation and solve for d.

d = 40⎛
⎝
1
2

⎞
⎠

= 20

The distance between home and work is 20 mi.
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Analysis
Note that we could have cleared the fractions in the equation by multiplying both sides of the equation by the
LCD to solve for  r.

r⎛
⎝
1
2

⎞
⎠ = (r − 10)⎛⎝

2
3

⎞
⎠

6 × r⎛
⎝
1
2

⎞
⎠ = 6 × (r − 10)⎛⎝

2
3

⎞
⎠

3r = 4(r − 10)
3r = 4r − 40
−r = −40

r = 40

On Saturday morning, it took Jennifer 3.6 h to drive to her mother’s house for the weekend. On Sunday
evening, due to heavy traffic, it took Jennifer 4 h to return home. Her speed was 5 mi/h slower on Sunday than
on Saturday. What was her speed on Sunday?

Example 2.28

Solving a Perimeter Problem

The perimeter of a rectangular outdoor patio is  54  ft. The length is  3  ft greater than the width. What are the
dimensions of the patio?

Solution
The perimeter formula is standard:  P = 2L + 2W. We have two unknown quantities, length and width. However,
we can write the length in terms of the width as  L = W + 3.  Substitute the perimeter value and the expression
for length into the formula. It is often helpful to make a sketch and label the sides as in Figure 2.27.

Figure 2.27

Now we can solve for the width and then calculate the length.

P = 2L + 2W
54 = 2(W + 3) + 2W
54 = 2W + 6 + 2W
54 = 4W + 6
48 = 4W
12 = W

(12 + 3) = L
15 = L

The dimensions are  L = 15  ft and  W = 12  ft.
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2.20

2.21

Find the dimensions of a rectangle given that the perimeter is  110  cm and the length is 1 cm more than
twice the width.

Example 2.29

Solving an Area Problem

The perimeter of a tablet of graph paper is 48 in.2. The length is  6  in. more than the width. Find the area of the
graph paper.

Solution
The standard formula for area is  A = LW; however, we will solve the problem using the perimeter formula. The
reason we use the perimeter formula is because we know enough information about the perimeter that the formula
will allow us to solve for one of the unknowns. As both perimeter and area use length and width as dimensions,
they are often used together to solve a problem such as this one.

We know that the length is 6 in. more than the width, so we can write length as  L = W + 6.  Substitute the value
of the perimeter and the expression for length into the perimeter formula and find the length.

P = 2L + 2W
48 = 2(W + 6) + 2W
48 = 2W + 12 + 2W
48 = 4W + 12
36 = 4W

9 = W
(9 + 6) = L

15 = L

Now, we find the area given the dimensions of  L = 15  in. and  W = 9  in.

A = LW
A = 15(9)

= 135 in.2

The area is  135  in.2.

A game room has a perimeter of 70 ft. The length is five more than twice the width. How many ft2 of new
carpeting should be ordered?

Example 2.30

Solving a Volume Problem

Find the dimensions of a shipping box given that the length is twice the width, the height is  8  inches, and the

volume is 1,600 in.3.

Solution
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The formula for the volume of a box is given as  V = LWH, the product of length, width, and height. We are
given that  L = 2W, and  H = 8. The volume is  1,600  cubic inches.

V = LWH
1, 600 = (2W)W(8)
1, 600 = 16W 2

100 = W 2

10 = W

The dimensions are  L = 20  in.,  W = 10  in., and  H = 8  in.

Analysis
Note that the square root of  W 2  would result in a positive and a negative value. However, because we are
describing width, we can use only the positive result.

Access these online resources for additional instruction and practice with models and applications of linear
equations.

• Problem solving using linear equations (http://openstaxcollege.org/l/lineqprobsolve)

• Problem solving using equations (http://openstaxcollege.org/l/equationprsolve)

• Finding the dimensions of area given the perimeter (http://openstaxcollege.org/l/
permareasolve)

• Find the distance between the cities using the distance = rate * time formula
(http://openstaxcollege.org/l/ratetimesolve)

• Linear equation application (Write a cost equation) (http://openstaxcollege.org/l/
lineqappl)
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2.3 EXERCISES
Verbal

To set up a model linear equation to fit real-world
applications, what should always be the first step?

Use your own words to describe this equation where n
is a number:

5(n + 3) = 2n

If the total amount of money you had to invest was
$2,000 and you deposit  x  amount in one investment, how
can you represent the remaining amount?

If a man sawed a 10-ft board into two sections and
one section was  n  ft long, how long would the other
section be in terms of  n ?

If Bill was traveling  v mi/h, how would you
represent Daemon’s speed if he was traveling 10 mi/h
faster?

Real-World Applications
For the following exercises, use the information to find
a linear algebraic equation model to use to answer the
question being asked.

Mark and Don are planning to sell each of their
marble collections at a garage sale. If Don has 1 more than
3 times the number of marbles Mark has, how many does
each boy have to sell if the total number of marbles is 113?

Beth and Ann are joking that their combined ages
equal Sam’s age. If Beth is twice Ann’s age and Sam is 69
yr old, what are Beth and Ann’s ages?

Ben originally filled out 8 more applications than
Henry. Then each boy filled out 3 additional applications,
bringing the total to 28. How many applications did each
boy originally fill out?

For the following exercises, use this scenario: Two different
telephone carriers offer the following plans that a person
is considering. Company A has a monthly fee of $20 and
charges of $.05/min for calls. Company B has a monthly
fee of $5 and charges $.10/min for calls.

Find the model of the total cost of Company A’s plan,
using  m  for the minutes.

Find the model of the total cost of Company B’s plan,
using  m  for the minutes.

Find out how many minutes of calling would make
the two plans equal.

If the person makes a monthly average of 200 min of calls,
which plan should for the person choose?

For the following exercises, use this scenario: A wireless
carrier offers the following plans that a person is
considering. The Family Plan: $90 monthly fee, unlimited
talk and text on up to 5 lines, and data charges of $40
for each device for up to 2 GB of data per device. The
Mobile Share Plan: $120 monthly fee for up to 10 devices,
unlimited talk and text for all the lines, and data charges of
$35 for each device up to a shared total of 10 GB of data.
Use  P  for the number of devices that need data plans as
part of their cost.

Find the model of the total cost of the Family Plan.

Find the model of the total cost of the Mobile Share
Plan.

Assuming they stay under their data limit, find the
number of devices that would make the two plans equal in
cost.

If a family has 3 smart phones, which plan should
they choose?

For exercises 17 and 18, use this scenario: A retired woman
has $50,000 to invest but needs to make $6,000 a year
from the interest to meet certain living expenses. One bond
investment pays 15% annual interest. The rest of it she
wants to put in a CD that pays 7%.

If we let  x  be the amount the woman invests in the
15% bond, how much will she be able to invest in the CD?

Set up and solve the equation for how much the
woman should invest in each option to sustain a $6,000
annual return.

Two planes fly in opposite directions. One travels 450
mi/h and the other 550 mi/h. How long will it take before
they are 4,000 mi apart?

Ben starts walking along a path at 4 mi/h. One and a
half hours after Ben leaves, his sister Amanda begins
jogging along the same path at 6 mi/h. How long will it be
before Amanda catches up to Ben?

Fiora starts riding her bike at 20 mi/h. After a while,
she slows down to 12 mi/h, and maintains that speed for the
rest of the trip. The whole trip of 70 mi takes her 4.5 h. For
what distance did she travel at 20 mi/h?

A chemistry teacher needs to mix a 30% salt solution
with a 70% salt solution to make 20 qt of a 40% salt
solution. How many quarts of each solution should the
teacher mix to get the desired result?
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Paul has $20,000 to invest. His intent is to earn 11%
interest on his investment. He can invest part of his money
at 8% interest and part at 12% interest. How much does
Paul need to invest in each option to make get a total 11%
return on his $20,000?

For the following exercises, use this scenario: A truck
rental agency offers two kinds of plans. Plan A charges $75/
wk plus $.10/mi driven. Plan B charges $100/wk plus $.05/
mi driven.

Write the model equation for the cost of renting a
truck with plan A.

Write the model equation for the cost of renting a
truck with plan B.

Find the number of miles that would generate the
same cost for both plans.

If Tim knows he has to travel 300 mi, which plan
should he choose?

For the following exercises, use the given formulas to
answer the questions.

A = P(1 + rt)  is used to find the principal amount
Pdeposited, earning r% interest, for t years. Use this to find
what principal amount P David invested at a 3% rate for 20
yr if  A = $8,000.

The formula  F = mv2

R   relates force (F), velocity (v),

mass (m), and resistance (R). Find  R when  m = 45,
v = 7, and  F = 245.

F = ma  indicates that force (F) equals mass (m)
times acceleration (a). Find the acceleration of a mass of 50
kg if a force of 12 N is exerted on it.

Sum = 1
1 − r   is the formula for an infinite series

sum. If the sum is 5, find  r.

For the following exercises, solve for the given variable in
the formula. After obtaining a new version of the formula,
you will use it to solve a question.

Solve for W:  P = 2L + 2W

Use the formula from the previous question to find the
width,  W, of a rectangle whose length is 15 and whose
perimeter is 58.

Solve for   f : 1
p + 1

q = 1
f

Use the formula from the previous question to find   f  when

 p = 8 and q = 13.

Solve for  m  in the slope-intercept formula:
 y = mx + b

Use the formula from the previous question to find
 m when the coordinates of the point are  (4, 7)  and
 b = 12.

The area of a trapezoid is given by
 A = 1

2h⎛
⎝b1 + b2

⎞
⎠. Use the formula to find the area of a

trapezoid with  h = 6,  b1 = 14,  and b2 = 8.

Solve for h:  A = 1
2h⎛

⎝b1 + b2
⎞
⎠

Use the formula from the previous question to find the
height of a trapezoid with
A = 150,  b1 = 19,  and b2 = 11.

Find the dimensions of an American football field.
The length is 200 ft more than the width, and the perimeter
is 1,040 ft. Find the length and width. Use the perimeter
formula  P = 2L + 2W.

Distance equals rate times time,  d = rt.  Find the
distance Tom travels if he is moving at a rate of 55 mi/h for
3.5 h.

Using the formula in the previous exercise, find the
distance that Susan travels if she is moving at a rate of 60
mi/h for 6.75 h.

What is the total distance that two people travel in 3 h
if one of them is riding a bike at 15 mi/h and the other is
walking at 3 mi/h?

If the area model for a triangle is  A = 1
2bh, find the

area of a triangle with a height of 16 in. and a base of 11 in.

Solve for h:  A = 1
2bh

Use the formula from the previous question to find the
height to the nearest tenth of a triangle with a base of 15 and
an area of 215.

The volume formula for a cylinder is  V = πr2 h. 
Using the symbol  π  in your answer, find the volume of a
cylinder with a radius,  r, of 4 cm and a height of 14 cm.

Solve for h:  V = πr2 h
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175.

176.

177.

Use the formula from the previous question to find the
height of a cylinder with a radius of 8 and a volume of  16π

Solve for r:  V = πr2 h

Use the formula from the previous question to find the
radius of a cylinder with a height of 36 and a volume of
 324π.

The formula for the circumference of a circle is
 C = 2πr.  Find the circumference of a circle with a
diameter of 12 in. (diameter = 2r). Use the symbol  π  in
your final answer.

Solve the formula from the previous question for  π. 
Notice why  π  is sometimes defined as the ratio of the
circumference to its diameter.
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2.4 | Complex Numbers

Learning Objectives

In this section you will:

2.4.1 Add and subtract complex numbers.
2.4.2 Multiply and divide complex numbers.
2.4.3 Solve quadratic equations with complex numbers

Figure 2.28

Discovered by Benoit Mandelbrot around 1980, the Mandelbrot Set is one of the most recognizable fractal images. The
image is built on the theory of self-similarity and the operation of iteration. Zooming in on a fractal image brings many
surprises, particularly in the high level of repetition of detail that appears as magnification increases. The equation that
generates this image turns out to be rather simple.

In order to better understand it, we need to become familiar with a new set of numbers. Keep in mind that the study of
mathematics continuously builds upon itself. Negative integers, for example, fill a void left by the set of positive integers.
The set of rational numbers, in turn, fills a void left by the set of integers. The set of real numbers fills a void left by the
set of rational numbers. Not surprisingly, the set of real numbers has voids as well. In this section, we will explore a set of
numbers that fills voids in the set of real numbers and find out how to work within it.

Expressing Square Roots of Negative Numbers as Multiples of  i
We know how to find the square root of any positive real number. In a similar way, we can find the square root of any
negative number. The difference is that the root is not real. If the value in the radicand is negative, the root is said to be an
imaginary number. The imaginary number  i  is defined as the square root of  −1.

−1 = i

So, using properties of radicals,

i2 = ( −1)2 = −1

We can write the square root of any negative number as a multiple of  i. Consider the square root of  −49.

−49 = 49 ⋅ (−1)
= 49 −1
= 7i

We use  7i  and not  −7i  because the principal root of  49  is the positive root.
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A complex number is the sum of a real number and an imaginary number. A complex number is expressed in standard form
when written  a + bi where  a  is the real part and  b  is the imaginary part. For example,  5 + 2i  is a complex number. So,

too, is  3 + 4i 3.

Imaginary numbers differ from real numbers in that a squared imaginary number produces a negative real number. Recall
that when a positive real number is squared, the result is a positive real number and when a negative real number is squared,
the result is also a positive real number. Complex numbers consist of real and imaginary numbers.

Imaginary and Complex Numbers

A complex number is a number of the form  a + bi where

• a  is the real part of the complex number.

• b  is the imaginary part of the complex number.

If  b = 0, then  a + bi  is a real number. If  a = 0  and  b  is not equal to 0, the complex number is called a pure
imaginary number. An imaginary number is an even root of a negative number.

Given an imaginary number, express it in the standard form of a complex number.

1. Write   −a  as   a −1.

2. Express   −1  as  i. 
3. Write   a ⋅ i  in simplest form.

Example 2.31

Expressing an Imaginary Number in Standard Form

Express   −9  in standard form.

Solution

−9 = 9 −1
= 3i

In standard form, this is  0 + 3i.

Express   −24  in standard form.

Plotting a Complex Number on the Complex Plane
We cannot plot complex numbers on a number line as we might real numbers. However, we can still represent them
graphically. To represent a complex number, we need to address the two components of the number. We use the complex
plane, which is a coordinate system in which the horizontal axis represents the real component and the vertical axis
represents the imaginary component. Complex numbers are the points on the plane, expressed as ordered pairs  (a, b),
where  a  represents the coordinate for the horizontal axis and  b  represents the coordinate for the vertical axis.
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Let’s consider the number  −2 + 3i. The real part of the complex number is  −2  and the imaginary part is 3. We plot the
ordered pair  (−2, 3)  to represent the complex number  −2 + 3i, as shown in Figure 2.29.

Figure 2.29

Complex Plane

In the complex plane, the horizontal axis is the real axis, and the vertical axis is the imaginary axis, as shown in Figure
2.30.

Figure 2.30

Given a complex number, represent its components on the complex plane.

1. Determine the real part and the imaginary part of the complex number.

2. Move along the horizontal axis to show the real part of the number.

3. Move parallel to the vertical axis to show the imaginary part of the number.

4. Plot the point.
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Example 2.32

Plotting a Complex Number on the Complex Plane

Plot the complex number  3 − 4i  on the complex plane.

Solution
The real part of the complex number is  3, and the imaginary part is –4. We plot the ordered pair  (3, −4)  as

shown in Figure 2.31.

Figure 2.31

Plot the complex number  −4 − i  on the complex plane.

Adding and Subtracting Complex Numbers
Just as with real numbers, we can perform arithmetic operations on complex numbers. To add or subtract complex numbers,
we combine the real parts and then combine the imaginary parts.

Complex Numbers: Addition and Subtraction

Adding complex numbers:

(a + bi) + (c + di) = (a + c) + (b + d)i

Subtracting complex numbers:

(a + bi) − (c + di) = (a − c) + (b − d)i
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Given two complex numbers, find the sum or difference.

1. Identify the real and imaginary parts of each number.

2. Add or subtract the real parts.

3. Add or subtract the imaginary parts.

Example 2.33

Adding and Subtracting Complex Numbers

Add or subtract as indicated.

1. (3 − 4i) + (2 + 5i)

2. (−5 + 7i) − (−11 + 2i)

Solution
We add the real parts and add the imaginary parts.

1.
(3 − 4i) + (2 + 5i) = 3 − 4i + 2 + 5i

= 3 + 2 + (−4i) + 5i
= (3 + 2) + (−4 + 5)i
= 5 + i

2.
(−5 + 7i) − (−11 + 2i) = −5 + 7i + 11 − 2i

= −5 + 11 + 7i − 2i
= (−5 + 11) + (7 − 2)i
= 6 + 5i

Subtract  2 + 5i  from  3 – 4i.

Multiplying Complex Numbers
Multiplying complex numbers is much like multiplying binomials. The major difference is that we work with the real and
imaginary parts separately.

Multiplying a Complex Number by a Real Number
Lets begin by multiplying a complex number by a real number. We distribute the real number just as we would with a
binomial. Consider, for example,  3(6 + 2i) :

Given a complex number and a real number, multiply to find the product.

1. Use the distributive property.

2. Simplify.
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Example 2.34

Multiplying a Complex Number by a Real Number

Find the product  4(2 + 5i).

Solution
Distribute the 4.

4(2 + 5i) = (4 ⋅ 2) + (4 ⋅ 5i)
= 8 + 20i

Find the product:  12(5 − 2i).

Multiplying Complex Numbers Together
Now, let’s multiply two complex numbers. We can use either the distributive property or more specifically the FOIL method
because we are dealing with binomials. Recall that FOIL is an acronym for multiplying First, Inner, Outer, and Last terms
together. The difference with complex numbers is that when we get a squared term,  i2, it equals  −1.

(a + bi)(c + di) = ac + adi + bci + bdi2

= ac + adi + bci − bd i2 = −1
= (ac − bd) + (ad + bc)i Group real terms and imaginary terms.

Given two complex numbers, multiply to find the product.

1. Use the distributive property or the FOIL method.

2. Remember that  i2 = −1.

3. Group together the real terms and the imaginary terms

Example 2.35

Multiplying a Complex Number by a Complex Number

Multiply:  (4 + 3i)(2 − 5i).

Solution
(4 + 3i)(2 − 5i) = 4(2) − 4(5i) + 3i(2) − (3i)(5i)

= 8 − 20i + 6i − 15⎛
⎝i2⎞

⎠

= (8 + 15) + (−20 + 6)i
= 23 − 14i

Multiply:  (3 − 4i)(2 + 3i).
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Dividing Complex Numbers
Dividing two complex numbers is more complicated than adding, subtracting, or multiplying because we cannot divide
by an imaginary number, meaning that any fraction must have a real-number denominator to write the answer in standard
form  a + bi. We need to find a term by which we can multiply the numerator and the denominator that will eliminate the
imaginary portion of the denominator so that we end up with a real number as the denominator. This term is called the
complex conjugate of the denominator, which is found by changing the sign of the imaginary part of the complex number.
In other words, the complex conjugate of  a + bi  is  a − bi.  For example, the product of  a + bi  and  a − bi  is

(a + bi)(a − bi) = a2 − abi + abi − b2 i2

= a2 + b2

The result is a real number.

Note that complex conjugates have an opposite relationship: The complex conjugate of  a + bi  is  a − bi, and the complex
conjugate of  a − bi  is  a + bi.  Further, when a quadratic equation with real coefficients has complex solutions, the
solutions are always complex conjugates of one another.

Suppose we want to divide  c + di  by  a + bi, where neither  a  nor  b  equals zero. We first write the division as a fraction,
then find the complex conjugate of the denominator, and multiply.

c + di
a + bi where a ≠ 0 and b ≠ 0

Multiply the numerator and denominator by the complex conjugate of the denominator.

(c + di)
(a + bi) ⋅ (a − bi)

(a − bi) = (c + di)(a − bi)
(a + bi)(a − bi)

Apply the distributive property.

= ca − cbi + adi − bdi2

a2 − abi + abi − b2 i2

Simplify, remembering that  i2 = −1.

= ca − cbi + adi − bd(−1)
a2 − abi + abi − b2(−1)

= (ca + bd) + (ad − cb)i
a2 + b2

The Complex Conjugate

The complex conjugate of a complex number  a + bi  is  a − bi.  It is found by changing the sign of the imaginary part
of the complex number. The real part of the number is left unchanged.

• When a complex number is multiplied by its complex conjugate, the result is a real number.

• When a complex number is added to its complex conjugate, the result is a real number.

Example 2.36

Finding Complex Conjugates

Find the complex conjugate of each number.

1. 2 + i 5

166 Chapter 2 Equations and Inequalities

This content is available for free at https://cnx.org/content/col11758/1.5



2.27

2. −1
2i

Solution

1. The number is already in the form  a + bi. The complex conjugate is  a − bi, or  2 − i 5.

2. We can rewrite this number in the form  a + bi  as  0 − 1
2i. The complex conjugate is  a − bi, or  0 + 1

2i.

This can be written simply as  12i.

Analysis
Although we have seen that we can find the complex conjugate of an imaginary number, in practice we generally
find the complex conjugates of only complex numbers with both a real and an imaginary component. To obtain a
real number from an imaginary number, we can simply multiply by  i.

Find the complex conjugate of  −3 + 4i.

Given two complex numbers, divide one by the other.

1. Write the division problem as a fraction.

2. Determine the complex conjugate of the denominator.

3. Multiply the numerator and denominator of the fraction by the complex conjugate of the denominator.

4. Simplify.

Example 2.37

Dividing Complex Numbers

Divide:  (2 + 5i)  by  (4 − i).

Solution
We begin by writing the problem as a fraction.

(2 + 5i)
(4 − i)

Then we multiply the numerator and denominator by the complex conjugate of the denominator.

(2 + 5i)
(4 − i)   ⋅

(4 + i)
(4 + i)

To multiply two complex numbers, we expand the product as we would with polynomials (using FOIL).

Chapter 2 Equations and Inequalities 167



2.28

(2 + 5i)
(4 − i) ⋅ (4 + i)

(4 + i) = 8 + 2i + 20i + 5i2

16 + 4i − 4i − i2

= 8 + 2i + 20i + 5(−1)
16 + 4i − 4i − (−1) Because  i2 = −1.

= 3 + 22i
17

= 3
17 + 22

17i Separate real and imaginary parts.

Note that this expresses the quotient in standard form.

Simplifying Powers of i
The powers of  i  are cyclic. Let’s look at what happens when we raise  i  to increasing powers.

i1 = i
i2 = −1
i3 = i2 ⋅ i = −1 ⋅ i = −i
i4 = i3 ⋅ i = −i ⋅ i = −i2 = − (−1) = 1
i5 = i4 ⋅ i = 1 ⋅ i = i

We can see that when we get to the fifth power of  i, it is equal to the first power. As we continue to multiply  i  by
increasing powers, we will see a cycle of four. Let’s examine the next four powers of  i.

i6 = i5 ⋅ i = i ⋅ i = i2 = −1
i7 = i6 ⋅ i = i2 ⋅ i = i3 = −i
i8 = i7 ⋅ i = i3 ⋅ i = i4 = 1
i9 = i8 ⋅ i = i4 ⋅ i = i5 = i

The cycle is repeated continuously:  i, −1, − i, 1, every four powers.

Example 2.38

Simplifying Powers of  i

Evaluate:  i35.

Solution

Since  i4 = 1, we can simplify the problem by factoring out as many factors of  i4   as possible. To do so, first
determine how many times 4 goes into 35:  35 = 4 ⋅ 8 + 3.

i35 = i4 ⋅ 8 + 3 = i4 ⋅ 8 ⋅ i3 = ⎛
⎝i4⎞

⎠
8

⋅ i3 = 18 ⋅ i3 = i3 = − i

Evaluate:  i18
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Can we write  i35   in other helpful ways?

As we saw in Example 2.38, we reduced  i35   to  i3   by dividing the exponent by 4 and using the remainder to

find the simplified form. But perhaps another factorization of  i35  may be more useful. Table 2.6 shows some
other possible factorizations.

Factorization of  i35 i34 ⋅ i i33 ⋅ i2 i31 ⋅ i4 i19 ⋅ i16

Reduced form ⎛
⎝i2⎞

⎠
17

⋅ i i33 ⋅ (−1) i31 ⋅ 1 i19 ⋅ ⎛
⎝i4⎞

⎠
4

Simplified form (−1)17 ⋅ i −i33 i31 i19

Table 2.6

Each of these will eventually result in the answer we obtained above but may require several more steps than our
earlier method.

Access these online resources for additional instruction and practice with complex numbers.

• Adding and Subtracting Complex Numbers (http://openstaxcollege.org/l/addsubcomplex)

• Multiply Complex Numbers (http://openstaxcollege.org/l/multiplycomplex)

• Multiplying Complex Conjugates (http://openstaxcollege.org/l/multcompconj)

• Raising i to Powers (http://openstaxcollege.org/l/raisingi)

Chapter 2 Equations and Inequalities 169

http://openstaxcollege.org/l/addsubcomplex
http://openstaxcollege.org/l/multiplycomplex
http://openstaxcollege.org/l/multcompconj
http://openstaxcollege.org/l/raisingi


178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

2.4 EXERCISES
Verbal

Explain how to add complex numbers.

What is the basic principle in multiplication of
complex numbers?

Give an example to show that the product of two
imaginary numbers is not always imaginary.

What is a characteristic of the plot of a real number in
the complex plane?

Algebraic
For the following exercises, evaluate the algebraic
expressions.

If  y = x2 + x − 4, evaluate  y  given  x = 2i.

If  y = x3 − 2, evaluate  y  given  x = i.

If  y = x2 + 3x + 5, evaluate  y  given  x = 2 + i.

If  y = 2x2 + x − 3, evaluate  y  given  x = 2 − 3i.

If  y = x + 1
2 − x, evaluate  y  given  x = 5i.

If  y = 1 + 2x
x + 3 , evaluate  y  given  x = 4i.

Graphical
For the following exercises, plot the complex numbers on
the complex plane.

1 − 2i

−2 + 3i

i

−3 − 4i

Numeric
For the following exercises, perform the indicated
operation and express the result as a simplified complex
number.

(3 + 2i) + (5 − 3i)

(−2 − 4i) + (1 + 6i)

(−5 + 3i) − (6 − i)

(2 − 3i) − (3 + 2i)

(−4 + 4i) − (−6 + 9i)

(2 + 3i)(4i)

(5 − 2i)(3i)

(6 − 2i)(5)

(−2 + 4i)(8)

(2 + 3i)(4 − i)

(−1 + 2i)(−2 + 3i)

(4 − 2i)(4 + 2i)

(3 + 4i)(3 − 4i)

3 + 4i
2

6 − 2i
3

−5 + 3i
2i

6 + 4i
i

2 − 3i
4 + 3i

3 + 4i
2 − i

2 + 3i
2 − 3i

−9 + 3 −16

− −4 − 4 −25

2 + −12
2

4 + −20
2

i8

i15
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i22

Technology
For the following exercises, use a calculator to help answer
the questions.

Evaluate  (1 + i)k   for  k = 4, 8, and 12.  Predict the
value if  k = 16.

Evaluate  (1 − i)k   for  k = 2, 6, and 10.  Predict the
value if  k = 14.

Evaluate (l + i)k − (l − i)k for  k = 4, 8, and 12. 
Predict the value for  k = 16.

Show that a solution of  x6 + 1 = 0  is   3
2 + 1

2i.

Show that a solution of  x8 −1 = 0  is   2
2 + 2

2 i.

Extensions
For the following exercises, evaluate the expressions,
writing the result as a simplified complex number.

1
i + 4

i3

1
i11 − 1

i21

i7 ⎛
⎝1 + i2⎞

⎠

i−3 + 5i7

(2 + i)(4 − 2i)
(1 + i)

(1 + 3i)(2 − 4i)
(1 + 2i)

(3 + i)2

(1 + 2i)2

3 + 2i
2 + i + (4 + 3i)

4 + i
i + 3 − 4i

1 − i

3 + 2i
1 + 2i − 2 − 3i

3 + i
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2.5 | Quadratic Equations

Learning Objectives

In this section you will:

2.5.1 Solve quadratic equations by factoring.
2.5.2 Solve quadratic equations by the square root property.
2.5.3 Solve quadratic equations by completing the square.
2.5.4 Solve quadratic equations by using the quadratic formula.

Figure 2.32

The computer monitor on the left in Figure 2.32 is a 23.6-inch model and the one on the right is a 27-inch model.
Proportionally, the monitors appear very similar. If there is a limited amount of space and we desire the largest monitor
possible, how do we decide which one to choose? In this section, we will learn how to solve problems such as this using
four different methods.

Solving Quadratic Equations by Factoring
An equation containing a second-degree polynomial is called a quadratic equation. For example, equations such as
 2x2 + 3x − 1 = 0  and  x2 − 4 = 0  are quadratic equations. They are used in countless ways in the fields of engineering,
architecture, finance, biological science, and, of course, mathematics.

Often the easiest method of solving a quadratic equation is factoring. Factoring means finding expressions that can be
multiplied together to give the expression on one side of the equation.

If a quadratic equation can be factored, it is written as a product of linear terms. Solving by factoring depends on the
zero-product property, which states that if  a ⋅ b = 0, then  a = 0  or  b = 0, where a and b are real numbers or algebraic
expressions. In other words, if the product of two numbers or two expressions equals zero, then one of the numbers or one
of the expressions must equal zero because zero multiplied by anything equals zero.

Multiplying the factors expands the equation to a string of terms separated by plus or minus signs. So, in that sense, the
operation of multiplication undoes the operation of factoring. For example, expand the factored expression  (x − 2)(x + 3) 
by multiplying the two factors together.

(x − 2)(x + 3) = x2 + 3x − 2x − 6
= x2 + x − 6

The product is a quadratic expression. Set equal to zero,  x2 + x − 6 = 0  is a quadratic equation. If we were to factor the
equation, we would get back the factors we multiplied.
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The process of factoring a quadratic equation depends on the leading coefficient, whether it is 1 or another integer. We will
look at both situations; but first, we want to confirm that the equation is written in standard form,  ax2 + bx + c = 0, where

a, b, and c are real numbers, and  a ≠ 0. The equation  x2 + x − 6 = 0  is in standard form.

We can use the zero-product property to solve quadratic equations in which we first have to factor out the greatest common
factor (GCF), and for equations that have special factoring formulas as well, such as the difference of squares, both of which
we will see later in this section.

The Zero-Product Property and Quadratic Equations

The zero-product property states

If a ⋅ b = 0,  then a = 0 or b = 0,

where a and b are real numbers or algebraic expressions.

A quadratic equation is an equation containing a second-degree polynomial; for example

ax2 + bx + c = 0

where a, b, and c are real numbers, and if  a ≠ 0, it is in standard form.

Solving Quadratics with a Leading Coefficient of 1

In the quadratic equation  x2 + x − 6 = 0, the leading coefficient, or the coefficient of  x2, is 1. We have one method of
factoring quadratic equations in this form.

Given a quadratic equation with the leading coefficient of 1, factor it.

1. Find two numbers whose product equals c and whose sum equals b.

2. Use those numbers to write two factors of the form  (x + k) or (x − k), where k is one of the numbers
found in step 1. Use the numbers exactly as they are. In other words, if the two numbers are 1 and  −2,
the factors are  (x + 1)(x − 2).

3. Solve using the zero-product property by setting each factor equal to zero and solving for the variable.

Example 2.39

Factoring and Solving a Quadratic with Leading Coefficient of 1

Factor and solve the equation:  x2 + x − 6 = 0.

Solution

To factor  x2 + x − 6 = 0, we look for two numbers whose product equals  −6  and whose sum equals 1. Begin
by looking at the possible factors of  −6.

1 ⋅ (−6)
(−6) ⋅ 1
2 ⋅ (−3)
3 ⋅ (−2)

The last pair,  3 ⋅ (−2)  sums to 1, so these are the numbers. Note that only one pair of numbers will work. Then,
write the factors.
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(x − 2)(x + 3) = 0

To solve this equation, we use the zero-product property. Set each factor equal to zero and solve.

(x − 2)(x + 3) = 0
(x − 2) = 0

x = 2
(x + 3) = 0

x = −3

The two solutions are  x = 2  and  x = −3. We can see how the solutions relate to the graph in Figure 2.33. The

solutions are the x-intercepts of  x2 + x − 6 = 0.

Figure 2.33

Factor and solve the quadratic equation:  x2 − 5x − 6 = 0.

Example 2.40

Solve the Quadratic Equation by Factoring

Solve the quadratic equation by factoring:  x2 + 8x + 15 = 0.
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Solution
Find two numbers whose product equals  15  and whose sum equals  8. List the factors of  15.

1 ⋅ 15
3 ⋅ 5
(−1) ⋅ (−15)
(−3) ⋅ (−5)

The numbers that add to 8 are 3 and 5. Then, write the factors, set each factor equal to zero, and solve.

(x + 3)(x + 5) = 0
(x + 3) = 0

x = −3
(x + 5) = 0

x = −5

The solutions are  x = −3  and  x = −5.

Solve the quadratic equation by factoring:  x2 − 4x − 21 = 0.

Example 2.41

Using the Zero-Product Property to Solve a Quadratic Equation Written as the
Difference of Squares

Solve the difference of squares equation using the zero-product property:  x2 − 9 = 0.

Solution
Recognizing that the equation represents the difference of squares, we can write the two factors by taking the
square root of each term, using a minus sign as the operator in one factor and a plus sign as the operator in the
other. Solve using the zero-factor property.

x2 − 9 = 0
(x − 3)(x + 3) = 0

(x − 3) = 0
x = 3

(x + 3) = 0
x = −3

The solutions are  x = 3  and  x = −3.

Solve by factoring:  x2 − 25 = 0.
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Factoring and Solving a Quadratic Equation of Higher Order
When the leading coefficient is not 1, we factor a quadratic equation using the method called grouping, which requires four
terms. With the equation in standard form, let’s review the grouping procedures:

1. With the quadratic in standard form,  ax2 + bx + c = 0, multiply  a ⋅ c.

2. Find two numbers whose product equals  ac  and whose sum equals  b.

3. Rewrite the equation replacing the  bx  term with two terms using the numbers found in step 1 as coefficients of x.

4. Factor the first two terms and then factor the last two terms. The expressions in parentheses must be exactly the
same to use grouping.

5. Factor out the expression in parentheses.

6. Set the expressions equal to zero and solve for the variable.

Example 2.42

Solving a Quadratic Equation Using Grouping

Use grouping to factor and solve the quadratic equation:  4x2 + 15x + 9 = 0.

Solution
First, multiply  ac : 4(9) = 36. Then list the factors of  36.

1 ⋅ 36
2 ⋅ 18
3 ⋅ 12
4 ⋅ 9
6 ⋅ 6

The only pair of factors that sums to  15  is  3 + 12. Rewrite the equation replacing the b term,  15x, with two
terms using 3 and 12 as coefficients of x. Factor the first two terms, and then factor the last two terms.

4x2 + 3x + 12x + 9 = 0
x(4x + 3) + 3(4x + 3) = 0

(4x + 3)(x + 3) = 0

Solve using the zero-product property.

(4x + 3)(x + 3) = 0
(4x + 3) = 0

x = −3
4

(x + 3) = 0
x = −3

The solutions are  x = − 3
4, x = −3.  See Figure 2.34.
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Figure 2.34

Solve using factoring by grouping:  12x2 + 11x + 2 = 0.

Example 2.43

Solving a Higher Degree Quadratic Equation by Factoring

Solve the equation by factoring:  −3x3 − 5x2 − 2x = 0.

Solution
This equation does not look like a quadratic, as the highest power is 3, not 2. Recall that the first thing we want
to do when solving any equation is to factor out the GCF, if one exists. And it does here. We can factor out  − x 
from all of the terms and then proceed with grouping.

−3x3 − 5x2 − 2x = 0
− x⎛

⎝3x2 + 5x + 2⎞
⎠ = 0

Use grouping on the expression in parentheses.

− x⎛
⎝3x2 + 3x + 2x + 2⎞

⎠ = 0
−x[3x(x + 1) + 2(x + 1)] = 0

−x(3x + 2)(x + 1) = 0

Now, we use the zero-product property. Notice that we have three factors.
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−x = 0
x = 0

3x + 2 = 0
x = −2

3
x + 1 = 0

x = −1

The solutions are  x = 0, x = − 2
3, and  x = −1.

Solve by factoring:  x3 + 11x2 + 10x = 0.

Using the Square Root Property
When there is no linear term in the equation, another method of solving a quadratic equation is by using the square root
property, in which we isolate the  x2   term and take the square root of the number on the other side of the equals sign. Keep

in mind that sometimes we may have to manipulate the equation to isolate the  x2   term so that the square root property can
be used.

The Square Root Property

With the  x2   term isolated, the square root property states that:

if x2 = k, then x = ± k

where k is a nonzero real number.

Given a quadratic equation with an  x2   term but no  x  term, use the square root property to solve it.

1. Isolate the  x2   term on one side of the equal sign.

2. Take the square root of both sides of the equation, putting a  ±   sign before the expression on the side
opposite the squared term.

3. Simplify the numbers on the side with the  ±   sign.

Example 2.44

Solving a Simple Quadratic Equation Using the Square Root Property

Solve the quadratic using the square root property:  x2 = 8.

Solution
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Take the square root of both sides, and then simplify the radical. Remember to use a  ±   sign before the radical
symbol.

x2 = 8
x = ± 8

= ±2 2

The solutions are  x = 2 2, x = −2 2.

Example 2.45

Solving a Quadratic Equation Using the Square Root Property

Solve the quadratic equation:  4x2 + 1 = 7.

Solution

First, isolate the  x2   term. Then take the square root of both sides.

4x2 + 1 = 7
4x2 = 6

x2 = 6
4

x = ± 6
2

The solutions are  x = 6
2 , x = − 6

2 .

Solve the quadratic equation using the square root property:  3(x − 4)2 = 15.

Completing the Square
Not all quadratic equations can be factored or can be solved in their original form using the square root property. In these
cases, we may use a method for solving a quadratic equation known as completing the square. Using this method, we add
or subtract terms to both sides of the equation until we have a perfect square trinomial on one side of the equal sign. We then
apply the square root property. To complete the square, the leading coefficient, a, must equal 1. If it does not, then divide
the entire equation by a. Then, we can use the following procedures to solve a quadratic equation by completing the square.

We will use the example  x2 + 4x + 1 = 0  to illustrate each step.

1. Given a quadratic equation that cannot be factored, and with  a = 1, first add or subtract the constant term to the
right sign of the equal sign.

x2 + 4x = −1

2. Multiply the b term by  12   and square it.
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1
2(4) = 2

22 = 4

3. Add  ⎛⎝1
2b⎞

⎠
2
  to both sides of the equal sign and simplify the right side. We have

x2 + 4x + 4 = −1 + 4
x2 + 4x + 4 = 3

4. The left side of the equation can now be factored as a perfect square.

x2 + 4x + 4 = 3
(x + 2)2 = 3

5. Use the square root property and solve.

(x + 2)2 = ± 3
x + 2 = ± 3

x = −2 ± 3
6. The solutions are  x = −2 + 3, x = −2 − 3.

Example 2.46

Solving a Quadratic by Completing the Square

Solve the quadratic equation by completing the square:  x2 − 3x − 5 = 0.

Solution
First, move the constant term to the right side of the equal sign.

x2 − 3x = 5

Then, take  12   of the b term and square it.

1
2(−3) = −3

2
⎛
⎝−

3
2

⎞
⎠
2

= 9
4

Add the result to both sides of the equal sign.

x2 − 3x + ⎛
⎝−

3
2

⎞
⎠
2

= 5 + ⎛
⎝−

3
2

⎞
⎠
2

x2 − 3x + 9
4 = 5 + 9

4

Factor the left side as a perfect square and simplify the right side.

⎛
⎝x − 3

2
⎞
⎠
2

= 29
4

Use the square root property and solve.
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⎛
⎝x − 3

2
⎞
⎠
2

= ± 29
4

⎛
⎝x − 3

2
⎞
⎠ = ± 29

2

x = 3
2 ± 29

2

The solutions are  x = 3
2 + 29

2 , x = 3
2 − 29

2 .

Solve by completing the square:  x2 − 6x = 13.

Using the Quadratic Formula
The fourth method of solving a quadratic equation is by using the quadratic formula, a formula that will solve all quadratic
equations. Although the quadratic formula works on any quadratic equation in standard form, it is easy to make errors in
substituting the values into the formula. Pay close attention when substituting, and use parentheses when inserting a negative
number.

We can derive the quadratic formula by completing the square. We will assume that the leading coefficient is positive; if it is
negative, we can multiply the equation by  −1  and obtain a positive a. Given  ax2 + bx + c = 0, a ≠ 0, we will complete
the square as follows:

1. First, move the constant term to the right side of the equal sign:

ax2 + bx = − c
2. As we want the leading coefficient to equal 1, divide through by a:

x2 + b
ax = − c

a

3. Then, find  12   of the middle term, and add  ⎛⎝1
2

b
a

⎞
⎠
2

= b2

4a2   to both sides of the equal sign:

x2 + b
ax + b2

4a2 = b2

4a2 − c
a

4. Next, write the left side as a perfect square. Find the common denominator of the right side and write it as a single
fraction:

⎛
⎝x + b

2a
⎞
⎠

2
= b2 − 4ac

4a2

5. Now, use the square root property, which gives

x + b
2a = ± b2 − 4ac

4a2

x + b
2a = ± b2 − 4ac

2a

6. Finally, add  − b
2a   to both sides of the equation and combine the terms on the right side. Thus,

x = −b ± b2 − 4ac
2a
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The Quadratic Formula

Written in standard form,  ax2 + bx + c = 0, any quadratic equation can be solved using the quadratic formula:

(2.1)
x = −b ± b2 − 4ac

2a

where a, b, and c are real numbers and  a ≠ 0.

Given a quadratic equation, solve it using the quadratic formula

1. Make sure the equation is in standard form:  ax2 + bx + c = 0.

2. Make note of the values of the coefficients and constant term,  a, b, and  c.

3. Carefully substitute the values noted in step 2 into the equation. To avoid needless errors, use parentheses
around each number input into the formula.

4. Calculate and solve.

Example 2.47

Solve the Quadratic Equation Using the Quadratic Formula

Solve the quadratic equation:  x2 + 5x + 1 = 0.

Solution
Identify the coefficients:  a = 1, b = 5, c = 1. Then use the quadratic formula.

x = −(5) ± (5)2 − 4(1)(1)
2(1)

= −5 ± 25 − 4
2

= −5 ± 21
2

Example 2.48

Solving a Quadratic Equation with the Quadratic Formula

Use the quadratic formula to solve  x2 + x + 2 = 0.

Solution
First, we identify the coefficients:  a = 1, b = 1, and  c = 2.

Substitute these values into the quadratic formula.
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x = −b ± b2 − 4ac
2a

= −(1) ± (1)2 − (4) ⋅ (1) ⋅ (2)
2 ⋅ 1

= −1 ± 1 − 8
2

= −1 ± −7
2

= −1 ± i 7
2

The solutions to the equation are  x = −1 + i 7
2   and  x = −1 − i 7

2   or  x = −1
2 + i 7

2   and  x = −1
2 − i 7

2 .

Solve the quadratic equation using the quadratic formula:  9x2 + 3x − 2 = 0.

The Discriminant
The quadratic formula not only generates the solutions to a quadratic equation, it tells us about the nature of the solutions
when we consider the discriminant, or the expression under the radical,  b2 − 4ac. The discriminant tells us whether the
solutions are real numbers or complex numbers, and how many solutions of each type to expect. Table 2.7 relates the value
of the discriminant to the solutions of a quadratic equation.

Value of Discriminant Results

b2 − 4ac = 0 One rational solution (double solution)

b2 − 4ac > 0, perfect square Two rational solutions

b2 − 4ac > 0, not a perfect square Two irrational solutions

b2 − 4ac < 0 Two complex solutions

Table 2.7

The Discriminant

For  ax2 + bx + c = 0, where  a, b, and  c  are real numbers, the discriminant is the expression under the radical in

the quadratic formula:  b2 − 4ac.  It tells us whether the solutions are real numbers or complex numbers and how many
solutions of each type to expect.
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Example 2.49

Using the Discriminant to Find the Nature of the Solutions to a Quadratic Equation

Use the discriminant to find the nature of the solutions to the following quadratic equations:

a. x2 + 4x + 4 = 0

b. 8x2 + 14x + 3 = 0

c. 3x2 − 5x − 2 = 0

d. 3x2 − 10x + 15 = 0

Solution

Calculate the discriminant  b2 − 4ac  for each equation and state the expected type of solutions.

a. x2 + 4x + 4 = 0

b2 − 4ac = (4)2 − 4(1)(4) = 0. There will be one rational double solution.

b. 8x2 + 14x + 3 = 0

b2 − 4ac = (14)2 − 4(8)(3) = 100. As  100  is a perfect square, there will be two rational solutions.

c. 3x2 − 5x − 2 = 0

b2 − 4ac = (−5)2 − 4(3)(−2) = 49. As  49  is a perfect square, there will be two rational solutions.

d. 3x2 −10x + 15 = 0

b2 − 4ac = (−10)2 − 4(3)(15) = −80. There will be two complex solutions.

Using the Pythagorean Theorem
One of the most famous formulas in mathematics is the Pythagorean Theorem. It is based on a right triangle, and states the
relationship among the lengths of the sides as  a2 + b2 = c2, where  a  and  b  refer to the legs of a right triangle adjacent
to the  90°  angle, and  c  refers to the hypotenuse. It has immeasurable uses in architecture, engineering, the sciences,
geometry, trigonometry, and algebra, and in everyday applications.

We use the Pythagorean Theorem to solve for the length of one side of a triangle when we have the lengths of the other
two. Because each of the terms is squared in the theorem, when we are solving for a side of a triangle, we have a quadratic
equation. We can use the methods for solving quadratic equations that we learned in this section to solve for the missing
side.

The Pythagorean Theorem is given as

a2 + b2 = c2

where  a  and  b  refer to the legs of a right triangle adjacent to the  90∘   angle, and  c  refers to the hypotenuse, as shown in
Figure 2.35.
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Figure 2.35

Example 2.50

Finding the Length of the Missing Side of a Right Triangle

Find the length of the missing side of the right triangle in Figure 2.36.

Figure 2.36

Solution
As we have measurements for side b and the hypotenuse, the missing side is a.

a2 + b2 = c2

a2 + (4)2 = (12)2

a2 + 16 = 144
a2 = 128
a = 128

= 8 2

Use the Pythagorean Theorem to solve the right triangle problem: Leg a measures 4 units, leg
b measures 3 units. Find the length of the hypotenuse.

Access these online resources for additional instruction and practice with quadratic equations.

• Solving Quadratic Equations by Factoring (http://openstaxcollege.org/l/quadreqfactor)

• The Zero-Product Property (http://openstaxcollege.org/l/zeroprodprop)

• Completing the Square (http://openstaxcollege.org/l/complthesqr)

• Quadratic Formula with Two Rational Solutions (http://openstaxcollege.org/l/
quadrformrat)

• Length of a leg of a right triangle (http://openstaxcollege.org/l/leglengthtri)

Chapter 2 Equations and Inequalities 185

http://openstaxcollege.org/l/quadreqfactor
http://openstaxcollege.org/l/zeroprodprop
http://openstaxcollege.org/l/complthesqr
http://openstaxcollege.org/l/quadrformrat
http://openstaxcollege.org/l/quadrformrat
http://openstaxcollege.org/l/leglengthtri


234.

235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

2.5 EXERCISES
Verbal

How do we recognize when an equation is quadratic?

When we solve a quadratic equation, how many
solutions should we always start out seeking? Explain why
when solving a quadratic equation in the form
 ax2 + bx + c = 0 we may graph the equation

 y = ax2 + bx + c  and have no zeroes (x-intercepts).

When we solve a quadratic equation by factoring,
why do we move all terms to one side, having zero on the
other side?

In the quadratic formula, what is the name of the
expression under the radical sign  b2 − 4ac, and how does
it determine the number of and nature of our solutions?

Describe two scenarios where using the square root
property to solve a quadratic equation would be the most
efficient method.

Algebraic
For the following exercises, solve the quadratic equation by
factoring.

x2 + 4x − 21 = 0

x2 − 9x + 18 = 0

2x2 + 9x − 5 = 0

6x2 + 17x + 5 = 0

4x2 − 12x + 8 = 0

3x2 − 75 = 0

8x2 + 6x − 9 = 0

4x2 = 9

2x2 + 14x = 36

5x2 = 5x + 30

4x2 = 5x

7x2 + 3x = 0

x
3 − 9

x = 2

For the following exercises, solve the quadratic equation by
using the square root property.

x2 = 36

x2 = 49

(x − 1)2 = 25

(x − 3)2 = 7

(2x + 1)2 = 9

(x − 5)2 = 4

For the following exercises, solve the quadratic equation by
completing the square. Show each step.

x2 − 9x − 22 = 0

2x2 − 8x − 5 = 0

x2 − 6x = 13

x2 + 2
3x − 1

3 = 0

2 + z = 6z2

6p2 + 7p − 20 = 0

2x2 − 3x − 1 = 0

For the following exercises, determine the discriminant,
and then state how many solutions there are and the nature
of the solutions. Do not solve.

2x2 − 6x + 7 = 0

x2 + 4x + 7 = 0

3x2 + 5x − 8 = 0

9x2 − 30x + 25 = 0

2x2 − 3x − 7 = 0

6x2 − x − 2 = 0

For the following exercises, solve the quadratic equation by
using the quadratic formula. If the solutions are not real,
state No Real Solution.
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2x2 + 5x + 3 = 0

x2 + x = 4

2x2 − 8x − 5 = 0

3x2 − 5x + 1 = 0

x2 + 4x + 2 = 0

4 + 1
x − 1

x2 = 0

Technology
For the following exercises, enter the expressions into your
graphing utility and find the zeroes to the equation (the
x-intercepts) by using 2nd CALC 2:zero. Recall finding
zeroes will ask left bound (move your cursor to the left
of the zero,enter), then right bound (move your cursor to
the right of the zero,enter), then guess (move your cursor
between the bounds near the zero, enter). Round your
answers to the nearest thousandth.

Y1 = 4x2 + 3x − 2

Y1 = −3x2 + 8x − 1

Y1 = 0.5x2 + x − 7

To solve the quadratic equation  x2 + 5x − 7 = 4,
we can graph these two equations

Y1 = x2 + 5x − 7
Y2 = 4

and find the points of intersection. Recall 2nd CALC
5:intersection. Do this and find the solutions to the nearest
tenth.

To solve the quadratic equation
 0.3x2 + 2x − 4 = 2, we can graph these two equations

Y1 = 0.3x2 + 2x − 4
Y2 = 2

and find the points of intersection. Recall 2nd CALC
5:intersection. Do this and find the solutions to the nearest
tenth.

Extensions

Beginning with the general form of a quadratic
equation,  ax2 + bx + c = 0, solve for x by using the

completing the square method, thus deriving the quadratic
formula.

Show that the sum of the two solutions to the
quadratic equation is  −b

a .

A person has a garden that has a length 10 feet longer
than the width. Set up a quadratic equation to find the
dimensions of the garden if its area is 119 ft.2. Solve the
quadratic equation to find the length and width.

Abercrombie and Fitch stock had a price given as
 P = 0.2t2 − 5.6t + 50.2, where  t  is the time in months
from 1999 to 2001. (  t = 1  is January 1999). Find the two
months in which the price of the stock was $30.

Suppose that an equation is given
 p = −2x2 + 280x − 1000, where  x  represents the

number of items sold at an auction and  p  is the profit made

by the business that ran the auction. How many items sold
would make this profit a maximum? Solve this by graphing
the expression in your graphing utility and finding the
maximum using 2nd CALC maximum. To obtain a good
window for the curve, set  x  [0,200] and  y  [0,10000].

Real-World Applications

A formula for the normal systolic blood pressure for a
man age  A, measured in mmHg, is given as

 P = 0.006A2 − 0.02A + 120.  Find the age to the nearest
year of a man whose normal blood pressure measures 125
mmHg.

The cost function for a certain company is
 C = 60x + 300  and the revenue is given by

 R = 100x − 0.5x2. Recall that profit is revenue minus
cost. Set up a quadratic equation and find two values of x
(production level) that will create a profit of $300.

A falling object travels a distance given by the
formula  d = 5t + 16t2   ft, where  t  is measured in
seconds. How long will it take for the object to traveled 74
ft?

A vacant lot is being converted into a community
garden. The garden and the walkway around its perimeter
have an area of 378 ft2. Find the width of the walkway if the
garden is 12 ft. wide by 15 ft. long.
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291. An epidemiological study of the spread of a certain
influenza strain that hit a small school population found
that the total number of students,  P, who contracted the flu
 t  days after it broke out is given by the model

 P = − t2 + 13t + 130, where  1 ≤ t ≤ 6.  Find the day
that 160 students had the flu. Recall that the restriction on
 t  is at most 6.
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2.6 | Other Types of Equations

Learning Objectives

In this section you will:

2.6.1 Solve equations involving rational exponents.
2.6.2 Solve equations using factoring.
2.6.3 Solve radical equations.
2.6.4 Solve absolute value equations.
2.6.5 Solve other types of equations.

We have solved linear equations, rational equations, and quadratic equations using several methods. However, there are
many other types of equations, and we will investigate a few more types in this section. We will look at equations involving
rational exponents, polynomial equations, radical equations, absolute value equations, equations in quadratic form, and
some rational equations that can be transformed into quadratics. Solving any equation, however, employs the same basic
algebraic rules. We will learn some new techniques as they apply to certain equations, but the algebra never changes.

Solving Equations Involving Rational Exponents
Rational exponents are exponents that are fractions, where the numerator is a power and the denominator is a root.

For example,  16
1
2   is another way of writing   16; 8

1
3   is another way of writing   83 . The ability to work with rational

exponents is a useful skill, as it is highly applicable in calculus.

We can solve equations in which a variable is raised to a rational exponent by raising both sides of the equation to the
reciprocal of the exponent. The reason we raise the equation to the reciprocal of the exponent is because we want to

eliminate the exponent on the variable term, and a number multiplied by its reciprocal equals 1. For example,  23
⎛
⎝
3
2

⎞
⎠ = 1,

3⎛
⎝
1
3

⎞
⎠ = 1, and so on.

Rational Exponents

A rational exponent indicates a power in the numerator and a root in the denominator. There are multiple ways of
writing an expression, a variable, or a number with a rational exponent:

a
m
n =

⎛

⎝
⎜a

1
n

⎞

⎠
⎟

m

= (am)
1
n = amn

= ( an )m

Example 2.51

Evaluating a Number Raised to a Rational Exponent

Evaluate  8
2
3.

Solution
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2.38

2.39

Whether we take the root first or the power first depends on the number. It is easy to find the cube root of 8, so

rewrite  8
2
3   as  

⎛

⎝
⎜8

1
3
⎞

⎠
⎟

2

.

⎛

⎝
⎜8

1
3
⎞

⎠
⎟

2

= (2)2

= 4

Evaluate  64
− 1

3.

Example 2.52

Solve the Equation Including a Variable Raised to a Rational Exponent

Solve the equation in which a variable is raised to a rational exponent:  x
5
4 = 32.

Solution
The way to remove the exponent on x is by raising both sides of the equation to a power that is the reciprocal of
5
4, which is  45.

x
5
4 = 32

⎛

⎝
⎜x

5
4
⎞

⎠
⎟

4
5

= (32)
4
5

x = (2)4 The fi th root of 32 is 2.
= 16

Solve the equation  x
3
2 = 125.

Example 2.53

Solving an Equation Involving Rational Exponents and Factoring

Solve  3x
3
4 = x

1
2.
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Solution
This equation involves rational exponents as well as factoring rational exponents. Let us take this one step at a
time. First, put the variable terms on one side of the equal sign and set the equation equal to zero.

3x
3
4 −

⎛

⎝
⎜x

1
2
⎞

⎠
⎟ = x

1
2 −

⎛

⎝
⎜x

1
2
⎞

⎠
⎟

3x
3
4 − x

1
2 = 0

Now, it looks like we should factor the left side, but what do we factor out? We can always factor the term with

the lowest exponent. Rewrite  x
1
2   as  x

2
4. Then, factor out  x

2
4   from both terms on the left.

3x
3
4 − x

2
4 = 0

x
2
4

⎛

⎝
⎜3x

1
4 − 1

⎞

⎠
⎟ = 0

Where did  x
1
4   come from? Remember, when we multiply two numbers with the same base, we add the

exponents. Therefore, if we multiply  x
2
4   back in using the distributive property, we get the expression we had

before the factoring, which is what should happen. We need an exponent such that when added to  24   equals  34. 

Thus, the exponent on x in the parentheses is  14. 

Let us continue. Now we have two factors and can use the zero factor theorem.

x
2
4

⎛

⎝
⎜3x

1
4 − 1

⎞

⎠
⎟ = 0

x
2
4 = 0
x = 0

3x
1
4 − 1 = 0

3x
1
4 = 1

x
1
4 = 1

3 Divide both sides by 3.

⎛

⎝
⎜x

1
4
⎞

⎠
⎟

4

= ⎛
⎝
1
3

⎞
⎠

4
Raise both sides to the reciprocal of 14.

x = 1
81

The two solutions are  x = 0, x = 1
81.

Solve:  (x + 5)
3
2 = 8.
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Solving Equations Using Factoring
We have used factoring to solve quadratic equations, but it is a technique that we can use with many types of polynomial
equations, which are equations that contain a string of terms including numerical coefficients and variables. When we are
faced with an equation containing polynomials of degree higher than 2, we can often solve them by factoring.

Polynomial Equations

A polynomial of degree n is an expression of the type

an xn + an − 1 xn − 1 +     ⋅    ⋅    ⋅   + a2 x2 + a1 x + a0

where n is a positive integer and  an, … , a0   are real numbers and  an ≠ 0.

Setting the polynomial equal to zero gives a polynomial equation. The total number of solutions (real and complex)
to a polynomial equation is equal to the highest exponent n.

Example 2.54

Solving a Polynomial by Factoring

Solve the polynomial by factoring:  5x4 = 80x2.

Solution
First, set the equation equal to zero. Then factor out what is common to both terms, the GCF.

5x4 − 80x2 = 0
5x2⎛

⎝x2 − 16⎞
⎠ = 0

Notice that we have the difference of squares in the factor  x2 − 16, which we will continue to factor and obtain

two solutions. The first term,  5x2, generates, technically, two solutions as the exponent is 2, but they are the
same solution.

5x2 = 0
x = 0

x2 − 16 = 0
(x − 4)(x + 4) = 0

x = 4
x = −4

The solutions are  x = 0 (double solution), x = 4, and  x = −4.

Analysis
We can see the solutions on the graph in Figure 2.37. The x-coordinates of the points where the graph crosses
the x-axis are the solutions—the x-intercepts. Notice on the graph that at the solution  x = 0, the graph touches
the x-axis and bounces back. It does not cross the x-axis. This is typical of double solutions.
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Figure 2.37

Solve by factoring:  12x4 = 3x2.

Example 2.55

Solve a Polynomial by Grouping

Solve a polynomial by grouping:  x3 + x2 − 9x − 9 = 0.

Solution
This polynomial consists of 4 terms, which we can solve by grouping. Grouping procedures require factoring the
first two terms and then factoring the last two terms. If the factors in the parentheses are identical, we can continue
the process and solve, unless more factoring is suggested.

x3 + x2 − 9x − 9 = 0
x2(x + 1) − 9(x + 1) = 0

⎛
⎝x2 − 9⎞

⎠(x + 1) = 0

The grouping process ends here, as we can factor  x2 − 9  using the difference of squares formula.

⎛
⎝x2 − 9⎞

⎠(x + 1) = 0
(x − 3)(x + 3)(x + 1) = 0

x = 3
x = −3
x = −1

The solutions are x = 3, x = −3, and  x = −1. Note that the highest exponent is 3 and we obtained 3 solutions.
We can see the solutions, the x-intercepts, on the graph in Figure 2.38.
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Figure 2.38

Analysis
We looked at solving quadratic equations by factoring when the leading coefficient is 1. When the leading
coefficient is not 1, we solved by grouping. Grouping requires four terms, which we obtained by splitting the
linear term of quadratic equations. We can also use grouping for some polynomials of degree higher than 2, as we
saw here, since there were already four terms.

Solving Radical Equations
Radical equations are equations that contain variables in the radicand (the expression under a radical symbol), such as

3x + 18 = x
x + 3 = x − 3

x + 5 − x − 3 = 2

Radical equations may have one or more radical terms, and are solved by eliminating each radical, one at a time. We have
to be careful when solving radical equations, as it is not unusual to find extraneous solutions, roots that are not, in fact,
solutions to the equation. These solutions are not due to a mistake in the solving method, but result from the process of
raising both sides of an equation to a power. However, checking each answer in the original equation will confirm the true
solutions.

Radical Equations

An equation containing terms with a variable in the radicand is called a radical equation.
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Given a radical equation, solve it.

1. Isolate the radical expression on one side of the equal sign. Put all remaining terms on the other side.

2. If the radical is a square root, then square both sides of the equation. If it is a cube root, then raise both
sides of the equation to the third power. In other words, for an nth root radical, raise both sides to the nth
power. Doing so eliminates the radical symbol.

3. Solve the remaining equation.

4. If a radical term still remains, repeat steps 1–2.

5. Confirm solutions by substituting them into the original equation.

Example 2.56

Solving an Equation with One Radical

Solve   15 − 2x = x.

Solution
The radical is already isolated on the left side of the equal side, so proceed to square both sides.

15 − 2x = x
⎛
⎝ 15 − 2x⎞

⎠
2 = (x)2

15 − 2x = x2

We see that the remaining equation is a quadratic. Set it equal to zero and solve.

0 = x2 + 2x − 15
= (x + 5)(x − 3)

x = −5
x = 3

The proposed solutions are  x = −5  and  x = 3. Let us check each solution back in the original equation. First,
check  x = −5.

15 − 2x = x
15 − 2( − 5) = −5

25 = −5
5 ≠ −5

This is an extraneous solution. While no mistake was made solving the equation, we found a solution that does
not satisfy the original equation.

Check  x = 3.

15 − 2x = x
15 − 2(3) = 3

9 = 3
3 = 3

The solution is  x = 3.

Solve the radical equation:   x + 3 = 3x − 1
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Example 2.57

Solving a Radical Equation Containing Two Radicals

Solve   2x + 3 + x − 2 = 4.

Solution
As this equation contains two radicals, we isolate one radical, eliminate it, and then isolate the second radical.

2x + 3 + x − 2 = 4
2x + 3 = 4 − x − 2 Subtract x − 2 from both sides.

⎛
⎝ 2x + 3⎞

⎠
2 = ⎛

⎝4 − x − 2⎞
⎠
2 Square both sides.

Use the perfect square formula to expand the right side:  (a − b)2 = a2 −2ab + b2.

2x + 3 = (4)2 − 2(4) x − 2 + ⎛
⎝ x − 2⎞

⎠
2

2x + 3 = 16 − 8 x − 2 + (x − 2)
2x + 3 = 14 + x − 8 x − 2 Combine like terms.
x − 11 = −8 x − 2 Isolate the second radical.

(x − 11)2 = ⎛
⎝−8 x − 2⎞

⎠
2 Square both sides.

x2 − 22x + 121 = 64(x − 2)

Now that both radicals have been eliminated, set the quadratic equal to zero and solve.

x2 − 22x + 121 = 64x − 128
x2 − 86x + 249 = 0
(x − 3)(x − 83) = 0 Factor and solve.

x = 3
x = 83

The proposed solutions are  x = 3  and  x = 83. Check each solution in the original equation.

2x + 3 + x − 2 = 4
2x + 3 = 4 − x − 2

2(3) + 3 = 4 − (3) − 2
9 = 4 − 1
3 = 3

One solution is  x = 3.

Check  x = 83.

2x + 3 + x − 2 = 4
2x + 3 = 4 − x − 2

2(83) + 3 = 4 − (83 − 2)
169 = 4 − 81
13 ≠ −5

The only solution is  x = 3. We see that  x = 83  is an extraneous solution.
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2.43 Solve the equation with two radicals:   3x + 7 + x + 2 = 1.

Solving an Absolute Value Equation
Next, we will learn how to solve an absolute value equation. To solve an equation such as  |2x − 6| = 8, we notice that
the absolute value will be equal to 8 if the quantity inside the absolute value bars is  8  or  −8. This leads to two different
equations we can solve independently.

2x − 6 = 8 or 2x − 6 = −8
2x = 14 2x = −2

x = 7 x = −1

Knowing how to solve problems involving absolute value functions is useful. For example, we may need to identify
numbers or points on a line that are at a specified distance from a given reference point.

Absolute Value Equations

The absolute value of x is written as  |x|.  It has the following properties:

If x ≥ 0,  then |x| = x.
If x < 0,  then |x| = −x.

For real numbers  A  and  B, an equation of the form  |A| = B, with  B ≥ 0, will have solutions when  A = B  or
 A = − B.  If  B < 0, the equation  |A| = B  has no solution.

An absolute value equation in the form  |ax + b| = c  has the following properties:

If  c < 0, |ax + b| = c has no solution.
If  c = 0, |ax + b| = c has one solution.
If  c > 0, |ax + b| = c has two solutions.

Given an absolute value equation, solve it.

1. Isolate the absolute value expression on one side of the equal sign.

2. If  c > 0, write and solve two equations:  ax + b = c  and  ax + b = − c.

Example 2.58

Solving Absolute Value Equations

Solve the following absolute value equations:

(a) |6x + 4| = 8

(b) |3x + 4| = −9
(c) |3x − 5| − 4 = 6

(d) |−5x + 10| = 0

Solution

(a) |6x + 4| = 8
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Write two equations and solve each:

6x + 4 = 8 6x + 4 = −8
6x = 4 6x = −12

x = 2
3 x = −2

The two solutions are  x = 2
3, x = −2.

(b) |3x + 4| = −9

There is no solution as an absolute value cannot be negative.

(c) |3x − 5| − 4 = 6

Isolate the absolute value expression and then write two equations.

|3x − 5| − 4 = 6
|3x − 5| = 10

3x − 5 = 10 3x − 5 = −10
3x = 15 3x = −5

x = 5 x = −5
3

There are two solutions:  x = 5, x = − 5
3.

(d) |−5x + 10| = 0

The equation is set equal to zero, so we have to write only one equation.

−5x + 10 = 0
−5x = −10

x = 2

There is one solution:  x = 2.

Solve the absolute value equation: |1 − 4x| + 8 = 13.

Solving Other Types of Equations
There are many other types of equations in addition to the ones we have discussed so far. We will see more of them
throughout the text. Here, we will discuss equations that are in quadratic form, and rational equations that result in a
quadratic.

Solving Equations in Quadratic Form
Equations in quadratic form are equations with three terms. The first term has a power other than 2. The middle term
has an exponent that is one-half the exponent of the leading term. The third term is a constant. We can solve equations in
this form as if they were quadratic. A few examples of these equations include  x4 − 5x2 + 4 = 0, x6 + 7x3 − 8 = 0, and

 x
2
3 + 4x

1
3 + 2 = 0.  In each one, doubling the exponent of the middle term equals the exponent on the leading term. We

can solve these equations by substituting a variable for the middle term.
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Quadratic Form

If the exponent on the middle term is one-half of the exponent on the leading term, we have an equation in quadratic
form, which we can solve as if it were a quadratic. We substitute a variable for the middle term to solve equations in
quadratic form.

Given an equation quadratic in form, solve it.

1. Identify the exponent on the leading term and determine whether it is double the exponent on the middle
term.

2. If it is, substitute a variable, such as u, for the variable portion of the middle term.

3. Rewrite the equation so that it takes on the standard form of a quadratic.

4. Solve using one of the usual methods for solving a quadratic.

5. Replace the substitution variable with the original term.

6. Solve the remaining equation.

Example 2.59

Solving a Fourth-degree Equation in Quadratic Form

Solve this fourth-degree equation:  3x4 − 2x2 − 1 = 0.

Solution
This equation fits the main criteria, that the power on the leading term is double the power on the middle term.
Next, we will make a substitution for the variable term in the middle. Let  u = x2. Rewrite the equation in u.

3u2 − 2u − 1 = 0

Now solve the quadratic.

3u2 − 2u − 1 = 0
(3u + 1)(u − 1) = 0

Solve each factor and replace the original term for u.

3u + 1 = 0
3u = −1
u = −1

3
x2 = −1

3

x = ±i 1
3

u − 1 = 0
u = 1

x2 = 1
x = ±1

The solutions are  x = ± i 1
3   and  x = ± 1.
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Solve using substitution:  x4 − 8x2 − 9 = 0.

Example 2.60

Solving an Equation in Quadratic Form Containing a Binomial

Solve the equation in quadratic form:  (x + 2)2 + 11(x + 2) − 12 = 0.

Solution
This equation contains a binomial in place of the single variable. The tendency is to expand what is presented.
However, recognizing that it fits the criteria for being in quadratic form makes all the difference in the solving
process. First, make a substitution, letting  u = x + 2. Then rewrite the equation in u.

u2 + 11u − 12 = 0
(u + 12)(u − 1) = 0

Solve using the zero-factor property and then replace u with the original expression.

u + 12 = 0
u = −12

x + 2 = −12
x = −14

The second factor results in

u − 1 = 0
u = 1

x + 2 = 1
x = −1

We have two solutions:  x = −14, x = −1.

Solve:  (x − 5)2 − 4(x − 5) − 21 = 0.

Solving Rational Equations Resulting in a Quadratic
Earlier, we solved rational equations. Sometimes, solving a rational equation results in a quadratic. When this happens, we
continue the solution by simplifying the quadratic equation by one of the methods we have seen. It may turn out that there
is no solution.

Example 2.61

Solving a Rational Equation Leading to a Quadratic

Solve the following rational equation:   −4x
x − 1 + 4

x + 1 = −8
x2 − 1

.

Solution
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We want all denominators in factored form to find the LCD. Two of the denominators cannot be factored further.
However,  x2 −1 = (x + 1)(x − 1). Then, the LCD is  (x + 1)(x − 1). Next, we multiply the whole equation by
the LCD.

(x + 1)(x − 1)⎡⎣
−4x
x − 1 + 4

x + 1
⎤
⎦ = ⎡

⎣
−8

(x + 1)(x − 1)
⎤
⎦(x + 1)(x − 1)

−4x(x + 1) + 4(x − 1) = −8
−4x2 − 4x + 4x − 4 = −8

−4x2 + 4 = 0
−4⎛

⎝x2 − 1⎞
⎠ = 0

−4(x + 1)(x − 1) = 0
x = −1
x = 1

In this case, either solution produces a zero in the denominator in the original equation. Thus, there is no solution.

Solve  3x + 2
x − 2 + 1

x = −2
x2 − 2x

.

Access these online resources for additional instruction and practice with different types of equations.

• Rational Equation with no Solution (http://openstaxcollege.org/l/rateqnosoln)

• Solving equations with rational exponents using reciprocal powers
(http://openstaxcollege.org/l/ratexprecpexp)

• Solving radical equations part 1 of 2 (http://openstaxcollege.org/l/radeqsolvepart1)

• Solving radical equations part 2 of 2 (http://openstaxcollege.org/l/radeqsolvepart2)
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2.6 EXERCISES
Verbal

In a radical equation, what does it mean if a number is
an extraneous solution?

Explain why possible solutions must be checked in
radical equations.

Your friend tries to calculate the value  − 9
3
2 and

keeps getting an ERROR message. What mistake is he or
she probably making?

Explain why  |2x + 5| = −7  has no solutions.

Explain how to change a rational exponent into the
correct radical expression.

Algebraic
For the following exercises, solve the rational exponent
equation. Use factoring where necessary.

x
2
3 = 16

x
3
4 = 27

2x
1
2 − x

1
4 = 0

(x − 1)
3
4 = 8

(x + 1)
2
3 = 4

x
2
3 − 5x

1
3 + 6 = 0

x
7
3 − 3x

4
3 − 4x

1
3 = 0

For the following exercises, solve the following polynomial
equations by grouping and factoring.

x3 + 2x2 − x − 2 = 0

3x3 − 6x2 − 27x + 54 = 0

4y3 − 9y = 0

x3 + 3x2 − 25x − 75 = 0

m3 + m2 − m − 1 = 0

2x5 −14x3 = 0

5x3 + 45x = 2x2 + 18

For the following exercises, solve the radical equation. Be
sure to check all solutions to eliminate extraneous
solutions.

3x − 1 − 2 = 0

x − 7 = 5

x − 1 = x − 7

3t + 5 = 7

t + 1 + 9 = 7

12 − x = x

2x + 3 − x + 2 = 2

3x + 7 + x + 2 = 1

2x + 3 − x + 1 = 1

For the following exercises, solve the equation involving
absolute value.

|3x − 4| = 8

|2x − 3| = −2

|1 − 4x| − 1 = 5

|4x + 1| − 3 = 6

|2x − 1| − 7 = −2

|2x + 1| − 2 = −3

|x + 5| = 0

−|2x + 1| = −3

For the following exercises, solve the equation by
identifying the quadratic form. Use a substitute variable
and find all real solutions by factoring.

x4 − 10x2 + 9 = 0

4(t − 1)2 − 9(t − 1) = −2
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337.

338.

339.

340.

⎛
⎝x2 − 1⎞

⎠
2

+ ⎛
⎝x2 − 1⎞

⎠ − 12 = 0

(x + 1)2 − 8(x + 1) − 9 = 0

(x − 3)2 − 4 = 0

Extensions
For the following exercises, solve for the unknown
variable.

x−2 − x−1 − 12 = 0

|x|2 = x

t25 − t5 + 1 = 0

|x2 + 2x − 36| = 12

Real-World Applications
For the following exercises, use the model for the period of

a pendulum,  T , such that  T = 2π L
g , where the length of

the pendulum is L and the acceleration due to gravity is  g.

If the acceleration due to gravity is 9.8 m/s2 and the
period equals 1 s, find the length to the nearest cm (100 cm
= 1 m).

If the gravity is 32 ft/s2 and the period equals 1 s, find
the length to the nearest in. (12 in. = 1 ft). Round your
answer to the nearest in.

For the following exercises, use a model for body surface

area, BSA, such that  BSA = wh
3600, where w = weight in

kg and h = height in cm.

Find the height of a 72-kg female to the nearest cm
whose  BSA = 1.8.

Find the weight of a 177-cm male to the nearest kg
whose  BSA = 2.1.
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2.7 | Linear Inequalities and Absolute Value Inequalities

Learning Objectives

In this section you will:

2.7.1 Use interval notation.
2.7.2 Use properties of inequalities.
2.7.3 Solve inequalities in one variable algebraically.
2.7.4 Solve absolute value inequalities.

Figure 2.39

It is not easy to make the honor role at most top universities. Suppose students were required to carry a course load of
at least 12 credit hours and maintain a grade point average of 3.5 or above. How could these honor roll requirements be
expressed mathematically? In this section, we will explore various ways to express different sets of numbers, inequalities,
and absolute value inequalities.

Using Interval Notation
Indicating the solution to an inequality such as  x ≥ 4  can be achieved in several ways.

We can use a number line as shown in Figure 2.40. The blue ray begins at  x = 4  and, as indicated by the arrowhead,
continues to infinity, which illustrates that the solution set includes all real numbers greater than or equal to 4.

Figure 2.40

We can use set-builder notation:  {x|x ≥ 4}, which translates to “all real numbers x such that x is greater than or equal to
4.” Notice that braces are used to indicate a set.

The third method is interval notation, in which solution sets are indicated with parentheses or brackets. The solutions to
 x ≥ 4  are represented as  [4, ∞). This is perhaps the most useful method, as it applies to concepts studied later in this
course and to other higher-level math courses.

The main concept to remember is that parentheses represent solutions greater or less than the number, and brackets represent
solutions that are greater than or equal to or less than or equal to the number. Use parentheses to represent infinity or
negative infinity, since positive and negative infinity are not numbers in the usual sense of the word and, therefore, cannot
be “equaled.” A few examples of an interval, or a set of numbers in which a solution falls, are  ⎡⎣−2, 6), or all numbers
between  −2  and  6, including  −2, but not including  6; (−1, 0), all real numbers between, but not including  −1  and  0;
and  (−∞, 1], all real numbers less than and including  1. Table 2.8 outlines the possibilities.
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Set Indicated Set-Builder Notation Interval
Notation

All real numbers between a and b, but not including a
or b

{x|a < x < b} (a, b)

All real numbers greater than a, but not including a {x|x > a} (a, ∞)

All real numbers less than b, but not including b {x|x < b} (−∞, b)

All real numbers greater than a, including a {x|x ≥ a} [a, ∞)

All real numbers less than b, including b {x|x ≤ b} (−∞, b⎤
⎦

All real numbers between a and b, including a {x|a ≤ x < b} ⎡
⎣a, b)

All real numbers between a and b, including b {x|a < x ≤ b} (a, b⎤
⎦

All real numbers between a and b, including a and b {x|a ≤ x ≤ b} ⎡
⎣a, b⎤

⎦

All real numbers less than a or greater than b {x|x < a and x > b} (−∞, a) ∪ (b, ∞)

All real numbers {x|x is all real numbers} (−∞, ∞)

Table 2.8

Example 2.62

Using Interval Notation to Express All Real Numbers Greater Than or Equal to a

Use interval notation to indicate all real numbers greater than or equal to  −2.

Solution
Use a bracket on the left of  −2  and parentheses after infinity:  [−2, ∞). The bracket indicates that  −2  is
included in the set with all real numbers greater than  −2  to infinity.

Use interval notation to indicate all real numbers between and including  −3  and  5.
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Example 2.63

Using Interval Notation to Express All Real Numbers Less Than or Equal to a or
Greater Than or Equal to b

Write the interval expressing all real numbers less than or equal to  −1  or greater than or equal to  1.

Solution
We have to write two intervals for this example. The first interval must indicate all real numbers less than or equal
to 1. So, this interval begins at  − ∞  and ends at  −1, which is written as  (−∞, −1].

The second interval must show all real numbers greater than or equal to  1, which is written as  [1, ∞). However,
we want to combine these two sets. We accomplish this by inserting the union symbol, ∪ , between the two
intervals.

(−∞, −1] ∪ [1, ∞)

Express all real numbers less than  −2  or greater than or equal to 3 in interval notation.

Using the Properties of Inequalities
When we work with inequalities, we can usually treat them similarly to but not exactly as we treat equalities. We can use the
addition property and the multiplication property to help us solve them. The one exception is when we multiply or divide
by a negative number; doing so reverses the inequality symbol.

Properties of Inequalities

Addition Property If a < b,  then a + c < b + c.

Multiplication Property If a < b and c > 0,  then ac < bc.
If a < b and c < 0,  then ac > bc.

These properties also apply to  a ≤ b, a > b, and  a ≥ b.

Example 2.64

Demonstrating the Addition Property

Illustrate the addition property for inequalities by solving each of the following:

(a) x − 15 < 4
(b) 6 ≥ x − 1
(c) x + 7 > 9

Solution
The addition property for inequalities states that if an inequality exists, adding or subtracting the same number on
both sides does not change the inequality.
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a.
x − 15 < 4

x − 15 + 15 < 4 + 15  Add 15 to both sides.
x < 19

b.
6 ≥ x − 1

6 + 1 ≥ x − 1 + 1 Add 1 to both sides.
7 ≥ x

c.
x + 7 > 9

x + 7 − 7 > 9 − 7 Subtract 7 from both sides.
x > 2

Solve:  3x−2 < 1.

Example 2.65

Demonstrating the Multiplication Property

Illustrate the multiplication property for inequalities by solving each of the following:

a. 3x < 6

b. −2x − 1 ≥ 5

c. 5 − x > 10

Solution
a.

3x < 6
1
3(3x) < (6)1

3
x < 2

b.
−2x − 1 ≥ 5

−2x ≥ 6
⎛
⎝−

1
2

⎞
⎠( − 2x) ≥ (6)⎛

⎝−
1
2

⎞
⎠ Multiply by − 1

2.

x ≤ − 3 Reverse the inequality.

c.
5 − x > 10

−x > 5
( − 1)( − x) > (5)( − 1) Multiply by − 1.

x < − 5 Reverse the inequality.
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2.52

Solve:  4x + 7 ≥ 2x − 3.

Solving Inequalities in One Variable Algebraically
As the examples have shown, we can perform the same operations on both sides of an inequality, just as we do with
equations; we combine like terms and perform operations. To solve, we isolate the variable.

Example 2.66

Solving an Inequality Algebraically

Solve the inequality:  13 − 7x ≥ 10x − 4.

Solution
Solving this inequality is similar to solving an equation up until the last step.

13 − 7x ≥ 10x − 4
13 − 17x ≥ −4 Move variable terms to one side of the inequality.

−17x ≥ −17 Isolate the variable term.
x ≤ 1 Dividing both sides by −17 reverses the inequality.

The solution set is given by the interval  (−∞, 1], or all real numbers less than and including 1.

Solve the inequality and write the answer using interval notation:  − x + 4 < 1
2x + 1.

Example 2.67

Solving an Inequality with Fractions

Solve the following inequality and write the answer in interval notation:  − 3
4x ≥ − 5

8 + 2
3x.

Solution
We begin solving in the same way we do when solving an equation.

−3
4x ≥ − 5

8 + 2
3x

−3
4x − 2

3x ≥ − 5
8 Put variable terms on one side.

− 9
12x − 8

12x ≥ − 5
8 Write fractions with common denominator.

−17
12x ≥ − 5

8
x ≤ − 5

8
⎛
⎝−

12
17

⎞
⎠ Multiplying by a negative number reverses the inequality.

x ≤ 15
34
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The solution set is the interval  ⎛⎝−∞, 15
34

⎤
⎦.

Solve the inequality and write the answer in interval notation:  − 5
6x ≤ 3

4 + 8
3x.

Understanding Compound Inequalities
A compound inequality includes two inequalities in one statement. A statement such as  4 < x ≤ 6 means  4 < x  and
 x ≤ 6. There are two ways to solve compound inequalities: separating them into two separate inequalities or leaving the
compound inequality intact and performing operations on all three parts at the same time. We will illustrate both methods.

Example 2.68

Solving a Compound Inequality

Solve the compound inequality:  3 ≤ 2x + 2 < 6.

Solution
The first method is to write two separate inequalities:  3 ≤ 2x + 2  and  2x + 2 < 6. We solve them
independently.

3 ≤ 2x + 2 and 2x + 2 < 6
1 ≤ 2x 2x < 4
1
2 ≤ x x < 2

Then, we can rewrite the solution as a compound inequality, the same way the problem began.

1
2 ≤ x < 2

In interval notation, the solution is written as  ⎡⎣1
2, 2⎞

⎠.

The second method is to leave the compound inequality intact, and perform solving procedures on the three parts
at the same time.

3 ≤ 2x + 2 < 6
1 ≤ 2x < 4 Isolate the variable term, and subtract 2 from all three parts.
1
2 ≤ x < 2 Divide through all three parts by 2.

We get the same solution:  ⎡⎣1
2, 2⎞

⎠.

Solve the compound inequality:  4 < 2x − 8 ≤ 10.
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Example 2.69

Solving a Compound Inequality with the Variable in All Three Parts

Solve the compound inequality with variables in all three parts:  3 + x > 7x − 2 > 5x − 10.

Solution
Let's try the first method. Write two inequalities:

3 + x > 7x − 2 and 7x − 2 > 5x − 10
3 > 6x − 2 2x − 2 > −10
5 > 6x 2x > −8
5
6 > x x > −4

x < 5
6 −4 < x

The solution set is  −4 < x < 5
6   or in interval notation  ⎛⎝−4, 5

6
⎞
⎠. Notice that when we write the solution in

interval notation, the smaller number comes first. We read intervals from left to right, as they appear on a number
line. See Figure 2.41.

Figure 2.41

Solve the compound inequality:  3y < 4 − 5y < 5 + 3y.

Solving Absolute Value Inequalities
As we know, the absolute value of a quantity is a positive number or zero. From the origin, a point located at  (−x, 0) 
has an absolute value of  x, as it is x units away. Consider absolute value as the distance from one point to another point.
Regardless of direction, positive or negative, the distance between the two points is represented as a positive number or
zero.

An absolute value inequality is an equation of the form

|A| < B,  |A| ≤ B,   |A| > B,  or   |A| ≥ B,

Where A, and sometimes B, represents an algebraic expression dependent on a variable x. Solving the inequality means
finding the set of all  x -values that satisfy the problem. Usually this set will be an interval or the union of two intervals and
will include a range of values.

There are two basic approaches to solving absolute value inequalities: graphical and algebraic. The advantage of the
graphical approach is we can read the solution by interpreting the graphs of two equations. The advantage of the algebraic
approach is that solutions are exact, as precise solutions are sometimes difficult to read from a graph.

Suppose we want to know all possible returns on an investment if we could earn some amount of money within $200 of
$600. We can solve algebraically for the set of x-values such that the distance between  x  and 600 is less than 200. We
represent the distance between  x  and 600 as  |x − 600|, and therefore,  |x − 600| ≤ 200  or

−200 ≤ x − 600 ≤ 200
−200 + 600 ≤ x − 600 + 600 ≤ 200 + 600

400 ≤ x ≤ 800
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This means our returns would be between $400 and $800.

To solve absolute value inequalities, just as with absolute value equations, we write two inequalities and then solve them
independently.

Absolute Value Inequalities

For an algebraic expression X, and  k > 0, an absolute value inequality is an inequality of the form

|X| < k is equivalent to − k < X < k
|X| > k is equivalent to X < − k or X > k

These statements also apply to  |X| ≤ k  and  |X| ≥ k.

Example 2.70

Determining a Number within a Prescribed Distance

Describe all values  x within a distance of 4 from the number 5.

Solution
We want the distance between  x  and 5 to be less than or equal to 4. We can draw a number line, such as in Figure
2.42, to represent the condition to be satisfied.

Figure 2.42

The distance from  x  to 5 can be represented using an absolute value symbol,  |x − 5|. Write the values of  x  that
satisfy the condition as an absolute value inequality.

|x − 5| ≤ 4

We need to write two inequalities as there are always two solutions to an absolute value equation.

x − 5 ≤ 4 and x − 5 ≥ − 4
x ≤ 9 x ≥ 1

If the solution set is  x ≤ 9  and  x ≥ 1, then the solution set is an interval including all real numbers between and
including 1 and 9.

So  |x − 5| ≤ 4  is equivalent to  [1, 9]  in interval notation.

Describe all x-values within a distance of 3 from the number 2.

Example 2.71
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Solving an Absolute Value Inequality

Solve |x − 1| ≤ 3 .

Solution
|x − 1| ≤ 3

−3 ≤ x − 1 ≤ 3

−2 ≤ x ≤ 4

[−2, 4]

Example 2.72

Using a Graphical Approach to Solve Absolute Value Inequalities

Given the equation y = − 1
2|4x − 5| + 3, determine the x-values for which the y-values are negative.

Solution

We are trying to determine where  y < 0, which is when  − 1
2|4x − 5| + 3 < 0. We begin by isolating the

absolute value.

− 1
2|4x − 5| < − 3 Multiply both sides by –2, and reverse the inequality.

|4x − 5| > 6

Next, we solve for the equality |4x − 5| = 6.

4x − 5 = 6 4x − 5 = − 6
4x = 11 or 4x = − 1
x = 11

4 x = − 1
4

Now, we can examine the graph to observe where the y-values are negative. We observe where the branches are
below the x-axis. Notice that it is not important exactly what the graph looks like, as long as we know that it
crosses the horizontal axis at  x = − 1

4   and  x = 11
4 , and that the graph opens downward. See Figure 2.43.
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Figure 2.43

Solve  − 2|k − 4| ≤ − 6.

Access these online resources for additional instruction and practice with linear inequalities and absolute value
inequalities.

• Interval notation (http://openstaxcollege.org/l/intervalnotn)

• How to solve linear inequalities (http://openstaxcollege.org/l/solvelinineq)

• How to solve an inequality (http://openstaxcollege.org/l/solveineq)

• Absolute value equations (http://openstaxcollege.org/l/absvaleq)

• Compound inequalities (http://openstaxcollege.org/l/compndineqs)

• Absolute value inequalities (http://openstaxcollege.org/l/absvalineqs)
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2.7 EXERCISES
Verbal

When solving an inequality, explain what happened
from Step 1 to Step 2:

Step 1 −2x > 6
Step 2 x < − 3

When solving an inequality, we arrive at:

x + 2 < x + 3
2 < 3

Explain what our solution set is.

When writing our solution in interval notation, how
do we represent all the real numbers?

When solving an inequality, we arrive at:

x + 2 > x + 3
2 > 3

Explain what our solution set is.

Describe how to graph  y = |x − 3|

Algebraic
For the following exercises, solve the inequality. Write your
final answer in interval notation.

4x − 7 ≤ 9

3x + 2 ≥ 7x − 1

−2x + 3 > x − 5

4(x + 3) ≥ 2x − 1

−1
2x ≤ −5

4 + 2
5x

−5(x − 1) + 3 > 3x − 4 − 4x

−3(2x + 1) > −2(x + 4)

x + 3
8 − x + 5

5 ≥ 3
10

x − 1
3 + x + 2

5 ≤ 3
5

For the following exercises, solve the inequality involving
absolute value. Write your final answer in interval notation.

|x + 9| ≥ −6

|2x + 3| < 7

|3x − 1| > 11

|2x + 1| + 1 ≤ 6

|x − 2| + 4 ≥ 10

|−2x + 7| ≤ 13

|x − 7| < −4

|x − 20| > −1

|x − 3
4 | < 2

For the following exercises, describe all the x-values within
or including a distance of the given values.

Distance of 5 units from the number 7

Distance of 3 units from the number 9

Distance of10 units from the number 4

Distance of 11 units from the number 1

For the following exercises, solve the compound inequality.
Express your answer using inequality signs, and then write
your answer using interval notation.

−4 < 3x + 2 ≤ 18

3x + 1 > 2x − 5 > x − 7

3y < 5 − 2y < 7 + y

2x − 5 < −11    or    5x + 1 ≥ 6

x + 7 < x + 2

Graphical
For the following exercises, graph the function. Observe
the points of intersection and shade the x-axis representing
the solution set to the inequality. Show your graph and
write your final answer in interval notation.

|x − 1| > 2

|x + 3| ≥ 5

|x + 7| ≤ 4

|x − 2| < 7

|x − 2| < 0
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For the following exercises, graph both straight lines (left-
hand side being y1 and right-hand side being y2) on the
same axes. Find the point of intersection and solve the
inequality by observing where it is true comparing the y-
values of the lines.

x + 3 < 3x − 4

x − 2 > 2x + 1

x + 1 > x + 4

1
2x + 1 > 1

2x − 5

4x + 1 < 1
2x + 3

Numeric
For the following exercises, write the set in interval
notation.

{x|−1 < x < 3}

{x|x ≥ 7}

{x|x < 4}

{ x| x is all real numbers}

For the following exercises, write the interval in set-builder
notation.

(−∞, 6)

(4, + ∞)

[−3, 5)

[−4, 1] ∪ [9, ∞)

For the following exercises, write the set of numbers
represented on the number line in interval notation.

Technology
For the following exercises, input the left-hand side of the
inequality as a Y1 graph in your graphing utility. Enter y2
= the right-hand side. Entering the absolute value of an
expression is found in the MATH menu, Num, 1:abs(. Find

the points of intersection, recall (2nd CALC 5:intersection,
1st curve, enter, 2nd curve, enter, guess, enter). Copy a
sketch of the graph and shade the x-axis for your solution
set to the inequality. Write final answers in interval
notation.

|x + 2| − 5 < 2

−1
2 |x + 2| < 4

|4x + 1| − 3 > 2

|x − 4| < 3

|x + 2| ≥ 5

Extensions

Solve  |3x + 1| = |2x + 3|

Solve x2 − x > 12

x − 5
x + 7 ≤ 0, x ≠ −7

p = − x2 + 130x − 3000  is a profit formula for a

small business. Find the set of x-values that will keep this
profit positive.

Real-World Applications

In chemistry the volume for a certain gas is given by
 V = 20T , where V is measured in cc and T is temperature
in ºC. If the temperature varies between 80ºC and 120ºC,
find the set of volume values.

A basic cellular package costs $20/mo. for 60 min of
calling, with an additional charge of $.30/min beyond that
time.. The cost formula would be  C = $20 + .30(x − 60). 
If you have to keep your bill lower than $50, what is the
maximum calling minutes you can use?
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absolute value equation

area

Cartesian coordinate system

completing the square

complex conjugate

complex number

complex plane

compound inequality

conditional equation

discriminant

distance formula

equation in two variables

equations in quadratic form

extraneous solutions

graph in two variables

identity equation

imaginary number

inconsistent equation

intercepts

interval

interval notation

linear equation

linear inequality

midpoint formula

ordered pair

origin

CHAPTER 2 REVIEW

KEY TERMS
an equation in which the variable appears in absolute value bars, typically with two solutions,

one accounting for the positive expression and one for the negative expression

in square units, the area formula used in this section is used to find the area of any two-dimensional rectangular
region:  A = LW

a grid system designed with perpendicular axes invented by René Descartes

a process for solving quadratic equations in which terms are added to or subtracted from both
sides of the equation in order to make one side a perfect square

a complex number containing the same terms as another complex number, but with the opposite
operator. Multiplying a complex number by its conjugate yields a real number.

the sum of a real number and an imaginary number; the standard form is  a + bi, where a is the real
part and  b  is the complex part.

the coordinate plane in which the horizontal axis represents the real component of a complex number, and
the vertical axis represents the imaginary component, labeled i.

a problem or a statement that includes two inequalities

an equation that is true for some values of the variable

the expression under the radical in the quadratic formula that indicates the nature of the solutions, real or
complex, rational or irrational, single or double roots.

a formula that can be used to find the length of a line segment if the endpoints are known

a mathematical statement, typically written in x and y, in which two expressions are equal

equations with a power other than 2 but with a middle term with an exponent that is one-
half the exponent of the leading term

any solutions obtained that are not valid in the original equation

the graph of an equation in two variables, which is always shown in two variables in the two-
dimensional plane

an equation that is true for all values of the variable

the square root of  −1  :  i = −1.

an equation producing a false result

the points at which the graph of an equation crosses the x-axis and the y-axis

an interval describes a set of numbers within which a solution falls

a mathematical statement that describes a solution set and uses parentheses or brackets to indicate
where an interval begins and ends

an algebraic equation in which each term is either a constant or the product of a constant and the first
power of a variable

similar to a linear equation except that the solutions will include sets of numbers

a formula to find the point that divides a line segment into two parts of equal length

a pair of numbers indicating horizontal displacement and vertical displacement from the origin; also known
as a coordinate pair,  (x, y)

the point where the two axes cross in the center of the plane, described by the ordered pair  (0, 0)
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perimeter

polynomial equation

Pythagorean Theorem

quadrant

quadratic equation

quadratic formula

radical equation

rational equation

slope

solution set

square root property

volume

x-axis

x-coordinate

x-intercept

y-axis

y-coordinate

y-intercept

zero-product property

in linear units, the perimeter formula is used to find the linear measurement, or outside length and width, around
a two-dimensional regular object; for a rectangle:  P = 2L + 2W

an equation containing a string of terms including numerical coefficients and variables raised to
whole-number exponents

a theorem that states the relationship among the lengths of the sides of a right triangle, used to
solve right triangle problems

one quarter of the coordinate plane, created when the axes divide the plane into four sections

an equation containing a second-degree polynomial; can be solved using multiple methods

a formula that will solve all quadratic equations

an equation containing at least one radical term where the variable is part of the radicand

an equation consisting of a fraction of polynomials

the change in y-values over the change in x-values

the set of all solutions to an equation

one of the methods used to solve a quadratic equation, in which the  x2   term is isolated so that the
square root of both sides of the equation can be taken to solve for x

in cubic units, the volume measurement includes length, width, and depth:  V = LWH

the common name of the horizontal axis on a coordinate plane; a number line increasing from left to right

the first coordinate of an ordered pair, representing the horizontal displacement and direction from the
origin

the point where a graph intersects the x-axis; an ordered pair with a y-coordinate of zero

the common name of the vertical axis on a coordinate plane; a number line increasing from bottom to top

the second coordinate of an ordered pair, representing the vertical displacement and direction from the
origin

a point where a graph intercepts the y-axis; an ordered pair with an x-coordinate of zero

the property that formally states that multiplication by zero is zero, so that each factor of a
quadratic equation can be set equal to zero to solve equations

KEY EQUATIONS

quadratic formula x = −b ± b2 − 4ac
2a

KEY CONCEPTS
2.1 The Rectangular Coordinate Systems and Graphs

• We can locate, or plot, points in the Cartesian coordinate system using ordered pairs, which are defined as
displacement from the x-axis and displacement from the y-axis. See Example 2.1.

• An equation can be graphed in the plane by creating a table of values and plotting points. See Example 2.2.

• Using a graphing calculator or a computer program makes graphing equations faster and more accurate. Equations
usually have to be entered in the form y=_____. See Example 2.3.

• Finding the x- and y-intercepts can define the graph of a line. These are the points where the graph crosses the axes.
See Example 2.4.

• The distance formula is derived from the Pythagorean Theorem and is used to find the length of a line segment. See
Example 2.5 and Example 2.6.
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• The midpoint formula provides a method of finding the coordinates of the midpoint dividing the sum of the x-
coordinates and the sum of the y-coordinates of the endpoints by 2. See Example 2.7 and Example 2.8.

2.2 Linear Equations in One Variable

• We can solve linear equations in one variable in the form  ax + b = 0  using standard algebraic properties. See
Example 2.9 and Example 2.10.

• A rational expression is a quotient of two polynomials. We use the LCD to clear the fractions from an equation. See
Example 2.11 and Example 2.12.

• All solutions to a rational equation should be verified within the original equation to avoid an undefined term, or
zero in the denominator. See Example 2.13 and Example 2.14.

• Given two points, we can find the slope of a line using the slope formula. See Example 2.15.

• We can identify the slope and y-intercept of an equation in slope-intercept form. See Example 2.16.

• We can find the equation of a line given the slope and a point. See Example 2.17.

• We can also find the equation of a line given two points. Find the slope and use the point-slope formula. See
Example 2.19.

• The standard form of a line has no fractions. See Example 2.20.

• Horizontal lines have a slope of zero and are defined as  y = c, where c is a constant.

• Vertical lines have an undefined slope (zero in the denominator), and are defined as  x = c, where c is a constant.
See Example 2.21.

• Parallel lines have the same slope and different y-intercepts. See Example 2.23.

• Perpendicular lines have slopes that are negative reciprocals of each other unless one is horizontal and the other is
vertical. See Example 2.24.

2.3 Models and Applications

• A linear equation can be used to solve for an unknown in a number problem. See Example 2.25.

• Applications can be written as mathematical problems by identifying known quantities and assigning a variable to
unknown quantities. See Example 2.26.

• There are many known formulas that can be used to solve applications. Distance problems, for example, are solved
using the  d = rt  formula. See Example 2.27.

• Many geometry problems are solved using the perimeter formula  P = 2L + 2W, the area formula  A = LW, or
the volume formula  V = LWH.  See Example 2.28, Example 2.29, and Example 2.30.

2.4 Complex Numbers

• The square root of any negative number can be written as a multiple of  i.  See Example 2.31.

• To plot a complex number, we use two number lines, crossed to form the complex plane. The horizontal axis is the
real axis, and the vertical axis is the imaginary axis. See Example 2.32.

• Complex numbers can be added and subtracted by combining the real parts and combining the imaginary parts. See
Example 2.33.

• Complex numbers can be multiplied and divided.

◦ To multiply complex numbers, distribute just as with polynomials. See Example 2.34 and Example 2.35.

◦ To divide complex numbers, multiply both numerator and denominator by the complex conjugate of the
denominator to eliminate the complex number from the denominator. See Example 2.36 and Example
2.37.

• The powers of  i  are cyclic, repeating every fourth one. See Example 2.38.
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2.5 Quadratic Equations

• Many quadratic equations can be solved by factoring when the equation has a leading coefficient of 1 or if the
equation is a difference of squares. The zero-factor property is then used to find solutions. See Example 2.39,
Example 2.40, and Example 2.41.

• Many quadratic equations with a leading coefficient other than 1 can be solved by factoring using the grouping
method. See Example 2.42 and Example 2.43.

• Another method for solving quadratics is the square root property. The variable is squared. We isolate the squared
term and take the square root of both sides of the equation. The solution will yield a positive and negative solution.
See Example 2.44 and Example 2.45.

• Completing the square is a method of solving quadratic equations when the equation cannot be factored. See
Example 2.46.

• A highly dependable method for solving quadratic equations is the quadratic formula, based on the coefficients and
the constant term in the equation. See Example 2.47.

• The discriminant is used to indicate the nature of the roots that the quadratic equation will yield: real or complex,
rational or irrational, and how many of each. See Example 2.48.

• The Pythagorean Theorem, among the most famous theorems in history, is used to solve right-triangle problems and
has applications in numerous fields. Solving for the length of one side of a right triangle requires solving a quadratic
equation. See Example 2.49.

2.6 Other Types of Equations

• Rational exponents can be rewritten several ways depending on what is most convenient for the problem. To solve,
both sides of the equation are raised to a power that will render the exponent on the variable equal to 1. See
Example 2.51, Example 2.52, and Example 2.53.

• Factoring extends to higher-order polynomials when it involves factoring out the GCF or factoring by grouping. See
Example 2.54 and Example 2.55.

• We can solve radical equations by isolating the radical and raising both sides of the equation to a power that matches
the index. See Example 2.56 and Example 2.57.

• To solve absolute value equations, we need to write two equations, one for the positive value and one for the
negative value. See Example 2.58.

• Equations in quadratic form are easy to spot, as the exponent on the first term is double the exponent on the second
term and the third term is a constant. We may also see a binomial in place of the single variable. We use substitution
to solve. See Example 2.59 and Example 2.60.

• Solving a rational equation may also lead to a quadratic equation or an equation in quadratic form. See Example
2.61.

2.7 Linear Inequalities and Absolute Value Inequalities

• Interval notation is a method to indicate the solution set to an inequality. Highly applicable in calculus, it is a system
of parentheses and brackets that indicate what numbers are included in a set and whether the endpoints are included
as well. See Table 2.8 and Example 2.63.

• Solving inequalities is similar to solving equations. The same algebraic rules apply, except for one: multiplying or
dividing by a negative number reverses the inequality. See Example 2.64, Example 2.65, Example 2.66, and
Example 2.67.

• Compound inequalities often have three parts and can be rewritten as two independent inequalities. Solutions are
given by boundary values, which are indicated as a beginning boundary or an ending boundary in the solutions to
the two inequalities. See Example 2.68 and Example 2.69.

• Absolute value inequalities will produce two solution sets due to the nature of absolute value. We solve by writing
two equations: one equal to a positive value and one equal to a negative value. See Example 2.70 and Example
2.71.
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• Absolute value inequalities can also be solved by graphing. At least we can check the algebraic solutions by
graphing, as we cannot depend on a visual for a precise solution. See Example 2.72.

CHAPTER 2 REVIEW EXERCISES
The Rectangular Coordinate Systems and Graphs

For the following exercises, find the x-intercept and the y-
intercept without graphing.

405. 4x − 3y = 12

406. 2y − 4 = 3x

For the following exercises, solve for y in terms of x,
putting the equation in slope–intercept form.

407. 5x = 3y − 12

408. 2x − 5y = 7

For the following exercises, find the distance between the
two points.

409. (−2, 5)(4, −1)

410. (−12, −3)(−1, 5)

411. Find the distance between the two points  (−71,432) 
and  (511,218)  using your calculator, and round your
answer to the nearest thousandth.

For the following exercises, find the coordinates of the
midpoint of the line segment that joins the two given points.

412. (−1, 5) and (4, 6)

413. (−13, 5) and (17, 18)

For the following exercises, construct a table and graph the
equation by plotting at least three points.

414. y = 1
2x + 4

415. 4x − 3y = 6

Linear Equations in One Variable

For the following exercises, solve for  x.

416. 5x + 2 = 7x − 8

417. 3(x + 2) − 10 = x + 4

418. 7x − 3 = 5

419. 12 − 5(x + 1) = 2x − 5

420. 2x
3 − 3

4 = x
6 + 21

4

For the following exercises, solve for  x.  State all x-values
that are excluded from the solution set.

421. x
x2 − 9

+ 4
x + 3 = 3

x2 − 9
x ≠ 3, −3

422. 1
2 + 2

x = 3
4

For the following exercises, find the equation of the line
using the point-slope formula.

423. Passes through these two points:  (−2, 1),(4, 2).

424. Passes through the point  (−3, 4)  and has a slope of

 −1
3 .

425. Passes through the point  (−3, 4)  and is parallel to

the graph  y = 2
3x + 5.

426. Passes through these two points:  (5, 1),(5, 7).

Models and Applications

For the following exercises, write and solve an equation to
answer each question.

427. The number of males in the classroom is five more
than three times the number of females. If the total number
of students is 73, how many of each gender are in the class?

428. A man has 72 ft. of fencing to put around a
rectangular garden. If the length is 3 times the width, find
the dimensions of his garden.

429. A truck rental is $25 plus $.30/mi. Find out how
many miles Ken traveled if his bill was $50.20.

Complex Numbers

For the following exercises, use the quadratic equation to
solve.
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430. x2 − 5x + 9 = 0

431. 2x2 + 3x + 7 = 0

For the following exercises, name the horizontal
component and the vertical component.

432. 4 − 3i

433. −2 − i

For the following exercises, perform the operations
indicated.

434. (9 − i) − (4 − 7i)

435. (2 + 3i) − (−5 − 8i)

436. 2 −75 + 3 25

437. −16 + 4 −9

438. −6i(i − 5)

439. (3 − 5i)2

440. −4 · −12

441. −2⎛
⎝ −8 − 5⎞

⎠

442. 2
5 − 3i

443. 3 + 7i
i

Quadratic Equations

For the following exercises, solve the quadratic equation by
factoring.

444. 2x2 − 7x − 4 = 0

445. 3x2 + 18x + 15 = 0

446.  25x2 − 9 = 0

447.  7x2 − 9x = 0

For the following exercises, solve the quadratic equation by
using the square-root property.

448. x2 = 49

449. (x − 4)2 = 36

For the following exercises, solve the quadratic equation by
completing the square.

450. x2 + 8x − 5 = 0

451. 4x2 + 2x − 1 = 0

For the following exercises, solve the quadratic equation by
using the quadratic formula. If the solutions are not real,
state No real solution.

452. 2x2 − 5x + 1 = 0

453. 15x2 − x − 2 = 0

For the following exercises, solve the quadratic equation by
the method of your choice.

454. (x − 2)2 = 16

455. x2 = 10x + 3

Other Types of Equations

For the following exercises, solve the equations.

456. x
3
2 = 27

457. x
1
2 − 4x

1
4 = 0

458. 4x3 + 8x2 − 9x − 18 = 0

459. 3x5 − 6x3 = 0

460. x + 9 = x − 3

461. 3x + 7 + x + 2 = 1

462. |3x − 7| = 5

463. |2x + 3| − 5 = 9
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Linear Inequalities and Absolute Value
Inequalities

For the following exercises, solve the inequality. Write your
final answer in interval notation.

464. 5x − 8 ≤ 12

465. −2x + 5 > x − 7

466. x − 1
3 + x + 2

5 ≤ 3
5

467. |3x + 2| + 1 ≤ 9

468. |5x − 1| > 14

469. |x − 3| < −4

For the following exercises, solve the compound inequality.
Write your answer in interval notation.

470. −4 < 3x + 2 ≤ 18

471. 3y < 1 − 2y < 5 + y

For the following exercises, graph as described.

472. Graph the absolute value function and graph the
constant function. Observe the points of intersection and
shade the x-axis representing the solution set to the
inequality. Show your graph and write your final answer in
interval notation.

|x + 3| ≥ 5

473. Graph both straight lines (left-hand side being y1
and right-hand side being y2) on the same axes. Find the
point of intersection and solve the inequality by observing
where it is true comparing the y-values of the lines. See the
interval where the inequality is true.

x + 3 < 3x − 4

CHAPTER 2 PRACTICE TEST
474. Graph the following:  2y = 3x + 4.

475. Find the x- and y-intercepts for the following:

476. Find the x- and y-intercepts of this equation, and
sketch the graph of the line using just the intercepts plotted.

3x − 4y = 12

Find the exact distance between  (5, −3)  and  (−2, 8). 
Find the coordinates of the midpoint of the line segment
joining the two points.

477. Write the interval notation for the set of numbers
represented by  {x|x ≤ 9}.

478. Solve for x:  5x + 8 = 3x − 10.

479. Solve for x:  3(2x − 5) − 3(x − 7) = 2x − 9.
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480. Solve for x:  x2 + 1 = 4
x

481. Solve for x:   5
x + 4 = 4 + 3

x − 2.

482. The perimeter of a triangle is 30 in. The longest side
is 2 less than 3 times the shortest side and the other side is
2 more than twice the shortest side. Find the length of each
side.

483. Solve for x. Write the answer in simplest radical
form.

x2

3 − x = −1
2

484. Solve:  3x − 8 ≤ 4.

485. Solve:  |2x + 3| < 5.

486. Solve:  |3x − 2| ≥ 4.

For the following exercises, find the equation of the line
with the given information.

487. Passes through the points  (−4, 2)  and  (5, −3).

488. Has an undefined slope and passes through the point
 (4, 3).

489. Passes through the point  (2, 1)  and is perpendicular

to  y = −2
5 x + 3.

490. Add these complex numbers:  (3 − 2i) + (4 − i).

491. Simplify:   −4 + 3 −16.

492. Multiply:  5i(5 − 3i).

493. Divide:   4 − i
2 + 3i.

494. Solve this quadratic equation and write the two
complex roots in  a + bi  form:  x2 − 4x + 7 = 0.

495. Solve:  (3x − 1)2 − 1 = 24.

496. Solve:  x2 − 6x = 13.

497. Solve:  4x2 − 4x − 1 = 0

498. Solve:

x − 7 = x − 7

499. Solve:  2 + 12 − 2x = x

500. Solve:  (x − 1)
2
3 = 9

For the following exercises, find the real solutions of each
equation by factoring.

501. 2x3 − x2 − 8x + 4 = 0

502. (x + 5)2 − 3(x + 5) − 4 = 0
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3 | FUNCTIONS

Figure 3.1 Standard and Poor’s Index with dividends reinvested (credit "bull": modification of work by Prayitno Hadinata;
credit "graph": modification of work by MeasuringWorth)

Chapter Outline
3.1 Functions and Function Notation

3.2 Domain and Range

3.3 Rates of Change and Behavior of Graphs

3.4 Composition of Functions

3.5 Transformation of Functions

3.6 Absolute Value Functions

3.7 Inverse Functions

Introduction
Toward the end of the twentieth century, the values of stocks of Internet and technology companies rose dramatically. As a
result, the Standard and Poor’s stock market average rose as well. Figure 3.1 tracks the value of that initial investment of
just under $100 over the 40 years. It shows that an investment that was worth less than $500 until about 1995 skyrocketed
up to about $1100 by the beginning of 2000. That five-year period became known as the “dot-com bubble” because so many
Internet startups were formed. As bubbles tend to do, though, the dot-com bubble eventually burst. Many companies grew
too fast and then suddenly went out of business. The result caused the sharp decline represented on the graph beginning at
the end of 2000.

Notice, as we consider this example, that there is a definite relationship between the year and stock market average. For
any year we choose, we can determine the corresponding value of the stock market average. In this chapter, we will explore
these kinds of relationships and their properties.
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3.1 | Functions and Function Notation

Learning Objectives

In this section, you will:

3.1.1 Determine whether a relation represents a function.
3.1.2 Find the value of a function.
3.1.3 Determine whether a function is one-to-one.
3.1.4 Use the vertical line test to identify functions.
3.1.5 Graph the functions listed in the library of functions.

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing child
increases with time. In each case, one quantity depends on another. There is a relationship between the two quantities that
we can describe, analyze, and use to make predictions. In this section, we will analyze such relationships.

Determining Whether a Relation Represents a Function
A relation is a set of ordered pairs. The set consisting of the first components of each ordered pair is called the domain and
the set consisting of the second components of each ordered pair is called the range. Consider the following set of ordered
pairs. The first numbers in each pair are the first five natural numbers. The second number in each pair is twice that of the
first.

{(1,  2),  (2,  4),  (3,  6),  (4,  8),  (5,  10)}

The domain is {1,  2,  3,  4,  5}. The range is {2,  4,  6,  8,  10}.

Note that each value in the domain is also known as an input value, or independent variable, and is often labeled with the
lowercase letter  x. Each value in the range is also known as an output value, or dependent variable, and is often labeled
lowercase letter  y.

A function   f   is a relation that assigns a single element in the range to each element in the domain. In other words, no x-

values are repeated. For our example that relates the first five natural numbers to numbers double their values, this relation
is a function because each element in the domain, {1,  2,  3,  4,  5}, is paired with exactly one element in the range,
{2,  4,  6,  8,  10}.

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers. It would
appear as

{(odd,  1),  (even,  2),  (odd,  3),  (even,  4),  (odd,  5)}

Notice that each element in the domain, {even, odd} is not paired with exactly one element in the range, {1,  2,  3,  4,  5}.
For example, the term “odd” corresponds to three values from the domain, {1,  3,  5} and the term “even” corresponds to
two values from the range, {2,  4}. This violates the definition of a function, so this relation is not a function.

Figure 3.2 compares relations that are functions and not functions.
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Figure 3.2 (a) This relationship is a function because each input is associated with a single output. Note that input  q  and  r 
both give output  n.  (b) This relationship is also a function. In this case, each input is associated with a single output. (c) This
relationship is not a function because input   q  is associated with two different outputs.

Function

A function is a relation in which each possible input value leads to exactly one output value. We say “the output is a
function of the input.”

The input values make up the domain, and the output values make up the range.

Given a relationship between two quantities, determine whether the relationship is a function.

1. Identify the input values.

2. Identify the output values.

3. If each input value leads to only one output value, classify the relationship as a function. If any input value
leads to two or more outputs, do not classify the relationship as a function.

Example 3.1

Determining If Menu Price Lists Are Functions

The coffee shop menu, shown in Figure 3.3 consists of items and their prices.

a. Is price a function of the item?

b. Is the item a function of the price?

Figure 3.3

Solution
a. Let’s begin by considering the input as the items on the menu. The output values are then the prices.

Each item on the menu has only one price, so the price is a function of the item.
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b. Two items on the menu have the same price. If we consider the prices to be the input values and the
items to be the output, then the same input value could have more than one output associated with it. See
Figure 3.4.

Figure 3.4

Therefore, the item is a not a function of price.

Example 3.2

Determining If Class Grade Rules Are Functions

In a particular math class, the overall percent grade corresponds to a grade-point average. Is grade-point average
a function of the percent grade? Is the percent grade a function of the grade-point average? Table 3.1 shows a
possible rule for assigning grade points.

Percent
grade 0–56 57–61 62–66 67–71 72–77 78–86 87–91 92–100

Grade-point
average 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Table 3.1

Solution
For any percent grade earned, there is an associated grade-point average, so the grade-point average is a function
of the percent grade. In other words, if we input the percent grade, the output is a specific grade point average.

In the grading system given, there is a range of percent grades that correspond to the same grade-point average.
For example, students who receive a grade point average of 3.0 could have a variety of percent grades ranging
from 78 all the way to 86. Thus, percent grade is not a function of grade-point average.
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3.1 Table 3.2[1] lists the five greatest baseball players of all time in order of rank.

Player Rank

Babe Ruth 1

Willie Mays 2

Ty Cobb 3

Walter Johnson 4

Hank Aaron 5

Table 3.2

a. Is the rank a function of the player name?

b. Is the player name a function of the rank?

Using Function Notation
Once we determine that a relationship is a function, we need to display and define the functional relationships so that we
can understand and use them, and sometimes also so that we can program them into graphing calculators and computers.
There are various ways of representing functions. A standard function notation is one representation that facilitates working
with functions.

To represent “height is a function of age,” we start by identifying the descriptive variables h for height and a for age. The
letters   f ,  g, and  h  are often used to represent functions just as we use x,  y, and z to represent numbers and A,  B, and

C to represent sets.

h is f  of a We name the function f ;  height is a function of age.
h = f (a) We use parentheses to indicate the function input. 
f (a) We name the function f ;  the expression is read as “ f  of a.”

Remember, we can use any letter to name the function; the notation  h(a)  shows us that  h  depends on  a. The value  a must
be put into the function  h  to get a result. The parentheses indicate that age is input into the function; they do not indicate
multiplication.

We can also give an algebraic expression as the input to a function. For example   f (a + b) means “first add a and b, and the

result is the input for the function f.” The operations must be performed in this order to obtain the correct result.

Function Notation

The notation  y = f (x)  defines a function named   f . This is read as  “y  is a function of  x.” The letter  x  represents the

input value, or independent variable. The letter  y,  or   f (x),   represents the output value, or dependent variable.

Example 3.3

1. http://www.baseball-almanac.com/legendary/lisn100.shtml. Accessed 3/24/2014.
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3.2

Using Function Notation for Days in a Month

Use function notation to represent a function whose input is the name of a month and output is the number of
days in that month.

Solution
The number of days in a month is a function of the name of the month, so if we name the function f , we write

days = f (month) or d = f (m). The name of the month is the input to a “rule” that associates a specific number

(the output) with each input.

For example,   f (March) = 31,   because March has 31 days. The notation  d = f (m)  reminds us that the number

of days,  d  (the output), is dependent on the name of the month,  m  (the input).

Analysis
Note that the inputs to a function do not have to be numbers; function inputs can be names of people, labels of
geometric objects, or any other element that determines some kind of output. However, most of the functions we
will work with in this book will have numbers as inputs and outputs.

Example 3.4

Interpreting Function Notation

A function  N = f (y)  gives the number of police officers,  N,   in a town in year  y. What does   f (2005) = 300 
represent?

Solution
When we read   f (2005) = 300,  we see that the input year is 2005. The value for the output, the number of police

officers  (N),   is 300. Remember,  N = f (y). The statement   f (2005) = 300  tells us that in the year 2005 there

were 300 police officers in the town.

Use function notation to express the weight of a pig in pounds as a function of its age in days  d.

Instead of a notation such as  y = f(x),  could we use the same symbol for the output as for the function,
such as  y = y(x), meaning “y is a function of x?”

Yes, this is often done, especially in applied subjects that use higher math, such as physics and engineering.
However, in exploring math itself we like to maintain a distinction between a function such as   f ,  which is a rule

or procedure, and the output  y we get by applying   f   to a particular input  x.  This is why we usually use notation

such as  y = f (x), P = W(d),   and so on.
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Representing Functions Using Tables
A common method of representing functions is in the form of a table. The table rows or columns display the corresponding
input and output values. In some cases, these values represent all we know about the relationship; other times, the table
provides a few select examples from a more complete relationship.

Table 3.3 lists the input number of each month (January = 1, February = 2, and so on) and the output value of the number
of days in that month. This information represents all we know about the months and days for a given year (that is not a leap
year). Note that, in this table, we define a days-in-a-month function   f  where  D = f (m)  identifies months by an integer

rather than by name.

Month number,
 m  (input) 1 2 3 4 5 6 7 8 9 10 11 12

Days in month,
 D  (output) 31 28 31 30 31 30 31 31 30 31 30 31

Table 3.3

Table 3.4 defines a function  Q = g(n). Remember, this notation tells us that  g  is the name of the function that takes the

input  n  and gives the output  Q .

n 1 2 3 4 5

Q 8 6 7 6 8

Table 3.4

Table 3.5 displays the age of children in years and their corresponding heights. This table displays just some of the data
available for the heights and ages of children. We can see right away that this table does not represent a function because
the same input value, 5 years, has two different output values, 40 in. and 42 in.

Age in years,  a (input) 5 5 6 7 8 9 10

Height in inches,  h (output) 40 42 44 47 50 52 54

Table 3.5

Given a table of input and output values, determine whether the table represents a function.

1. Identify the input and output values.

2. Check to see if each input value is paired with only one output value. If so, the table represents a function.

Example 3.5

Identifying Tables that Represent Functions

Which table, Table 3.6, Table 3.7, or Table 3.8, represents a function (if any)?
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Input Output

2 1

5 3

8 6

Table 3.6

Input Output

–3 5

0 1

4 5

Table 3.7

Input Output

1 0

5 2

5 4

Table 3.8

Solution
Table 3.6 and Table 3.7 define functions. In both, each input value corresponds to exactly one output value.
Table 3.8 does not define a function because the input value of 5 corresponds to two different output values.

When a table represents a function, corresponding input and output values can also be specified using function
notation.

The function represented by Table 3.6 can be represented by writing

f (2) = 1, f (5) = 3, and f (8) = 6

Similarly, the statements

g(−3) = 5,  g(0) = 1, and g(4) = 5

represent the function in Table 3.7.

Table 3.8 cannot be expressed in a similar way because it does not represent a function.
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3.3 Does Table 3.9 represent a function?

Input Output

1 10

2 100

3 1000

Table 3.9

Finding Input and Output Values of a Function
When we know an input value and want to determine the corresponding output value for a function, we evaluate the
function. Evaluating will always produce one result because each input value of a function corresponds to exactly one output
value.

When we know an output value and want to determine the input values that would produce that output value, we set the
output equal to the function’s formula and solve for the input. Solving can produce more than one solution because different
input values can produce the same output value.

Evaluation of Functions in Algebraic Forms
When we have a function in formula form, it is usually a simple matter to evaluate the function. For example, the function
  f (x) = 5 − 3x2   can be evaluated by squaring the input value, multiplying by 3, and then subtracting the product from 5.

Given the formula for a function, evaluate.

1. Replace the input variable in the formula with the value provided.

2. Calculate the result.

Example 3.6

Evaluating Functions at Specific Values

Evaluate   f (x) = x2 + 3x − 4  at

a. 2

b. a

c. a + h

d. f (a + h) − f (a)
h

Solution
Replace the  x  in the function with each specified value.

a. Because the input value is a number, 2, we can use simple algebra to simplify.
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3.4

f (2) = 22 + 3(2) − 4
= 4 + 6 − 4
= 6

b. In this case, the input value is a letter so we cannot simplify the answer any further.

f (a) = a2 + 3a − 4

c. With an input value of  a + h,  we must use the distributive property.

f (a + h) = (a + h)2 + 3(a + h) − 4

= a2 + 2ah + h2 + 3a + 3h − 4
d. In this case, we apply the input values to the function more than once, and then perform algebraic

operations on the result. We already found that
f (a + h) = a2 + 2ah + h2 + 3a + 3h − 4

and we know that

f (a) = a2 + 3a − 4
Now we combine the results and simplify.

f (a + h) − f (a)
h =

⎛
⎝a2 + 2ah + h2 + 3a + 3h − 4⎞

⎠ − ⎛
⎝a2 + 3a − 4⎞

⎠
h

= 2ah + h2 + 3h
h

= h(2a + h + 3)
h Factor out h.

= 2a + h + 3 Simplify.

Example 3.7

Evaluating Functions

Given the function  h(p) = p2 + 2p,   evaluate  h(4). 

Solution
To evaluate  h(4),  we substitute the value 4 for the input variable  p  in the given function.

h(p) = p2 + 2p

h(4) = (4)2 + 2(4)
= 16 + 8
= 24

Therefore, for an input of 4, we have an output of 24.

Given the function  g(m) = m − 4,   evaluate  g(5).
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3.5

Example 3.8

Solving Functions

Given the function  h(p) = p2 + 2p,   solve for  h(p) = 3.

Solution
h(p) = 3

p2 + 2p = 3 Substitute the original function h(p) = p2 + 2p.

p2 + 2p − 3 = 0 Subtract 3 from each side.
(p + 3)(p − 1) = 0 Factor.

If  ⎛⎝p + 3⎞
⎠
⎛
⎝p − 1⎞

⎠ = 0,   either  ⎛⎝p + 3⎞
⎠ = 0  or  ⎛⎝p − 1⎞

⎠ = 0  (or both of them equal 0). We will set each factor equal

to 0 and solve for  p  in each case.

(p + 3) = 0, p = −3
(p − 1) = 0, p = 1

This gives us two solutions. The output  h(p) = 3 when the input is either  p = 1  or  p = − 3. We can also verify

by graphing as in Figure 3.5. The graph verifies that  h(1) = h(−3) = 3  and  h(4) = 24.

Figure 3.5

Given the function  g(m) = m − 4,   solve  g(m) = 2.

Evaluating Functions Expressed in Formulas
Some functions are defined by mathematical rules or procedures expressed in equation form. If it is possible to express the
function output with a formula involving the input quantity, then we can define a function in algebraic form. For example,
the equation  2n + 6p = 12  expresses a functional relationship between  n  and  p. We can rewrite it to decide if  p  is a

function of  n. 
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Given a function in equation form, write its algebraic formula.

1. Solve the equation to isolate the output variable on one side of the equal sign, with the other side as an
expression that involves only the input variable.

2. Use all the usual algebraic methods for solving equations, such as adding or subtracting the same quantity
to or from both sides, or multiplying or dividing both sides of the equation by the same quantity.

Example 3.9

Finding an Equation of a Function

Express the relationship  2n + 6p = 12  as a function  p = f (n),   if possible.

Solution
To express the relationship in this form, we need to be able to write the relationship where  p  is a function of  n,
which means writing it as  p = [expression involving  n].

2n + 6p = 12
6p = 12 − 2n Subtract 2n from both sides.

p = 12 − 2n
6 Divide both sides by 6 and simplify.

p = 12
6 − 2n

6
p = 2 − 1

3n

Therefore,  p  as a function of  n  is written as

p = f (n) = 2 − 1
3n

Example 3.10

Expressing the Equation of a Circle as a Function

Does the equation  x2 + y2 = 1  represent a function with  x  as input and  y  as output? If so, express the

relationship as a function  y = f (x).

Solution

First we subtract  x2   from both sides.

y2 = 1 − x2

We now try to solve for  y  in this equation.

y = ± 1 − x2

= + 1 − x2 and − 1 − x2
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We get two outputs corresponding to the same input, so this relationship cannot be represented as a single function
 y = f (x). If we graph both functions on a graphing calculator, we will get the upper and lower semicircles.

If  x − 8y3 = 0,   express  y  as a function of  x.

Are there relationships expressed by an equation that do represent a function but that still cannot be
represented by an algebraic formula?

Yes, this can happen. For example, given the equation  x = y + 2y,   if we want to express  y  as a function of  x,  
there is no simple algebraic formula involving only  x  that equals  y. However, each  x  does determine a unique

value for  y,   and there are mathematical procedures by which  y  can be found to any desired accuracy. In this

case, we say that the equation gives an implicit (implied) rule for  y  as a function of  x,   even though the formula

cannot be written explicitly.

Evaluating a Function Given in Tabular Form
As we saw above, we can represent functions in tables. Conversely, we can use information in tables to write functions,
and we can evaluate functions using the tables. For example, how well do our pets recall the fond memories we share with
them? There is an urban legend that a goldfish has a memory of 3 seconds, but this is just a myth. Goldfish can remember
up to 3 months, while the beta fish has a memory of up to 5 months. And while a puppy’s memory span is no longer than
30 seconds, the adult dog can remember for 5 minutes. This is meager compared to a cat, whose memory span lasts for 16
hours.

The function that relates the type of pet to the duration of its memory span is more easily visualized with the use of a table.
See Table 3.10.[2]

Pet Memory span in hours

Puppy 0.008

Adult dog 0.083

Cat 16

Goldfish 2160

Beta fish 3600

Table 3.10

At times, evaluating a function in table form may be more useful than using equations. Here let us call the function P.
The domain of the function is the type of pet and the range is a real number representing the number of hours the pet’s
memory span lasts. We can evaluate the function  P  at the input value of “goldfish.” We would write P(goldfis ) = 2160.
Notice that, to evaluate the function in table form, we identify the input value and the corresponding output value from the

2. http://www.kgbanswers.com/how-long-is-a-dogs-memory-span/4221590. Accessed 3/24/2014.
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pertinent row of the table. The tabular form for function  P  seems ideally suited to this function, more so than writing it in
paragraph or function form.

Given a function represented by a table, identify specific output and input values.

1. Find the given input in the row (or column) of input values.

2. Identify the corresponding output value paired with that input value.

3. Find the given output values in the row (or column) of output values, noting every time that output value
appears.

4. Identify the input value(s) corresponding to the given output value.

Example 3.11

Evaluating and Solving a Tabular Function

Using Table 3.11,

a. Evaluate  g(3).

b. Solve  g(n) = 6.

n 1 2 3 4 5

g(n) 8 6 7 6 8

Table 3.11

Solution
a. Evaluating g(3) means determining the output value of the function g for the input value of n = 3. The

table output value corresponding to n = 3 is 7, so g(3) = 7.

b. Solving g(n) = 6 means identifying the input values, n, that produce an output value of 6. Table 3.12
shows two solutions: n = 2 and n = 4.

n 1 2 3 4 5

g(n) 8 6 7 6 8

Table 3.12

When we input 2 into the function  g,   our output is 6. When we input 4 into the function  g,   our output is also 6.

Using Table 3.11, evaluate  g(1).
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Finding Function Values from a Graph
Evaluating a function using a graph also requires finding the corresponding output value for a given input value, only in
this case, we find the output value by looking at the graph. Solving a function equation using a graph requires finding all
instances of the given output value on the graph and observing the corresponding input value(s).

Example 3.12

Reading Function Values from a Graph

Given the graph in Figure 3.6,

a. Evaluate   f (2).

b. Solve   f (x) = 4.

Figure 3.6

Solution
a. To evaluate   f (2),   locate the point on the curve where  x = 2,   then read the y-coordinate of that point.

The point has coordinates  (2, 1),   so   f (2) = 1.  See Figure 3.7.
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Figure 3.7

b. To solve   f (x) = 4, we find the output value  4  on the vertical axis. Moving horizontally along the

line  y = 4,  we locate two points of the curve with output value  4: (−1, 4)  and  (3, 4). These points

represent the two solutions to   f (x) = 4: x = −1  or  x = 3. This means   f (−1) = 4  and   f (3) = 4,   or

when the input is  −1  or 3,  the output is  4.  See Figure 3.8.

Figure 3.8

Using Figure 3.6, solve   f (x) = 1.
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Determining Whether a Function is One-to-One
Some functions have a given output value that corresponds to two or more input values. For example, in the stock 
chart shown in 51260 (https://cnx.org/content/51260/latest/#Figure_01_00_001) at the beginning of this chapter, 
the stock price was $1000 on five different dates, meaning that there were five different input values that all resulted in the 
same output value of $1000.

However, some functions have only one input value for each output value, as well as having only one output for each input.
We call these functions one-to-one functions. As an example, consider a school that uses only letter grades and decimal
equivalents, as listed in Table 3.13.

Letter grade Grade point average

A 4.0

B 3.0

C 2.0

D 1.0

Table 3.13

This grading system represents a one-to-one function because each letter input yields one particular grade-point average
output and each grade-point average corresponds to one input letter.

To visualize this concept, let’s look again at the two simple functions sketched in Figure 3.2(a) and Figure 3.2(b). The
function in part (a) shows a relationship that is not a one-to-one function because inputs  q  and  r  both give output  n. The

function in part (b) shows a relationship that is a one-to-one function because each input is associated with a single output.

One-to-One Function

A one-to-one function is a function in which each output value corresponds to exactly one input value. There are no
repeated x- or y-values.

Example 3.13

Determining Whether a Relationship Is a One-to-One Function

Is the area of a circle a function of its radius? If yes, is the function one-to-one?

Solution

A circle of radius  r  has a unique area measure given by  A = πr2, so for any input,  r,   there is only one output,
A. The area is a function of radius  r.

If the function is one-to-one, the output value, the area, must correspond to a unique input value, the radius. Any
area measure  A  is given by the formula  A = πr2. Because areas and radii are positive numbers, there is exactly

one solution: r = A
π . So the area of a circle is a one-to-one function of the circle’s radius.
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3.9

3.10

a. Is a balance a function of the bank account number?

b. Is a bank account number a function of the balance?

c. Is a balance a one-to-one function of the bank account number?

a. If each percent grade earned in a course translates to one letter grade, is the letter grade a function of
the percent grade?

b. If so, is the function one-to-one?

Using the Vertical Line Test
As we have seen in some examples above, we can represent a function using a graph. Graphs display a great many input-
output pairs in a small space. The visual information they provide often makes relationships easier to understand. By
convention, graphs are typically constructed with the input values along the horizontal axis and the output values along the
vertical axis.

The most common graphs name the input value  x  and the output value  y,   and we say  y  is a function of  x,   or  y = f (x) 
when the function is named   f . The graph of the function is the set of all points  (x, y)  in the plane that satisfies the equation

y = f (x).  If the function is defined for only a few input values, then the graph of the function consists of only a few points,

where the x-coordinate of each point is an input value and the y-coordinate of each point is the corresponding output value.
For example, the black dots on the graph in Figure 3.9 tell us that   f (0) = 2  and   f (6) = 1. However, the set of all points

 (x, y)  satisfying  y = f (x)  is a curve. The curve shown includes  (0, 2)  and  (6, 1)  because the curve passes through those

points.

Figure 3.9

The vertical line test can be used to determine whether a graph represents a function. If we can draw any vertical line that
intersects a graph more than once, then the graph does not define a function because a function has only one output value
for each input value. See Figure 3.10.
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Figure 3.10

Given a graph, use the vertical line test to determine if the graph represents a function.

1. Inspect the graph to see if any vertical line drawn would intersect the curve more than once.

2. If there is any such line, determine that the graph does not represent a function.

Example 3.14

Applying the Vertical Line Test

Which of the graphs in Figure 3.11 represent(s) a function  y = f (x)?

Figure 3.11

Solution
If any vertical line intersects a graph more than once, the relation represented by the graph is not a function.
Notice that any vertical line would pass through only one point of the two graphs shown in parts (a) and (b) of
Figure 3.11. From this we can conclude that these two graphs represent functions. The third graph does not
represent a function because, at most x-values, a vertical line would intersect the graph at more than one point, as
shown in Figure 3.12.
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Figure 3.12

Does the graph in Figure 3.13 represent a function?

Figure 3.13

Using the Horizontal Line Test
Once we have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is to use
the horizontal line test. Draw horizontal lines through the graph. If any horizontal line intersects the graph more than once,
then the graph does not represent a one-to-one function.

Given a graph of a function, use the horizontal line test to determine if the graph represents a one-to-one
function.

1. Inspect the graph to see if any horizontal line drawn would intersect the curve more than once.

2. If there is any such line, determine that the function is not one-to-one.
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Example 3.15

Applying the Horizontal Line Test

Consider the functions shown in Figure 3.11(a) and Figure 3.11(b). Are either of the functions one-to-one?

Solution
The function in Figure 3.11(a) is not one-to-one. The horizontal line shown in Figure 3.14 intersects the graph
of the function at two points (and we can even find horizontal lines that intersect it at three points.)

Figure 3.14

The function in Figure 3.11(b) is one-to-one. Any horizontal line will intersect a diagonal line at most once.

Is the graph shown in Figure 3.12 one-to-one?

Identifying Basic Toolkit Functions
In this text, we will be exploring functions—the shapes of their graphs, their unique characteristics, their algebraic formulas,
and how to solve problems with them. When learning to read, we start with the alphabet. When learning to do arithmetic,
we start with numbers. When working with functions, it is similarly helpful to have a base set of building-block elements.
We call these our “toolkit functions,” which form a set of basic named functions for which we know the graph, formula, and
special properties. Some of these functions are programmed to individual buttons on many calculators. For these definitions
we will use  x  as the input variable and  y = f (x)  as the output variable.

We will see these toolkit functions, combinations of toolkit functions, their graphs, and their transformations frequently
throughout this book. It will be very helpful if we can recognize these toolkit functions and their features quickly by name,
formula, graph, and basic table properties. The graphs and sample table values are included with each function shown in
Table 3.14.
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Toolkit Functions

Name Function Graph

Constant
f (x) = c,  where c is a

constant

Identity f (x) = x

Absolute
value

f (x) = |x|

Table 3.14
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Toolkit Functions

Name Function Graph

Quadratic f (x) = x2

Cubic f (x) = x3

Reciprocal f (x) = 1
x

Table 3.14
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Toolkit Functions

Name Function Graph

Reciprocal
squared

f (x) = 1
x2

Square root f (x) = x

Cube root f (x) = x3

Table 3.14
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Access the following online resources for additional instruction and practice with functions.

• Determine if a Relation is a Function (http://openstaxcollege.org/l/relationfunction)

• Vertical Line Test (http://openstaxcollege.org/l/vertlinetest)

• Introduction to Functions (http://openstaxcollege.org/l/introtofunction)

• Vertical Line Test on Graph (http://openstaxcollege.org/l/vertlinegraph)

• One-to-one Functions (http://openstaxcollege.org/l/onetoone)

• Graphs as One-to-one Functions (http://openstaxcollege.org/l/graphonetoone)
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3.1 EXERCISES
Verbal

What is the difference between a relation and a
function?

What is the difference between the input and the output
of a function?

Why does the vertical line test tell us whether the graph
of a relation represents a function?

How can you determine if a relation is a one-to-one
function?

Why does the horizontal line test tell us whether the
graph of a function is one-to-one?

Algebraic
For the following exercises, determine whether the relation
represents a function.

{(a, b),  (c, d),  (a, c)}

{(a, b), (b, c), (c, c)}

For the following exercises, determine whether the relation
represents  y  as a function of  x.

5x + 2y = 10

y = x2

x = y2

3x2 + y = 14

2x + y2 = 6

y = − 2x2 + 40x

y = 1
x

x = 3y + 5
7y − 1

x = 1 − y2

y = 3x + 5
7x − 1

x2 + y2 = 9

2xy = 1

x = y3

y = x3

y = 1 − x2

x = ± 1 − y

y = ± 1 − x

y2 = x2

y3 = x2

For the following exercises, evaluate the function   f   at the

indicated values  f (−3), f (2), f (−a), − f (a), f (a + h).

f (x) = 2x − 5

f (x) = − 5x2 + 2x − 1

f (x) = 2 − x + 5

f (x) = 6x − 1
5x + 2

f (x) = |x − 1| − |x + 1|

Given the function  g(x) = 5 − x2,   simplify

g(x + h) − g(x)
h ,  h ≠ 0.

Given the function  g(x) = x2 + 2x,   simplify

 g(x) − g(a)
x − a ,  x ≠ a.

Given the function  k(t) = 2t − 1:

a. Evaluate  k(2).

b. Solve  k(t) = 7.

Given the function   f (x) = 8 − 3x:

a. Evaluate   f ( − 2).

b. Solve   f (x) = −1.

Given the function  p(c) = c2 + c:
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37.

38.

39.

40.

41.

42.

43.

44.

45.

a. Evaluate  p(−3).

b. Solve  p(c) = 2.

Given the function   f (x) = x2 − 3x:

a. Evaluate   f (5).

b. Solve   f (x) = 4.

Given the function   f (x) = x + 2:

a. Evaluate   f (7).

b. Solve   f (x) = 4.

Consider the relationship  3r + 2t = 18.

a. Write the relationship as a function  r = f (t).

b. Evaluate   f (−3).

c. Solve   f (t) = 2.

Graphical
For the following exercises, use the vertical line test to
determine which graphs show relations that are functions.
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46.

47.

48.

49.

50.

51.

52.

53.

Given the following graph,

• Evaluate   f (−1).

• Solve for   f (x) = 3.

Given the following graph,

• Evaluate   f (0).

• Solve for   f (x) = −3.
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54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Given the following graph,

• Evaluate   f (4).

• Solve for   f (x) = 1.

For the following exercises, determine if the given graph is
a one-to-one function.

Numeric
For the following exercises, determine whether the relation
represents a function.

{(−1, −1), (−2, −2), (−3, −3)}

{(3, 4), (4, 5), (5, 6)}

⎧

⎩
⎨(2, 5), (7, 11), (15, 8), (7, 9)⎫

⎭
⎬

For the following exercises, determine if the relation
represented in table form represents  y  as a function of  x.

x 5 10 15

y 3 8 14
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65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

x 5 10 15

y 3 8 8

x 5 10 10

y 3 8 14

For the following exercises, use the function   f   represented

in Table 3.15.

x f(x)

0 74

1 28

2 1

3 53

4 56

5 3

6 36

7 45

8 14

9 47

Table 3.15

Evaluate   f (3).

Solve   f (x) = 1.

For the following exercises, evaluate the function   f   at the

values f (−2),   f (−1),   f (0),   f (1), and   f (2).

f (x) = 4 − 2x

f (x) = 8 − 3x

f (x) = 8x2 − 7x + 3

f (x) = 3 + x + 3

f (x) = x − 2
x + 3

f (x) = 3x

For the following exercises, evaluate the expressions, given
functions f ,   g, and  h:

• f (x) = 3x − 2

• g(x) = 5 − x2

• h(x) = −2x2 + 3x − 1

3 f (1) − 4g(−2)

f ⎛
⎝
7
3

⎞
⎠ − h(−2)

Technology

For the following exercises, graph  y = x2   on the given

viewing window. Determine the corresponding range for
each viewing window. Show each graph.

[ − 0.1,  0.1]

[ − 10,  10]

[ − 100, 100]

For the following exercises, graph  y = x3   on the given

viewing window. Determine the corresponding range for
each viewing window. Show each graph.

[ − 0.1,  0.1]

[ − 10,  10]

[ − 100,  100]

For the following exercises, graph  y = x  on the given

viewing window. Determine the corresponding range for
each viewing window. Show each graph.
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82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

[0,  0.01]

[0,  100]

[0,  10,000]

For the following exercises, graph y = x3 on the given

viewing window. Determine the corresponding range for
each viewing window. Show each graph.

[−0.001, 0.001]

[−1000, 1000]

[−1,000,000, 1,000,000]

Real-World Applications

The amount of garbage,  G,   produced by a city with
population  p  is given by  G = f (p).  G  is measured in

tons per week, and  p  is measured in thousands of people.

a. The town of Tola has a population of 40,000 and
produces 13 tons of garbage each week. Express
this information in terms of the function   f . 

b. Explain the meaning of the statement   f (5) = 2.

The number of cubic yards of dirt,  D,   needed to cover
a garden with area  a  square feet is given by  D = g(a).

a. A garden with area 5000 ft2 requires 50 yd3 of dirt.
Express this information in terms of the function
 g.

b. Explain the meaning of the statement  g(100) = 1.

Let   f (t)  be the number of ducks in a lake  t  years after

1990. Explain the meaning of each statement:

a. f (5) = 30

b. f (10) = 40

Let  h(t)  be the height above ground, in feet, of a
rocket  t  seconds after launching. Explain the meaning of
each statement:

a. h(1) = 200

b. h(2) = 350

Show that the function   f (x) = 3(x − 5)2 + 7  is not

one-to-one.
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3.2 | Domain and Range

Learning Objectives

In this section, you will:

3.2.1 Find the domain of a function defined by an equation.
3.2.2 Graph piecewise-defined functions.

If you’re in the mood for a scary movie, you may want to check out one of the five most popular horror movies of all
time—I am Legend, Hannibal, The Ring, The Grudge, and The Conjuring. Figure 3.15 shows the amount, in dollars, each
of those movies grossed when they were released as well as the ticket sales for horror movies in general by year. Notice
that we can use the data to create a function of the amount each movie earned or the total ticket sales for all horror movies
by year. In creating various functions using the data, we can identify different independent and dependent variables, and we
can analyze the data and the functions to determine the domain and range. In this section, we will investigate methods for
determining the domain and range of functions such as these.

Figure 3.15 Based on data compiled by www.the-numbers.com.[3]

Finding the Domain of a Function Defined by an Equation
In Functions and Function Notation, we were introduced to the concepts of domain and range. In this section, we
will practice determining domains and ranges for specific functions. Keep in mind that, in determining domains and ranges,
we need to consider what is physically possible or meaningful in real-world examples, such as tickets sales and year in the
horror movie example above. We also need to consider what is mathematically permitted. For example, we cannot include
any input value that leads us to take an even root of a negative number if the domain and range consist of real numbers. Or
in a function expressed as a formula, we cannot include any input value in the domain that would lead us to divide by 0.

We can visualize the domain as a “holding area” that contains “raw materials” for a “function machine” and the range as
another “holding area” for the machine’s products. See Figure 3.16.

3. The Numbers: Where Data and the Movie Business Meet. “Box Office History for Horror Movies.” http://www.the-
numbers.com/market/genre/Horror. Accessed 3/24/2014
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Figure 3.16

We can write the domain and range in interval notation, which uses values within brackets to describe a set of numbers.
In interval notation, we use a square bracket [ when the set includes the endpoint and a parenthesis ( to indicate that the
endpoint is either not included or the interval is unbounded. For example, if a person has $100 to spend, he or she would
need to express the interval that is more than 0 and less than or equal to 100 and write  (0,  100]. We will discuss interval
notation in greater detail later.

Let’s turn our attention to finding the domain of a function whose equation is provided. Oftentimes, finding the domain
of such functions involves remembering three different forms. First, if the function has no denominator or an even root,
consider whether the domain could be all real numbers. Second, if there is a denominator in the function’s equation, exclude
values in the domain that force the denominator to be zero. Third, if there is an even root, consider excluding values that
would make the radicand negative.

Before we begin, let us review the conventions of interval notation:

• The smallest number from the interval is written first.

• The largest number in the interval is written second, following a comma.

• Parentheses, ( or ), are used to signify that an endpoint value is not included, called exclusive.

• Brackets, [ or ], are used to indicate that an endpoint value is included, called inclusive.

See Figure 3.17 for a summary of interval notation.
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Figure 3.17

Example 3.16

Finding the Domain of a Function as a Set of Ordered Pairs

Find the domain of the following function:  {(2,  10), (3,  10), (4,  20), (5,  30), (6,  40)} .

Solution
First identify the input values. The input value is the first coordinate in an ordered pair. There are no restrictions,
as the ordered pairs are simply listed. The domain is the set of the first coordinates of the ordered pairs.

{2, 3, 4, 5, 6}
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3.13

3.14

Find the domain of the function:
⎧

⎩
⎨(−5, 4), (0, 0), (5, −4), (10, −8), (15, −12)⎫

⎭
⎬

Given a function written in equation form, find the domain.

1. Identify the input values.

2. Identify any restrictions on the input and exclude those values from the domain.

3. Write the domain in interval form, if possible.

Example 3.17

Finding the Domain of a Function

Find the domain of the function   f (x) = x2 − 1.

Solution
The input value, shown by the variable  x  in the equation, is squared and then the result is lowered by one. Any
real number may be squared and then be lowered by one, so there are no restrictions on the domain of this
function. The domain is the set of real numbers.

In interval form, the domain of   f   is  (−∞, ∞).

Find the domain of the function:   f (x) = 5 − x + x3.

Given a function written in an equation form that includes a fraction, find the domain.

1. Identify the input values.

2. Identify any restrictions on the input. If there is a denominator in the function’s formula, set the
denominator equal to zero and solve for  x  . If the function’s formula contains an even root, set the
radicand greater than or equal to 0, and then solve.

3. Write the domain in interval form, making sure to exclude any restricted values from the domain.

Example 3.18

Finding the Domain of a Function Involving a Denominator

Find the domain of the function   f (x) = x + 1
2 − x.

Solution
When there is a denominator, we want to include only values of the input that do not force the denominator to be
zero. So, we will set the denominator equal to 0 and solve for  x.
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2 − x = 0
−x = −2

x = 2

Now, we will exclude 2 from the domain. The answers are all real numbers where  x < 2  or  x > 2  as shown in
Figure 3.18. We can use a symbol known as the union,   ∪ , to combine the two sets. In interval notation, we
write the solution: (−∞, 2) ∪ (2, ∞).

Figure 3.18

Find the domain of the function:   f (x) = 1 + 4x
2x − 1.

Given a function written in equation form including an even root, find the domain.

1. Identify the input values.

2. Since there is an even root, exclude any real numbers that result in a negative number in the radicand. Set
the radicand greater than or equal to zero and solve for  x.

3. The solution(s) are the domain of the function. If possible, write the answer in interval form.

Example 3.19

Finding the Domain of a Function with an Even Root

Find the domain of the function   f (x) = 7 − x.

Solution
When there is an even root in the formula, we exclude any real numbers that result in a negative number in the
radicand.

Set the radicand greater than or equal to zero and solve for  x.

7 − x ≥ 0
−x ≥ −7

x ≤ 7

Now, we will exclude any number greater than 7 from the domain. The answers are all real numbers less than or
equal to  7,   or  ( − ∞, 7].
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3.16 Find the domain of the function   f (x) = 5 + 2x.

Can there be functions in which the domain and range do not intersect at all?

Yes. For example, the function   f (x) = − 1
x   has the set of all positive real numbers as its domain but the set of all

negative real numbers as its range. As a more extreme example, a function’s inputs and outputs can be completely
different categories (for example, names of weekdays as inputs and numbers as outputs, as on an attendance
chart), in such cases the domain and range have no elements in common.

Using Notations to Specify Domain and Range
In the previous examples, we used inequalities and lists to describe the domain of functions. We can also use inequalities,
or other statements that might define sets of values or data, to describe the behavior of the variable in set-builder notation.
For example,  {x|10 ≤ x < 30}  describes the behavior of  x  in set-builder notation. The braces  {}  are read as “the set of,”
and the vertical bar | is read as “such that,” so we would read  {x|10 ≤ x < 30}  as “the set of x-values such that 10 is less
than or equal to  x,   and  x  is less than 30.”

Figure 3.19 compares inequality notation, set-builder notation, and interval notation.

Figure 3.19

To combine two intervals using inequality notation or set-builder notation, we use the word “or.” As we saw in earlier
examples, we use the union symbol,   ∪ , to combine two unconnected intervals. For example, the union of the sets
{2, 3, 5}  and  {4, 6}  is the set  {2, 3, 4, 5, 6}.  It is the set of all elements that belong to one or the other (or both) of
the original two sets. For sets with a finite number of elements like these, the elements do not have to be listed in ascending
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order of numerical value. If the original two sets have some elements in common, those elements should be listed only once
in the union set. For sets of real numbers on intervals, another example of a union is

{x|  |x| ≥ 3} = (−∞, − 3] ∪ [3, ∞)

Set-Builder Notation and Interval Notation

Set-builder notation is a method of specifying a set of elements that satisfy a certain condition. It takes the form
{x| statement about x} which is read as, “the set of all  x  such that the statement about  x  is true.” For example,

{x|4 < x ≤ 12}

Interval notation is a way of describing sets that include all real numbers between a lower limit that may or may not
be included and an upper limit that may or may not be included. The endpoint values are listed between brackets or
parentheses. A square bracket indicates inclusion in the set, and a parenthesis indicates exclusion from the set. For
example,

(4, 12]

Given a line graph, describe the set of values using interval notation.

1. Identify the intervals to be included in the set by determining where the heavy line overlays the real line.

2. At the left end of each interval, use [ with each end value to be included in the set (solid dot) or ( for each
excluded end value (open dot).

3. At the right end of each interval, use ] with each end value to be included in the set (filled dot) or ) for
each excluded end value (open dot).

4. Use the union symbol   ∪   to combine all intervals into one set.

Example 3.20

Describing Sets on the Real-Number Line

Describe the intervals of values shown in Figure 3.20 using inequality notation, set-builder notation, and interval
notation.

Figure 3.20

Solution
To describe the values,  x,   included in the intervals shown, we would say, “ x  is a real number greater than or
equal to 1 and less than or equal to 3, or a real number greater than 5.”
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3.17

Inequality 1 ≤ x ≤ 3 or x > 5

Set-builder notation
⎧

⎩
⎨x|1 ≤ x ≤ 3 or x > 5⎫

⎭
⎬

Interval notation [1, 3] ∪ (5, ∞)

Remember that, when writing or reading interval notation, using a square bracket means the boundary is included
in the set. Using a parenthesis means the boundary is not included in the set.

Given Figure 3.21, specify the graphed set in

a. words

b. set-builder notation

c. interval notation

Figure 3.21

Finding Domain and Range from Graphs
Another way to identify the domain and range of functions is by using graphs. Because the domain refers to the set of
possible input values, the domain of a graph consists of all the input values shown on the x-axis. The range is the set of
possible output values, which are shown on the y-axis. Keep in mind that if the graph continues beyond the portion of the
graph we can see, the domain and range may be greater than the visible values. See Figure 3.22.

Chapter 3 Functions 263



Figure 3.22

We can observe that the graph extends horizontally from  −5  to the right without bound, so the domain is  ⎡⎣−5, ∞).  The
vertical extent of the graph is all range values  5  and below, so the range is  (−∞, 5⎤

⎦. Note that the domain and range are
always written from smaller to larger values, or from left to right for domain, and from the bottom of the graph to the top of
the graph for range.

Example 3.21

Finding Domain and Range from a Graph

Find the domain and range of the function   f   whose graph is shown in Figure 3.23.
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Figure 3.23

Solution
We can observe that the horizontal extent of the graph is –3 to 1, so the domain of   f   is  (−3, 1].

The vertical extent of the graph is 0 to –4, so the range is  [−4, 0).  See Figure 3.24.

Figure 3.24

Example 3.22

Finding Domain and Range from a Graph of Oil Production

Find the domain and range of the function   f  whose graph is shown in Figure 3.25.
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3.18

Figure 3.25 (credit: modification of work by the U.S. Energy
Information Administration)[4]

Solution
The input quantity along the horizontal axis is “years,” which we represent with the variable  t  for time. The
output quantity is “thousands of barrels of oil per day,” which we represent with the variable  b  for barrels. The
graph may continue to the left and right beyond what is viewed, but based on the portion of the graph that is
visible, we can determine the domain as  1973 ≤ t ≤ 2008  and the range as approximately  180 ≤ b ≤ 2010.

In interval notation, the domain is [1973, 2008], and the range is about [180, 2010]. For the domain and the range,
we approximate the smallest and largest values since they do not fall exactly on the grid lines.

Given Figure 3.26, identify the domain and range using interval notation.

Figure 3.26

Can a function’s domain and range be the same?

Yes. For example, the domain and range of the cube root function are both the set of all real numbers.

Finding Domains and Ranges of the Toolkit Functions
We will now return to our set of toolkit functions to determine the domain and range of each.

4. http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MCRFPAK2&f=A.
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Figure 3.27 For the constant function   f (x) = c,   the

domain consists of all real numbers; there are no restrictions on
the input. The only output value is the constant  c,   so the range

is the set  {c}  that contains this single element. In interval

notation, this is written as  [c, c],   the interval that both begins
and ends with  c.

Figure 3.28 For the identity function   f (x) = x,   there is no

restriction on  x. Both the domain and range are the set of all
real numbers.
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Figure 3.29 For the absolute value function   f (x) = |x|,
there is no restriction on  x. However, because absolute value is
defined as a distance from 0, the output can only be greater than
or equal to 0.

Figure 3.30 For the quadratic function   f (x) = x2,   the

domain is all real numbers since the horizontal extent of the
graph is the whole real number line. Because the graph does not
include any negative values for the range, the range is only
nonnegative real numbers.
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Figure 3.31 For the cubic function   f (x) = x3,   the domain

is all real numbers because the horizontal extent of the graph is
the whole real number line. The same applies to the vertical
extent of the graph, so the domain and range include all real
numbers.

Figure 3.32 For the reciprocal function   f (x) = 1
x ,  we

cannot divide by 0, so we must exclude 0 from the domain.
Further, 1 divided by any value can never be 0, so the range also
will not include 0. In set-builder notation, we could also write
{x| x ≠ 0}, the set of all real numbers that are not zero.
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Figure 3.33 For the reciprocal squared function
  f (x) = 1

x2, we cannot divide by 0, so we must exclude 0

from the domain. There is also no x that can give an output of
0, so 0 is excluded from the range as well. Note that the output
of this function is always positive due to the square in the
denominator, so the range includes only positive numbers.

Figure 3.34 For the square root function   f (x) = x,  we

cannot take the square root of a negative real number, so the
domain must be 0 or greater. The range also excludes negative
numbers because the square root of a positive number  x  is
defined to be positive, even though the square of the negative
number  − x  also gives us  x.
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Figure 3.35 For the cube root function   f (x) = x3 ,   the

domain and range include all real numbers. Note that there is no
problem taking a cube root, or any odd-integer root, of a
negative number, and the resulting output is negative (it is an
odd function).

Given the formula for a function, determine the domain and range.

1. Exclude from the domain any input values that result in division by zero.

2. Exclude from the domain any input values that have nonreal (or undefined) number outputs.

3. Use the valid input values to determine the range of the output values.

4. Look at the function graph and table values to confirm the actual function behavior.

Example 3.23

Finding the Domain and Range Using Toolkit Functions

Find the domain and range of   f (x) = 2x3 − x.

Solution
There are no restrictions on the domain, as any real number may be cubed and then subtracted from the result.

The domain is  (−∞, ∞)  and the range is also  (−∞, ∞).

Example 3.24

Finding the Domain and Range

Find the domain and range of   f (x) = 2
x + 1.
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3.19

Solution
We cannot evaluate the function at  −1  because division by zero is undefined. The domain is
 (−∞, −1) ∪ (−1, ∞). Because the function is never zero, we exclude 0 from the range. The range is
 (−∞, 0) ∪ (0, ∞).

Example 3.25

Finding the Domain and Range

Find the domain and range of   f (x) = 2 x + 4.

Solution
We cannot take the square root of a negative number, so the value inside the radical must be nonnegative.

x + 4 ≥ 0 when x ≥ − 4

The domain of   f (x)  is  [ − 4, ∞).

We then find the range. We know that   f (−4) = 0,   and the function value increases as  x  increases without any

upper limit. We conclude that the range of   f   is  ⎡⎣0, ∞).

Analysis
Figure 3.36 represents the function   f .

Figure 3.36

Find the domain and range of   f (x) = − 2 − x.

Graphing Piecewise-Defined Functions
Sometimes, we come across a function that requires more than one formula in order to obtain the given output. For example,
in the toolkit functions, we introduced the absolute value function   f (x) = |x|. With a domain of all real numbers and a

range of values greater than or equal to 0, absolute value can be defined as the magnitude, or modulus, of a real number
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value regardless of sign. It is the distance from 0 on the number line. All of these definitions require the output to be greater
than or equal to 0.

If we input 0, or a positive value, the output is the same as the input.

f (x) = x if x ≥ 0

If we input a negative value, the output is the opposite of the input.

f (x) = − x if x < 0

Because this requires two different processes or pieces, the absolute value function is an example of a piecewise function.
A piecewise function is a function in which more than one formula is used to define the output over different pieces of the
domain.

We use piecewise functions to describe situations in which a rule or relationship changes as the input value crosses certain
“boundaries.” For example, we often encounter situations in business for which the cost per piece of a certain item is
discounted once the number ordered exceeds a certain value. Tax brackets are another real-world example of piecewise
functions. For example, consider a simple tax system in which incomes up to $10,000 are taxed at 10%, and any additional
income is taxed at 20%. The tax on a total income  S would be  0.1S  if  S ≤ $10,000  and  $1000 + 0.2(S − $10,000)  if
 S > $10,000.

Piecewise Function

A piecewise function is a function in which more than one formula is used to define the output. Each formula has its
own domain, and the domain of the function is the union of all these smaller domains. We notate this idea like this:

f (x) =
⎧

⎩
⎨

formula 1     if x is in domain 1
formula 2     if x is in domain 2
formula 3     if x is in domain 3

In piecewise notation, the absolute value function is

|x| =
⎧

⎩
⎨x    if  x ≥ 0
−x  if  x < 0

Given a piecewise function, write the formula and identify the domain for each interval.

1. Identify the intervals for which different rules apply.

2. Determine formulas that describe how to calculate an output from an input in each interval.

3. Use braces and if-statements to write the function.

Example 3.26

Writing a Piecewise Function

A museum charges $5 per person for a guided tour with a group of 1 to 9 people or a fixed $50 fee for a group of
10 or more people. Write a function relating the number of people,  n,   to the cost,  C.

Solution
Two different formulas will be needed. For n-values under 10,  C = 5n.  For values of  n  that are 10 or greater,
 C = 50.

C(n) =
⎧

⎩
⎨5n if 0 < n < 10
50 if n ≥ 10

Analysis
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The function is represented in Figure 3.37. The graph is a diagonal line from  n = 0  to  n = 10  and a constant
after that. In this example, the two formulas agree at the meeting point where  n = 10,   but not all piecewise
functions have this property.

Figure 3.37

Example 3.27

Working with a Piecewise Function

A cell phone company uses the function below to determine the cost,  C,   in dollars for  g  gigabytes of data

transfer.

C(g) =
⎧

⎩
⎨

25 if 0 < g < 2
25 + 10(g − 2) if g ≥ 2

Find the cost of using 1.5 gigabytes of data and the cost of using 4 gigabytes of data.

Solution
To find the cost of using 1.5 gigabytes of data,  C(1.5),  we first look to see which part of the domain our input
falls in. Because 1.5 is less than 2, we use the first formula.

C(1.5) = $25

To find the cost of using 4 gigabytes of data,  C(4),  we see that our input of 4 is greater than 2, so we use the
second formula.

C(4) = 25 + 10(4 − 2) = $45

Analysis
The function is represented in Figure 3.38. We can see where the function changes from a constant to a shifted
and stretched identity at  g = 2. We plot the graphs for the different formulas on a common set of axes, making

sure each formula is applied on its proper domain.
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Figure 3.38

Given a piecewise function, sketch a graph.

1. Indicate on the x-axis the boundaries defined by the intervals on each piece of the domain.

2. For each piece of the domain, graph on that interval using the corresponding equation pertaining to that
piece. Do not graph two functions over one interval because it would violate the criteria of a function.

Example 3.28

Graphing a Piecewise Function

Sketch a graph of the function.

f (x) =
⎧

⎩
⎨

x2 if x ≤ 1
3 if 1 < x ≤ 2
x if x > 2

Solution
Each of the component functions is from our library of toolkit functions, so we know their shapes. We can imagine
graphing each function and then limiting the graph to the indicated domain. At the endpoints of the domain, we
draw open circles to indicate where the endpoint is not included because of a less-than or greater-than inequality;
we draw a closed circle where the endpoint is included because of a less-than-or-equal-to or greater-than-or-equal-
to inequality.

Figure 3.39 shows the three components of the piecewise function graphed on separate coordinate systems.
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Figure 3.39 (a)   f (x) = x2  if  x ≤ 1;   (b)   f (x) = 3 if 1< x ≤ 2;   (c)   f (x) = x  if x > 2

Now that we have sketched each piece individually, we combine them in the same coordinate plane. See Figure
3.40.

Figure 3.40

Analysis
Note that the graph does pass the vertical line test even at  x = 1  and  x = 2  because the points (1, 3) and (2, 2)
are not part of the graph of the function, though (1, 1) and (2,  3) are.

Graph the following piecewise function.

f (x) =
⎧

⎩
⎨

x3 if x < − 1
−2 if −1 < x < 4

x if x > 4

Can more than one formula from a piecewise function be applied to a value in the domain?

No. Each value corresponds to one equation in a piecewise formula.
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Access these online resources for additional instruction and practice with domain and range.

• Domain and Range of Square Root Functions (http://openstaxcollege.org/l/domainsqroot)

• Determining Domain and Range (http://openstaxcollege.org/l/determinedomain)

• Find Domain and Range Given the Graph (http://openstaxcollege.org/l/drgraph)

• Find Domain and Range Given a Table (http://openstaxcollege.org/l/drtable)

• Find Domain and Range Given Points on a Coordinate Plane (http://openstaxcollege.org/
l/drcoordinate)

Chapter 3 Functions 277

http://openstaxcollege.org/l/domainsqroot
http://openstaxcollege.org/l/determinedomain
http://openstaxcollege.org/l/drgraph
http://openstaxcollege.org/l/drtable
http://openstaxcollege.org/l/drcoordinate
http://openstaxcollege.org/l/drcoordinate


93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

3.2 EXERCISES
Verbal

Why does the domain differ for different functions?

How do we determine the domain of a function defined
by an equation?

Explain why the domain of   f (x) = x3   is different

from the domain of   f (x) = x.

When describing sets of numbers using interval
notation, when do you use a parenthesis and when do you
use a bracket?

How do you graph a piecewise function?

Algebraic
For the following exercises, find the domain of each
function using interval notation.

f (x) = − 2x(x − 1)(x − 2)

f (x) = 5 − 2x2

f (x) = 3 x − 2

f (x) = 3 − 6 − 2x

f (x) = 4 − 3x

f (x) = x2 + 4

f (x) = 1 − 2x3

f (x) = x − 13

f (x) = 9
x − 6

f (x) = 3x + 1
4x + 2

f (x) = x + 4
x − 4

f (x) = x − 3
x2 + 9x − 22

f (x) = 1
x2 − x − 6

f (x) = 2x3 − 250
x2 − 2x − 15

5
x − 3

2x + 1
5 − x

f (x) = x − 4
x − 6

f (x) = x − 6
x − 4

f (x) = x
x

f (x) = x2 − 9x
x2 − 81

Find the domain of the function   f (x) = 2x3 − 50x 
by:

a. using algebra.

b. graphing the function in the radicand and
determining intervals on the x-axis for which the
radicand is nonnegative.

Graphical
For the following exercises, write the domain and range of
each function using interval notation.
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152.

For the following exercises, sketch a graph of the piecewise
function. Write the domain in interval notation.

f (x) =
⎧

⎩
⎨x + 1 if x < − 2
−2x − 3 if x ≥ − 2

f (x) =
⎧

⎩
⎨2x − 1 if x < 1
1 + x if x ≥ 1

f (x) =
⎧

⎩
⎨x + 1  if  x < 0
x − 1  if   x > 0

f (x) =
⎧

⎩
⎨ 3 if x < 0

x if x ≥ 0

f (x) =
⎧

⎩
⎨x2       if x < 0
1 − x  if x > 0

f (x) =
⎧

⎩
⎨ x2

x + 2
  if     x < 0
if     x ≥ 0

f (x) =
⎧

⎩
⎨
x + 1 if x < 1

x3 if x ≥ 1

f (x) =
⎧

⎩
⎨|x|

1
   if   x < 2
   if   x ≥ 2

Numeric
For the following exercises, given each function f ,
evaluate f (−3),   f (−2),   f (−1), and f (0).

f (x) =
⎧

⎩
⎨x + 1 if x < − 2
−2x − 3 if x ≥ − 2

f (x) =
⎧

⎩
⎨1 if x ≤ − 3
0 if x > − 3

f (x) =
⎧

⎩
⎨−2x2 + 3 if x ≤ − 1

5x − 7 if x > − 1

For the following exercises, given each function   f ,
evaluate f (−1),   f (0),   f (2),   and   f (4).

f (x) =
⎧

⎩
⎨7x + 3 if x < 0
7x + 6 if x ≥ 0

f (x) =
⎧

⎩
⎨ x2 − 2 if x < 2
4 + |x − 5| if x ≥ 2

f (x) =
⎧

⎩
⎨

5x if x < 0
3 if 0 ≤ x ≤ 3
x2 if x > 3

For the following exercises, write the domain for the
piecewise function in interval notation.

f (x) =
⎧

⎩
⎨ x + 1      if  x < − 2
−2x − 3  if  x ≥ − 2

f (x) =
⎧

⎩
⎨x2 − 2      if  x < 1
−x2 + 2  if  x > 1

f (x) =
⎧

⎩
⎨
2x − 3
−3x2   

if   x < 0
if   x ≥ 2

Technology

Graph  y = 1
x2   on the viewing window

 [−0.5, −0.1]  and  [0.1, 0.5]. Determine the
corresponding range for the viewing window. Show the
graphs.

Graph  y = 1
x   on the viewing window  [−0.5, −0.1] 

and  [0.1,  0.5]. Determine the corresponding range for the
viewing window. Show the graphs.

Extension

Suppose the range of a function   f   is  [−5,  8]. What

is the range of  | f (x)| ?

Create a function in which the range is all
nonnegative real numbers.

Create a function in which the domain is  x > 2.

Real-World Applications

The height  h  of a projectile is a function of the time
 t  it is in the air. The height in feet for  t  seconds is given

by the function h(t) = −16t2 + 96t. What is the domain of
the function? What does the domain mean in the context of
the problem?
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153. The cost in dollars of making  x  items is given by the
function  C(x) = 10x + 500.

a. The fixed cost is determined when zero items are
produced. Find the fixed cost for this item.

b. What is the cost of making 25 items?

c. Suppose the maximum cost allowed is $1500. What
are the domain and range of the cost function,
 C(x)?
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3.3 | Rates of Change and Behavior of Graphs

Learning Objectives

In this section, you will:

3.3.1 Find the average rate of change of a function.
3.3.2 Use a graph to determine where a function is increasing, decreasing, or constant.
3.3.3 Use a graph to locate local maxima and local minima.
3.3.4 Use a graph to locate the absolute maximum and absolute minimum.

Gasoline costs have experienced some wild fluctuations over the last several decades. Table 3.17[5] lists the average cost,
in dollars, of a gallon of gasoline for the years 2005–2012. The cost of gasoline can be considered as a function of year.

y 2005 2006 2007 2008 2009 2010 2011 2012

C(y)
2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68

Table 3.17

If we were interested only in how the gasoline prices changed between 2005 and 2012, we could compute that the cost per
gallon had increased from $2.31 to $3.68, an increase of $1.37. While this is interesting, it might be more useful to look at
how much the price changed per year. In this section, we will investigate changes such as these.

Finding the Average Rate of Change of a Function
The price change per year is a rate of change because it describes how an output quantity changes relative to the change
in the input quantity. We can see that the price of gasoline in Table 3.17 did not change by the same amount each year, so
the rate of change was not constant. If we use only the beginning and ending data, we would be finding the average rate of
change over the specified period of time. To find the average rate of change, we divide the change in the output value by
the change in the input value.

Average rate of change = Change in output
Change in input

= Δy
Δx

= y2 − y1
x2 − x1

= f ⎛
⎝x2

⎞
⎠ − f ⎛

⎝x1
⎞
⎠

x2 − x1

The Greek letter Δ  (delta) signifies the change in a quantity; we read the ratio as “delta-y over delta-x” or “the change in  y 
divided by the change in  x. ” Occasionally we write  Δ f   instead of  Δy,  which still represents the change in the function’s

output value resulting from a change to its input value. It does not mean we are changing the function into some other
function.

In our example, the gasoline price increased by $1.37 from 2005 to 2012. Over 7 years, the average rate of change was

Δy
Δx = $1.37

7 years ≈ 0.196 dollars per year

On average, the price of gas increased by about 19.6¢ each year.

Other examples of rates of change include:

5. http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0524. Accessed 3/5/2014.
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• A population of rats increasing by 40 rats per week

• A car traveling 68 miles per hour (distance traveled changes by 68 miles each hour as time passes)

• A car driving 27 miles per gallon (distance traveled changes by 27 miles for each gallon)

• The current through an electrical circuit increasing by 0.125 amperes for every volt of increased voltage

• The amount of money in a college account decreasing by $4,000 per quarter

Rate of Change

A rate of change describes how an output quantity changes relative to the change in the input quantity. The units on a
rate of change are “output units per input units.”

The average rate of change between two input values is the total change of the function values (output values) divided
by the change in the input values.

(3.1)Δy
Δx = f (x2) − f (x1)

x2 − x1

Given the value of a function at different points, calculate the average rate of change of a function for the
interval between two values  x1   and  x2.

1. Calculate the difference y2 − y1 = Δy.

2. Calculate the difference x2 − x1 = Δx.

3. Find the ratio  Δy
Δx.

Example 3.29

Computing an Average Rate of Change

Using the data in Table 3.17, find the average rate of change of the price of gasoline between 2007 and 2009.

Solution
In 2007, the price of gasoline was $2.84. In 2009, the cost was $2.41. The average rate of change is

Δy
Δx = y2 − y1

x2 − x1

= $2.41 − $2.84
2009 − 2007

= −$0.43
2 years

= −$0.22 per year

Analysis
Note that a decrease is expressed by a negative change or “negative increase.” A rate of change is negative when
the output decreases as the input increases or when the output increases as the input decreases.

Using the data in Table 3.17, find the average rate of change between 2005 and 2010.
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Example 3.30

Computing Average Rate of Change from a Graph

Given the function  g(t)  shown in Figure 3.41, find the average rate of change on the interval  [−1, 2].

Figure 3.41

Solution
At t = − 1, Figure 3.42 shows g(−1) = 4. At  t = 2, the graph shows g(2) = 1.

Figure 3.42

The horizontal change  Δt = 3  is shown by the red arrow, and the vertical change Δg(t) = − 3 is shown by the

turquoise arrow. The average rate of change is shown by the slope of the orange line segment. The output changes
by –3 while the input changes by 3, giving an average rate of change of

1 − 4
2 − (−1) = −3

3 = −1

Analysis

Note that the order we choose is very important. If, for example, we use  y2 − y1
x1 − x2

,  we will not get the correct

answer. Decide which point will be 1 and which point will be 2, and keep the coordinates fixed as  (x1, y1)  and

 (x2, y2).
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Example 3.31

Computing Average Rate of Change from a Table

After picking up a friend who lives 10 miles away and leaving on a trip, Anna records her distance from home
over time. The values are shown in Table 3.18. Find her average speed over the first 6 hours.

t (hours) 0 1 2 3 4 5 6 7

D(t) (miles) 10 55 90 153 214 240 292 300

Table 3.18

Solution
Here, the average speed is the average rate of change. She traveled 282 miles in 6 hours.

292 − 10
6 − 0 = 282

6
= 47

The average speed is 47 miles per hour.

Analysis
Because the speed is not constant, the average speed depends on the interval chosen. For the interval [2,3], the
average speed is 63 miles per hour.

Example 3.32

Computing Average Rate of Change for a Function Expressed as a Formula

Compute the average rate of change of f (x) = x2 − 1
x on the interval [2, 4].

Solution
We can start by computing the function values at each endpoint of the interval.

f (2) = 22 − 1
2 f (4) = 42 − 1

4
= 4 − 1

2 = 16 − 1
4

= 7
2 = 63

4

Now we compute the average rate of change.
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3.22

Average rate of change = f (4) − f (2)
4 − 2

=
63
4 − 7

2
4 − 2

=
49
4
2

= 49
8

Find the average rate of change of f (x) = x − 2 x on the interval [1,  9].

Example 3.33

Finding the Average Rate of Change of a Force

The electrostatic force  F, measured in newtons, between two charged particles can be related to the distance

between the particles  d, in centimeters, by the formula  F(d) = 2
d2. Find the average rate of change of force if

the distance between the particles is increased from 2 cm to 6 cm.

Solution

We are computing the average rate of change of  F(d) = 2
d2   on the interval  [2, 6].

Average rate of change =  F(6) − F(2)
6 − 2

=
2

62 − 2
22

6 − 2 Simplify.

=
2
36 − 2

4
4

=
− 16

36
4 Combine numerator terms.

= −1
9 Simplify

The average rate of change is −1
9 newton per centimeter.

Example 3.34

Finding an Average Rate of Change as an Expression
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Find the average rate of change of g(t) = t2 + 3t + 1 on the interval [0,  a]. The answer will be an expression

involving a in simplest form.

Solution
We use the average rate of change formula.

Average rate of change = g(a) − g(0)
a − 0 Evaluate.

=
⎛
⎝a2 + 3a + 1⎞

⎠ − ⎛
⎝02 + 3⎛

⎝0
⎞
⎠ + 1⎞

⎠
a − 0 Simplify.

= a2 + 3a + 1 − 1
a Simplify and factor.

= a(a + 3)
a Divide by the common factor a.

= a + 3

This result tells us the average rate of change in terms of  a  between  t = 0  and any other point  t = a.  For
example, on the interval  [0, 5],   the average rate of change would be  5 + 3 = 8.

Find the average rate of change of   f (x) = x2 + 2x − 8  on the interval  [5, a]  in simplest forms in terms

of  a.

Using a Graph to Determine Where a Function is Increasing,
Decreasing, or Constant
As part of exploring how functions change, we can identify intervals over which the function is changing in specific ways.
We say that a function is increasing on an interval if the function values increase as the input values increase within that
interval. Similarly, a function is decreasing on an interval if the function values decrease as the input values increase over
that interval. The average rate of change of an increasing function is positive, and the average rate of change of a decreasing
function is negative. Figure 3.43 shows examples of increasing and decreasing intervals on a function.
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Figure 3.43 The function   f (x) = x3 − 12x  is increasing on

 (−∞, − 2) ∪ (2,  ∞)  and is decreasing on  ( − 2, 2).

While some functions are increasing (or decreasing) over their entire domain, many others are not. A value of the input
where a function changes from increasing to decreasing (as we go from left to right, that is, as the input variable increases) is
called a local maximum. If a function has more than one, we say it has local maxima. Similarly, a value of the input where
a function changes from decreasing to increasing as the input variable increases is called a local minimum. The plural form
is “local minima.” Together, local maxima and minima are called local extrema, or local extreme values, of the function.
(The singular form is “extremum.”) Often, the term local is replaced by the term relative. In this text, we will use the term
local.

Clearly, a function is neither increasing nor decreasing on an interval where it is constant. A function is also neither
increasing nor decreasing at extrema. Note that we have to speak of local extrema, because any given local extremum as
defined here is not necessarily the highest maximum or lowest minimum in the function’s entire domain.

For the function whose graph is shown in Figure 3.44, the local maximum is 16, and it occurs at  x = −2. The local
minimum is  −16  and it occurs at  x = 2.
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Figure 3.44

To locate the local maxima and minima from a graph, we need to observe the graph to determine where the graph attains its
highest and lowest points, respectively, within an open interval. Like the summit of a roller coaster, the graph of a function
is higher at a local maximum than at nearby points on both sides. The graph will also be lower at a local minimum than at
neighboring points. Figure 3.45 illustrates these ideas for a local maximum.

Figure 3.45 Definition of a local maximum

These observations lead us to a formal definition of local extrema.

Local Minima and Local Maxima

A function   f   is an increasing function on an open interval if   f (b) > f (a)  for any two input values  a  and  b  in the

given interval where  b > a.

A function   f   is a decreasing function on an open interval if   f (b) < f (a)  for any two input values  a  and  b  in the

given interval where  b > a.

A function f has a local maximum at  x = b if there exists an interval  (a, c) with a < b < c such that, for any x
in the interval (a, c), f (x) ≤ f (b). Likewise, f has a local minimum at x = b if there exists an interval (a, c) with

a < b < c such that, for any x in the interval (a, c), f (x) ≥ f (b).
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Example 3.35

Finding Increasing and Decreasing Intervals on a Graph

Given the function  p(t)  in Figure 3.46, identify the intervals on which the function appears to be increasing.

Figure 3.46

Solution
We see that the function is not constant on any interval. The function is increasing where it slants upward as we
move to the right and decreasing where it slants downward as we move to the right. The function appears to be
increasing from  t = 1  to  t = 3  and from  t = 4  on.

In interval notation, we would say the function appears to be increasing on the interval (1,3) and the interval
(4, ∞).

Analysis
Notice in this example that we used open intervals (intervals that do not include the endpoints), because the
function is neither increasing nor decreasing at  t = 1 ,  t = 3 , and  t = 4  . These points are the local extrema (two
minima and a maximum).

Example 3.36

Finding Local Extrema from a Graph

Graph the function   f (x) = 2
x + x

3. Then use the graph to estimate the local extrema of the function and to

determine the intervals on which the function is increasing.

Solution
Using technology, we find that the graph of the function looks like that in Figure 3.47. It appears there is a
low point, or local minimum, between  x = 2  and  x = 3,   and a mirror-image high point, or local maximum,
somewhere between  x = −3  and  x = −2.
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3.24

Figure 3.47

Analysis
Most graphing calculators and graphing utilities can estimate the location of maxima and minima. Figure
3.48 provides screen images from two different technologies, showing the estimate for the local maximum and
minimum.

Figure 3.48

Based on these estimates, the function is increasing on the interval  ( − ∞, − 2.449)  and  (2.449,∞). Notice
that, while we expect the extrema to be symmetric, the two different technologies agree only up to four decimals
due to the differing approximation algorithms used by each. (The exact location of the extrema is at  ± 6,   but
determining this requires calculus.)

Graph the function   f (x) = x3 − 6x2 − 15x + 20  to estimate the local extrema of the function. Use these

to determine the intervals on which the function is increasing and decreasing.

Example 3.37

Finding Local Maxima and Minima from a Graph
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For the function   f  whose graph is shown in Figure 3.49, find all local maxima and minima.

Figure 3.49

Solution
Observe the graph of   f . The graph attains a local maximum at  x = 1  because it is the highest point in an open

interval around  x = 1. The local maximum is the  y -coordinate at  x = 1,  which is  2.

The graph attains a local minimum at  x = −1 because it is the lowest point in an open interval around  x = −1. 
The local minimum is the y-coordinate at   x = −1,   which is   −2.

Analyzing the Toolkit Functions for Increasing or Decreasing
Intervals
We will now return to our toolkit functions and discuss their graphical behavior in Figure 3.50, Figure 3.51, and Figure
3.52.
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Figure 3.50

Figure 3.51
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Figure 3.52

Use A Graph to Locate the Absolute Maximum and Absolute
Minimum
There is a difference between locating the highest and lowest points on a graph in a region around an open interval (locally)
and locating the highest and lowest points on the graph for the entire domain. The  y- coordinates (output) at the highest and

lowest points are called the absolute maximum and absolute minimum, respectively.

To locate absolute maxima and minima from a graph, we need to observe the graph to determine where the graph attains it
highest and lowest points on the domain of the function. See Figure 3.53.

Figure 3.53

Not every function has an absolute maximum or minimum value. The toolkit function   f (x) = x3   is one such function.

Absolute Maxima and Minima

The absolute maximum of   f   at  x = c  is   f (c) where   f (c) ≥ f (x)  for all  x  in the domain of   f .

The absolute minimum of   f   at  x = d  is   f (d) where   f (d) ≤ f (x)  for all  x  in the domain of   f .
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Example 3.38

Finding Absolute Maxima and Minima from a Graph

For the function   f   shown in Figure 3.54, find all absolute maxima and minima.

Figure 3.54

Solution
Observe the graph of   f . The graph attains an absolute maximum in two locations,  x = −2  and  x = 2,   because

at these locations, the graph attains its highest point on the domain of the function. The absolute maximum is the
y-coordinate at  x = −2  and  x = 2,  which is  16.

The graph attains an absolute minimum at  x = 3,   because it is the lowest point on the domain of the function’s
graph. The absolute minimum is the y-coordinate at  x = 3, which is −10.

Access this online resource for additional instruction and practice with rates of change.

• Average Rate of Change (http://openstaxcollege.org/l/aroc)
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154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

3.3 EXERCISES
Verbal

Can the average rate of change of a function be
constant?

If a function   f   is increasing on  (a, b)  and

decreasing on  (b, c),   then what can be said about the local
extremum of   f   on  (a, c)?  

How are the absolute maximum and minimum similar
to and different from the local extrema?

How does the graph of the absolute value function
compare to the graph of the quadratic function,  y = x2,   in
terms of increasing and decreasing intervals?

Algebraic
For the following exercises, find the average rate of change
of each function on the interval specified for real numbers
 b  or  h in simplest form.

f (x) = 4x2 − 7  on  [1,  b]

g(x) = 2x2 − 9  on  ⎡⎣4,  b⎤
⎦

p(x) = 3x + 4  on  [2,  2 + h]

k(x) = 4x − 2  on  [3,  3 + h]

f (x) = 2x2 + 1  on  [x, x + h]

g(x) = 3x2 − 2  on  [x, x + h]

a(t) = 1
t + 4   on  [9, 9 + h]

b(x) = 1
x + 3   on  [1, 1 + h]

j(x) = 3x3   on  [1, 1 + h]

r(t) = 4t3   on  [2, 2 + h]

f (x + h) − f (x)
h   given   f (x) = 2x2 − 3x  on

 [x, x + h]

Graphical
For the following exercises, consider the graph of   f   shown

in Figure 3.55.

Figure 3.55

Estimate the average rate of change from  x = 1  to
 x = 4.

Estimate the average rate of change from  x = 2  to
 x = 5.

For the following exercises, use the graph of each function
to estimate the intervals on which the function is increasing
or decreasing.
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174.

175.

176.

177.

178.

179.For the following exercises, consider the graph shown in
Figure 3.56.

Figure 3.56

Estimate the intervals where the function is increasing
or decreasing.

Estimate the point(s) at which the graph of   f   has a

local maximum or a local minimum.

For the following exercises, consider the graph in Figure
3.57.

Figure 3.57

If the complete graph of the function is shown,
estimate the intervals where the function is increasing or
decreasing.

If the complete graph of the function is shown,
estimate the absolute maximum and absolute minimum.

Numeric

Table 3.19 gives the annual sales (in millions of
dollars) of a product from 1998 to 2006. What was the
average rate of change of annual sales (a) between 2001 and
2002, and (b) between 2001 and 2004?
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180.

181.

182.

183.

184.

185.

186.

187.

Year Sales
(millions of dollars)

1998 201

1999 219

2000 233

2001 243

2002 249

2003 251

2004 249

2005 243

2006 233

Table 3.19

Table 3.20 gives the population of a town (in
thousands) from 2000 to 2008. What was the average rate
of change of population (a) between 2002 and 2004, and (b)
between 2002 and 2006?

Year Population
(thousands)

2000 87

2001 84

2002 83

2003 80

2004 77

2005 76

2006 78

2007 81

2008 85

Table 3.20

For the following exercises, find the average rate of change
of each function on the interval specified.

f (x) = x2   on  [1,  5]

h(x) = 5 − 2x2   on  [−2, 4]

q(x) = x3   on  [−4, 2]

g(x) = 3x3 − 1  on  [−3, 3]

y = 1
x   on  [1,  3]

p(t) =
⎛
⎝t2 − 4⎞

⎠(t + 1)

t2 + 3
  on  [−3, 1]

k(t) = 6t2 + 4
t3   on  [−1, 3]

Technology
For the following exercises, use a graphing utility to
estimate the local extrema of each function and to estimate
the intervals on which the function is increasing and
decreasing.
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188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

f (x) = x4 − 4x3 + 5

h(x) = x5 + 5x4 + 10x3 + 10x2 − 1

g(t) = t t + 3

k(t) = 3t
2
3 − t

m(x) = x4 + 2x3 − 12x2 − 10x + 4

n(x) = x4 − 8x3 + 18x2 − 6x + 2

Extension

The graph of the function   f   is shown in Figure
3.58.

Figure 3.58

Based on the calculator screen shot, the point
 (1.333,  5.185)  is which of the following?

A. a relative (local) maximum of the function

B. the vertex of the function

C. the absolute maximum of the function

D. a zero of the function

Let f (x) = 1
x . Find a number  c  such that the

average rate of change of the function   f   on the interval

 (1, c)  is  − 1
4.

Let   f (x) = 1
x . Find the number  b  such that the

average rate of change of   f   on the interval  (2, b)  is
 − 1

10.

Real-World Applications

At the start of a trip, the odometer on a car read
21,395. At the end of the trip, 13.5 hours later, the odometer
read 22,125. Assume the scale on the odometer is in miles.
What is the average speed the car traveled during this trip?

A driver of a car stopped at a gas station to fill up his
gas tank. He looked at his watch, and the time read exactly
3:40 p.m. At this time, he started pumping gas into the tank.
At exactly 3:44, the tank was full and he noticed that he had
pumped 10.7 gallons. What is the average rate of flow of
the gasoline into the gas tank?

Near the surface of the moon, the distance that an
object falls is a function of time. It is given by
 d(t) = 2.6667t2,  where  t  is in seconds and  d(t)  is in
feet. If an object is dropped from a certain height, find the
average velocity of the object from  t = 1  to  t = 2.

The graph in Figure 3.59 illustrates the decay of a
radioactive substance over  t  days.

Figure 3.59

Use the graph to estimate the average decay rate from
 t = 5  to  t = 15.
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3.4 | Composition of Functions

Learning Objectives

In this section, you will:

3.4.1 Combine functions using algebraic operations.
3.4.2 Create a new function by composition of functions.
3.4.3 Evaluate composite functions.
3.4.4 Find the domain of a composite function.
3.4.5 Decompose a composite function into its component functions.

Suppose we want to calculate how much it costs to heat a house on a particular day of the year. The cost to heat a house will
depend on the average daily temperature, and in turn, the average daily temperature depends on the particular day of the
year. Notice how we have just defined two relationships: The cost depends on the temperature, and the temperature depends
on the day.

Using descriptive variables, we can notate these two functions. The function  C(T)  gives the cost  C  of heating a house for
a given average daily temperature in  T   degrees Celsius. The function  T(d)  gives the average daily temperature on day  d
of the year. For any given day,  Cost = C⎛

⎝T(d)⎞
⎠ means that the cost depends on the temperature, which in turns depends on

the day of the year. Thus, we can evaluate the cost function at the temperature  T(d).  For example, we could evaluate  T(5) 
to determine the average daily temperature on the 5th day of the year. Then, we could evaluate the cost function at that
temperature. We would write  C⎛

⎝T(5)⎞
⎠.

By combining these two relationships into one function, we have performed function composition, which is the focus of
this section.

Combining Functions Using Algebraic Operations
Function composition is only one way to combine existing functions. Another way is to carry out the usual algebraic
operations on functions, such as addition, subtraction, multiplication and division. We do this by performing the operations
with the function outputs, defining the result as the output of our new function.

Suppose we need to add two columns of numbers that represent a husband and wife’s separate annual incomes over a period
of years, with the result being their total household income. We want to do this for every year, adding only that year’s
incomes and then collecting all the data in a new column. If  w(y)  is the wife’s income and  h(y)  is the husband’s income in

year  y,   and we want  T   to represent the total income, then we can define a new function.

T(y) = h(y) + w(y)

If this holds true for every year, then we can focus on the relation between the functions without reference to a year and
write

T = h + w

Just as for this sum of two functions, we can define difference, product, and ratio functions for any pair of functions that
have the same kinds of inputs (not necessarily numbers) and also the same kinds of outputs (which do have to be numbers
so that the usual operations of algebra can apply to them, and which also must have the same units or no units when we add
and subtract). In this way, we can think of adding, subtracting, multiplying, and dividing functions.
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For two functions   f (x)  and  g(x) with real number outputs, we define new functions f + g,   f − g,   f g,   and   fg   by the

relations

( f + g)(x) = f (x) + g(x)
( f − g)(x) = f (x) − g(x)

 ( f g)(x) = f (x)g(x)
⎛
⎝

f
g

⎞
⎠(x) = f (x)

g(x) where g(x)  ≠  0

Example 3.39

Performing Algebraic Operations on Functions

Find and simplify the functions  ⎛⎝g − f ⎞
⎠(x)  and  ⎛⎝

g
f
⎞
⎠(x),   given   f (x) = x − 1  and  g(x) = x2 − 1. Are they the

same function?

Solution
Begin by writing the general form, and then substitute the given functions.

(g − f )(x) = g(x) − f (x)

(g − f )(x) = x2 − 1 − (x − 1)

= x2 − x
= x(x − 1)

 ⎛
⎝

g
f
⎞
⎠(x) = g(x)

f (x)
⎛
⎝

g
f
⎞
⎠(x) = x2 − 1

x − 1

= (x + 1)(x − 1)
x − 1 where x ≠ 1

= x + 1

No, the functions are not the same.

Note: For  ⎛⎝
g
f
⎞
⎠(x),   the condition  x ≠ 1  is necessary because when  x = 1,   the denominator is equal to 0, which

makes the function undefined.

Find and simplify the functions  ⎛⎝ f g⎞
⎠(x)  and  ⎛⎝ f − g⎞

⎠(x).

f (x) = x − 1    and    g(x) = x2 − 1

Are they the same function?

Create a Function by Composition of Functions
Performing algebraic operations on functions combines them into a new function, but we can also create functions by
composing functions. When we wanted to compute a heating cost from a day of the year, we created a new function that
takes a day as input and yields a cost as output. The process of combining functions so that the output of one function
becomes the input of another is known as a composition of functions. The resulting function is known as a composite
function. We represent this combination by the following notation:
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⎛
⎝ f ∘g⎞

⎠(x) = f ⎛
⎝g(x)⎞

⎠

We read the left-hand side as “ f   composed with  g  at  x,” and the right-hand side as “ f   of  g  of  x.” The two sides of the

equation have the same mathematical meaning and are equal. The open circle symbol  ∘   is called the composition operator.
We use this operator mainly when we wish to emphasize the relationship between the functions themselves without referring
to any particular input value. Composition is a binary operation that takes two functions and forms a new function, much
as addition or multiplication takes two numbers and gives a new number. However, it is important not to confuse function
composition with multiplication because, as we learned above, in most cases f (g(x)) ≠ f (x)g(x).

It is also important to understand the order of operations in evaluating a composite function. We follow the usual convention
with parentheses by starting with the innermost parentheses first, and then working to the outside. In the equation above,
the function  g  takes the input  x  first and yields an output  g(x). Then the function   f   takes  g(x)  as an input and yields an

output   f ⎛
⎝g(x)⎞

⎠.

In general,   f ∘g  and  g ∘ f   are different functions. In other words, in many cases   f ⎛
⎝g(x)⎞

⎠ ≠ g⎛
⎝ f (x)⎞

⎠  for all  x. We will also

see that sometimes two functions can be composed only in one specific order.

For example, if   f (x) = x2   and  g(x) = x + 2, then

f (g(x)) = f (x + 2)

= (x + 2)2

= x2 + 4x + 4

but

g( f (x)) = g⎛
⎝x2⎞

⎠

= x2 + 2

These expressions are not equal for all values of  x,   so the two functions are not equal. It is irrelevant that the expressions

happen to be equal for the single input value  x = − 1
2.

Note that the range of the inside function (the first function to be evaluated) needs to be within the domain of the outside
function. Less formally, the composition has to make sense in terms of inputs and outputs.

Composition of Functions

When the output of one function is used as the input of another, we call the entire operation a composition of functions.
For any input  x  and functions   f   and  g,   this action defines a composite function, which we write as   f ∘g  such that

(3.2)⎛
⎝ f ∘g⎞

⎠(x) = f ⎛
⎝g(x)⎞

⎠

The domain of the composite function   f ∘g  is all  x  such that  x  is in the domain of  g  and  g(x)  is in the domain of   f .

It is important to realize that the product of functions   f g  is not the same as the function composition   f ⎛
⎝g(x)⎞

⎠,   because,

in general,   f (x)g(x) ≠ f ⎛
⎝g(x)⎞

⎠.
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Example 3.40

Determining whether Composition of Functions is Commutative

Using the functions provided, find   f ⎛
⎝g(x)⎞

⎠  and  g⎛
⎝ f (x)⎞

⎠. Determine whether the composition of the functions is

commutative.

f (x) = 2x + 1             g(x) = 3 − x

Solution
Let’s begin by substituting  g(x)  into   f (x).

f (g(x)) = 2(3 − x) + 1
= 6 − 2x + 1
= 7 − 2x

Now we can substitute   f (x)  into  g(x).

g( f (x)) = 3 − (2x + 1)
= 3 − 2x − 1
= −2x + 2

We find that  g( f (x)) ≠ f (g(x)),   so the operation of function composition is not commutative.

Example 3.41

Interpreting Composite Functions

The function  c(s)  gives the number of calories burned completing  s  sit-ups, and  s(t)  gives the number of sit-ups
a person can complete in  t minutes. Interpret  c(s(3)).

Solution
The inside expression in the composition is  s(3). Because the input to the s-function is time,  t = 3  represents 3
minutes, and  s(3)  is the number of sit-ups completed in 3 minutes.

Using  s(3)  as the input to the function  c(s)  gives us the number of calories burned during the number of sit-ups
that can be completed in 3 minutes, or simply the number of calories burned in 3 minutes (by doing sit-ups).

Example 3.42

Investigating the Order of Function Composition

Suppose   f (x)  gives miles that can be driven in  x  hours and  g(y)  gives the gallons of gas used in driving  y 
miles. Which of these expressions is meaningful:   f ⎛

⎝g(y)⎞
⎠  or  g⎛

⎝ f (x)⎞
⎠?
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Solution
The function  y = f (x)  is a function whose output is the number of miles driven corresponding to the number of

hours driven.

number of miles = f  (number of hours)

The function  g(y)  is a function whose output is the number of gallons used corresponding to the number of miles

driven. This means:

number of gallons = g (number of miles)

The expression  g(y)  takes miles as the input and a number of gallons as the output. The function   f (x)  requires a

number of hours as the input. Trying to input a number of gallons does not make sense. The expression   f ⎛
⎝g(y)⎞

⎠ 
is meaningless.

The expression   f (x)  takes hours as input and a number of miles driven as the output. The function  g(y)  requires

a number of miles as the input. Using   f (x)  (miles driven) as an input value for  g(y),  where gallons of gas

depends on miles driven, does make sense. The expression  g⎛
⎝ f (x)⎞

⎠ makes sense, and will yield the number of

gallons of gas used,  g,   driving a certain number of miles,   f (x),   in  x  hours.

Are there any situations where   f(g(y))  and  g( f(x)) would both be meaningful or useful expressions?
Yes. For many pure mathematical functions, both compositions make sense, even though they usually produce
different new functions. In real-world problems, functions whose inputs and outputs have the same units also may
give compositions that are meaningful in either order.

The gravitational force on a planet a distance r from the sun is given by the function G(r). The

acceleration of a planet subjected to any force F is given by the function a(F). Form a meaningful composition

of these two functions, and explain what it means.

Evaluating Composite Functions
Once we compose a new function from two existing functions, we need to be able to evaluate it for any input in its domain.
We will do this with specific numerical inputs for functions expressed as tables, graphs, and formulas and with variables as
inputs to functions expressed as formulas. In each case, we evaluate the inner function using the starting input and then use
the inner function’s output as the input for the outer function.

Evaluating Composite Functions Using Tables
When working with functions given as tables, we read input and output values from the table entries and always work from
the inside to the outside. We evaluate the inside function first and then use the output of the inside function as the input to
the outside function.

Example 3.43

Using a Table to Evaluate a Composite Function

Using Table 3.21, evaluate   f (g(3))  and  g( f (3)).
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x f(x) g(x)

1 6 3

2 8 5

3 3 2

4 1 7

Table 3.21

Solution
To evaluate   f (g(3)), we start from the inside with the input value 3. We then evaluate the inside expression  g(3) 
using the table that defines the function  g :   g(3) = 2. We can then use that result as the input to the function

  f ,   so  g(3)  is replaced by 2 and we get   f (2). Then, using the table that defines the function   f ,  we find that

  f (2) = 8.

g(3) = 2
f (g(3)) = f (2) = 8

To evaluate  g( f (3)), we first evaluate the inside expression   f (3)  using the first table:   f (3) = 3. Then, using the

table for  g, we can evaluate

g( f (3)) = g(3) = 2

Table 3.22 shows the composite functions   f ∘g  and  g ∘ f   as tables.

x g(x) f ⎛
⎝g(x)⎞

⎠ f (x) g⎛
⎝ f (x)⎞

⎠

3 2 8 3 2

Table 3.22

Using Table 3.21, evaluate   f (g(1))  and  g( f (4)).

Evaluating Composite Functions Using Graphs
When we are given individual functions as graphs, the procedure for evaluating composite functions is similar to the process
we use for evaluating tables. We read the input and output values, but this time, from the  x- and y- axes of the graphs.
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Given a composite function and graphs of its individual functions, evaluate it using the information
provided by the graphs.

1. Locate the given input to the inner function on the  x- axis of its graph.

2. Read off the output of the inner function from the  y- axis of its graph.

3. Locate the inner function output on the  x- axis of the graph of the outer function.

4. Read the output of the outer function from the  y- axis of its graph. This is the output of the composite

function.

Example 3.44

Using a Graph to Evaluate a Composite Function

Using Figure 3.60, evaluate   f (g(1)).

Figure 3.60

Solution
To evaluate   f (g(1)),  we start with the inside evaluation. See Figure 3.61.
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Figure 3.61

We evaluate  g(1)  using the graph of  g(x),   finding the input of 1 on the  x- axis and finding the output value of

the graph at that input. Here,  g(1) = 3. We use this value as the input to the function   f .

f (g(1)) = f (3)

We can then evaluate the composite function by looking to the graph of   f (x),   finding the input of 3 on the x-
axis and reading the output value of the graph at this input. Here,   f (3) = 6,   so   f (g(1)) = 6.

Analysis
Figure 3.62 shows how we can mark the graphs with arrows to trace the path from the input value to the output
value.
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Figure 3.62

Using Figure 3.60, evaluate  g( f (2)).

Evaluating Composite Functions Using Formulas
When evaluating a composite function where we have either created or been given formulas, the rule of working from the
inside out remains the same. The input value to the outer function will be the output of the inner function, which may be a
numerical value, a variable name, or a more complicated expression.

While we can compose the functions for each individual input value, it is sometimes helpful to find a single formula that
will calculate the result of a composition   f ⎛

⎝g(x)⎞
⎠. To do this, we will extend our idea of function evaluation. Recall that,

when we evaluate a function like   f (t) = t2 − t,  we substitute the value inside the parentheses into the formula wherever

we see the input variable.

Given a formula for a composite function, evaluate the function.

1. Evaluate the inside function using the input value or variable provided.

2. Use the resulting output as the input to the outside function.

Example 3.45

Evaluating a Composition of Functions Expressed as Formulas with a Numerical
Input

Given   f (t) = t2 − t  and  h(x) = 3x + 2,   evaluate   f (h(1)).
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Solution
Because the inside expression is  h(1),  we start by evaluating  h(x)  at 1.

h(1) = 3(1) + 2
h(1) = 5

Then   f (h(1)) = f (5),   so we evaluate   f (t)  at an input of 5.

f (h(1)) = f (5)

f (h(1)) = 52 − 5
f (h(1)) = 20

Analysis
It makes no difference what the input variables  t  and  x were called in this problem because we evaluated for
specific numerical values.

Given   f (t) = t2 − t  and  h(x) = 3x + 2,   evaluate

a. h( f (2))

b. h( f ( − 2))

Finding the Domain of a Composite Function
As we discussed previously, the domain of a composite function such as   f ∘g  is dependent on the domain of  g  and the

domain of   f .  It is important to know when we can apply a composite function and when we cannot, that is, to know the

domain of a function such as   f ∘g. Let us assume we know the domains of the functions   f   and  g  separately. If we write

the composite function for an input  x  as   f ⎛
⎝g(x)⎞

⎠,  we can see right away that  x must be a member of the domain of  g  in
order for the expression to be meaningful, because otherwise we cannot complete the inner function evaluation. However,
we also see that  g(x) must be a member of the domain of   f ,   otherwise the second function evaluation in   f ⎛

⎝g(x)⎞
⎠  cannot

be completed, and the expression is still undefined. Thus the domain of   f ∘g  consists of only those inputs in the domain of

 g  that produce outputs from  g  belonging to the domain of   f . Note that the domain of   f   composed with  g  is the set of all

 x  such that  x  is in the domain of  g  and  g(x)  is in the domain of   f .

Domain of a Composite Function

The domain of a composite function   f ⎛
⎝g(x)⎞

⎠  is the set of those inputs  x  in the domain of  g  for which  g(x)  is in the

domain of   f .

Given a function composition   f(g(x)), determine its domain.

1. Find the domain of  g.

2. Find the domain of   f .

3. Find those inputs  x  in the domain of  g  for which  g(x)  is in the domain of   f . That is, exclude those

inputs  x  from the domain of  g  for which  g(x)  is not in the domain of   f . The resulting set is the domain

of   f ∘g.
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Example 3.46

Finding the Domain of a Composite Function

Find the domain of

⎛
⎝ f ∘g⎞

⎠(x)    where       f (x) = 5
x − 1  and   g(x) = 4

3x − 2

Solution

The domain of  g(x)  consists of all real numbers except  x = 2
3,   since that input value would cause us to divide

by 0. Likewise, the domain of   f   consists of all real numbers except 1. So we need to exclude from the domain of

 g(x)  that value of  x  for which  g(x) = 1.

4
3x − 2 = 1

4 = 3x − 2
6 = 3x
x = 2

So the domain of   f ∘g  is the set of all real numbers except  23   and  2. This means that

x ≠ 2
3   or  x ≠ 2

We can write this in interval notation as
⎛
⎝−∞, 2

3
⎞
⎠ ∪ ⎛

⎝
2
3, 2⎞

⎠ ∪ (2, ∞)

Example 3.47

Finding the Domain of a Composite Function Involving Radicals

Find the domain of
⎛
⎝ f ∘g⎞

⎠(x)  where       f (x) = x + 2  and    g(x) = 3 − x

Solution
Because we cannot take the square root of a negative number, the domain of  g  is  (−∞, 3]. Now we check the

domain of the composite function
⎛
⎝ f ∘g⎞

⎠(x) = 3 − x + 2  or ⎛⎝ f ∘g⎞
⎠(x) = 5 − x

The domain of this function is  (−∞, 5⎤
⎦. To find the domain of   f ∘g,  we ask ourselves if there are any further

restrictions offered by the domain of the composite function. The answer is no, since  (−∞, 3]  is a proper subset
of the domain of   f ∘g. This means the domain of   f ∘g  is the same as the domain of  g,   namely,  (−∞, 3].

Analysis
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This example shows that knowledge of the range of functions (specifically the inner function) can also be helpful
in finding the domain of a composite function. It also shows that the domain of   f ∘g  can contain values that are

not in the domain of   f ,   though they must be in the domain of  g.

Find the domain of

⎛
⎝ f ∘g⎞

⎠(x)  where       f (x) = 1
x − 2  and    g(x) = x + 4

Decomposing a Composite Function into its Component Functions
In some cases, it is necessary to decompose a complicated function. In other words, we can write it as a composition
of two simpler functions. There may be more than one way to decompose a composite function, so we may choose the
decomposition that appears to be most expedient.

Example 3.48

Decomposing a Function

Write   f (x) = 5 − x2  as the composition of two functions.

Solution
We are looking for two functions,  g  and  h,   so   f (x) = g(h(x)). To do this, we look for a function inside a

function in the formula for   f (x). As one possibility, we might notice that the expression  5 − x2   is the inside of

the square root. We could then decompose the function as

h(x) = 5 − x2  and g(x) = x

We can check our answer by recomposing the functions.

g(h(x)) = g⎛
⎝5 − x2⎞

⎠ = 5 − x2

Write   f (x) = 4
3 − 4 + x2

  as the composition of two functions.

Access these online resources for additional instruction and practice with composite functions.

• Composite Functions (http://openstaxcollege.org/l/compfunction)

• Composite Function Notation Application (http://openstaxcollege.org/l/compfuncnot)

• Composite Functions Using Graphs (http://openstaxcollege.org/l/compfuncgraph)

• Decompose Functions (http://openstaxcollege.org/l/decompfunction)

• Composite Function Values (http://openstaxcollege.org/l/compfuncvalue)
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3.4 EXERCISES
Verbal

How does one find the domain of the quotient of two

functions,   fg ?  

What is the composition of two functions,   f ∘g?

If the order is reversed when composing two
functions, can the result ever be the same as the answer in
the original order of the composition? If yes, give an
example. If no, explain why not.

How do you find the domain for the composition of
two functions,   f ∘g?

Algebraic
For the following exercises, determine the domain for each
function in interval notation.

Given   f (x) = x2 + 2x and  g(x) = 6 − x2, find

  f + g,   f − g,   f g,  and    fg .

Given   f (x) = − 3x2 + x and  g(x) = 5,   find

  f + g,   f − g,   f g,   and    fg . 

Given   f (x) = 2x2 + 4x and  g(x) = 1
2x, find

  f + g,   f − g,   f g,  and  f
g . 

Given   f (x) = 1
x − 4   and  g(x) = 1

6 − x,   find

  f + g,   f − g,   f g,  and  f
g . 

Given   f (x) = 3x2   and  g(x) = x − 5,   find

  f + g,   f − g,   f g,  and  f
g . 

Given   f (x) = x  and  g(x) = |x − 3|,   find  gf .

For the following exercise, find the indicated function
given   f (x) = 2x2 + 1  and  g(x) = 3x − 5.

a. f (g(2))

b. f (g(x))

c. g( f (x))

d. (g ∘g)(x)

e. ⎛
⎝ f ∘ f ⎞

⎠(−2)

For the following exercises, use each pair of functions to
find   f ⎛

⎝g(x)⎞
⎠  and  g⎛

⎝ f (x)⎞
⎠.  Simplify your answers.

f (x) = x2 + 1,  g(x) = x + 2

f (x) = x + 2,  g(x) = x2 + 3

f (x) = |x|,  g(x) = 5x + 1

f (x) = x3 ,  g(x) = x + 1
x3

f (x) = 1
x − 6,  g(x) = 7

x + 6

f (x) = 1
x − 4,  g(x) = 2

x + 4

For the following exercises, use each set of functions to
find   f ⎛

⎝g⎛
⎝h(x)⎞

⎠
⎞
⎠.  Simplify your answers.

f (x) = x4 + 6,   g(x) = x − 6,   and  h(x) = x

f (x) = x2 + 1,   g(x) = 1
x ,   and  h(x) = x + 3

Given   f (x) = 1
x   and  g(x) = x − 3,   find the

following:

a. ( f ∘g)(x)

b. the domain of  ( f ∘g)(x)  in interval notation

c. (g ∘ f )(x)

d. the domain of  (g ∘ f )(x) 

e. ⎛
⎝

f
g

⎞
⎠x

Given   f (x) = 2 − 4x  and  g(x) = − 3
x ,   find the

following:

a. (g ∘ f )(x)

b. the domain of  (g ∘ f )(x)  in interval notation

Given the functions
f (x) = 1 − x

x   and  g(x) = 1
1 + x2, find the following:

a. (g ∘ f )(x)

b. (g ∘ f )(2)
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Given functions  p(x) = 1
x   and  m(x) = x2 − 4,  

state the domain of each of the following functions using
interval notation:

a. p(x)
m(x)

b. p(m(x))

c. m(p(x))

Given functions  q(x) = 1
x   and  h(x) = x2 − 9,  

state the domain of each of the following functions using
interval notation.

a. q(x)
h(x)

b. q⎛
⎝h(x)⎞

⎠

c. h⎛
⎝q(x)⎞

⎠

For   f (x) = 1
x   and  g(x) = x − 1,  write the domain

of  ( f ∘g)(x)  in interval notation.

For the following exercises, find functions   f (x)  and  g(x) 
so the given function can be expressed as  h(x) = f ⎛

⎝g(x)⎞
⎠.

h(x) = (x + 2)2

h(x) = (x − 5)3

h(x) = 3
x − 5

h(x) = 4
(x + 2)2

h(x) = 4 + x3

h(x) = 1
2x − 3

3

h(x) = 1
(3x2 − 4)−3

h(x) = 3x − 2
x + 5

4

h(x) = ⎛
⎝

8 + x3

8 − x3
⎞
⎠

4

h(x) = 2x + 6

h(x) = (5x − 1)3

h(x) = x − 13

h(x) = |x2 + 7|
h(x) = 1

(x − 2)3

h(x) = ⎛
⎝

1
2x − 3

⎞
⎠

2

h(x) = 2x − 1
3x + 4

Graphical
For the following exercises, use the graphs of   f , shown in

Figure 3.63, and  g, shown in Figure 3.64, to evaluate

the expressions.

Figure 3.63

Figure 3.64

f ⎛
⎝g(3)⎞

⎠

f ⎛
⎝g(1)⎞

⎠

g⎛
⎝ f (1)⎞

⎠

g⎛
⎝ f (0)⎞

⎠
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246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

f ⎛
⎝ f (5)⎞

⎠

f ⎛
⎝ f (4)⎞

⎠

g⎛
⎝g(2)⎞

⎠

g⎛
⎝g(0)⎞

⎠

For the following exercises, use graphs of   f (x), shown

in Figure 3.65,  g(x), shown in Figure 3.66, and  h(x),
shown in Figure 3.67, to evaluate the expressions.

Figure 3.65

Figure 3.66

Figure 3.67

g⎛
⎝ f (1)⎞

⎠

g⎛
⎝ f (2)⎞

⎠

f ⎛
⎝g(4)⎞

⎠

f ⎛
⎝g(1)⎞

⎠

f ⎛
⎝h(2)⎞

⎠

h⎛
⎝ f (2)⎞

⎠

f ⎛
⎝g⎛

⎝h(4)⎞
⎠
⎞
⎠

f ⎛
⎝g⎛

⎝ f (−2)⎞
⎠
⎞
⎠

Numeric
For the following exercises, use the function values for
  f  and g  shown in Table 3.23 to evaluate each

expression.

x f(x) g(x)

0 7 9

1 6 5

2 5 6

3 8 2

4 4 1

5 0 8

6 2 7

7 1 3

8 9 4

9 3 0

Table 3.23

f ⎛
⎝g(8)⎞

⎠

f ⎛
⎝g(5)⎞

⎠

g⎛
⎝ f (5)⎞

⎠

g⎛
⎝ f (3)⎞

⎠
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263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

f ⎛
⎝ f (4)⎞

⎠

f ⎛
⎝ f (1)⎞

⎠

g⎛
⎝g(2)⎞

⎠

g⎛
⎝g(6)⎞

⎠

For the following exercises, use the function values for
  f  and g  shown in Table 3.24 to evaluate the expressions.

x f(x) g(x)

−3 11 −8

−2 9 −3

−1 7 0

0 5 1

1 3 0

2 1 −3

3 −1 −8

Table 3.24

( f ∘g)(1)

( f ∘g)(2)

(g ∘ f )(2)

(g ∘ f )(3)

(g ∘g)(1)

( f ∘ f )(3)

For the following exercises, use each pair of functions to
find   f ⎛

⎝g(0)⎞
⎠  and  g⎛

⎝ f (0)⎞
⎠.

f (x) = 4x + 8,  g(x) = 7 − x2

f (x) = 5x + 7,  g(x) = 4 − 2x2

f (x) = x + 4,  g(x) = 12 − x3

f (x) = 1
x + 2,  g(x) = 4x + 3

For the following exercises, use the functions
  f (x) = 2x2 + 1  and  g(x) = 3x + 5  to evaluate or find

the composite function as indicated.

f ⎛
⎝g(2)⎞

⎠

f ⎛
⎝g(x)⎞

⎠

g⎛
⎝ f ( − 3)⎞

⎠

(g ∘g)(x)

Extensions

For the following exercises, use   f (x) = x3 + 1  and

 g(x) = x − 13 .

Find  ( f ∘g)(x)  and  (g ∘ f )(x). Compare the two

answers.

Find  ( f ∘g)(2)  and  (g ∘ f )(2).

What is the domain of  (g ∘ f )(x)?

What is the domain of  ( f ∘g)(x)?

Let   f (x) = 1
x .

a. Find  ( f ∘ f )(x).

b. Is  ( f ∘ f )(x)  for any function   f   the same result as

the answer to part (a) for any function? Explain.

For the following exercises, let  F(x) = (x + 1)5,  
f (x) = x5,   and  g(x) = x + 1.

True or False:  (g ∘ f )(x) = F(x).

True or False:  ( f ∘g)(x) = F(x).

For the following exercises, find the composition when
  f (x) = x2 + 2  for all  x ≥ 0  and  g(x) = x − 2.

( f ∘g)(6);  (g ∘ f )(6)

(g ∘ f )(a);  ( f ∘g)(a)

( f ∘g)(11);  (g ∘ f )(11)
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290.

291.

292.

293.

294.

295.

296.

297.

Real-World Applications

The function  D(p)  gives the number of items that

will be demanded when the price is  p. The production cost

 C(x)  is the cost of producing  x  items. To determine the
cost of production when the price is $6, you would do
which of the following?

a. Evaluate  D⎛
⎝C(6)⎞

⎠.

b. Evaluate  C⎛
⎝D(6)⎞

⎠.

c. Solve  D(C(x)) = 6.

d. Solve  C⎛
⎝D(p)⎞

⎠ = 6.

The function  A(d)  gives the pain level on a scale of 0
to 10 experienced by a patient with  d milligrams of a pain-
reducing drug in her system. The milligrams of the drug in
the patient’s system after  t minutes is modeled by  m(t). 
Which of the following would you do in order to determine
when the patient will be at a pain level of 4?

a. Evaluate  A(m(4)).

b. Evaluate  m(A(4)).

c. Solve  A(m(t)) = 4.

d. Solve  m⎛
⎝A(d)⎞

⎠ = 4.

A store offers customers a 30% discount on the price
 x  of selected items. Then, the store takes off an additional
15% at the cash register. Write a price function  P(x)  that
computes the final price of the item in terms of the original
price  x.  (Hint: Use function composition to find your
answer.)

A rain drop hitting a lake makes a circular ripple. If
the radius, in inches, grows as a function of time in minutes
according to  r(t) = 25 t + 2,   find the area of the ripple as
a function of time. Find the area of the ripple at  t = 2.

A forest fire leaves behind an area of grass burned in
an expanding circular pattern. If the radius of the circle of
burning grass is increasing with time according to the
formula  r(t) = 2t + 1,   express the area burned as a
function of time,  t  (minutes).

Use the function you found in the previous exercise to
find the total area burned after 5 minutes.

The radius  r,   in inches, of a spherical balloon is

related to the volume,  V ,   by  r(V) = 3V
4π

3
. Air is pumped

into the balloon, so the volume after  t  seconds is given by
 V(t) = 10 + 20t.

a. Find the composite function  r(V(t)).

b. Find the exact time when the radius reaches 10
inches.

The number of bacteria in a refrigerated food product
is given by N(T) = 23T 2 − 56T + 1,   3 < T < 33,
where  T is the temperature of the food. When the food is
removed from the refrigerator, the temperature is given by
T(t) = 5t + 1.5, where t is the time in hours.

a. Find the composite function  N(T(t)).

b. Find the time (round to two decimal places) when
the bacteria count reaches 6752.
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3.5 | Transformation of Functions

Learning Objectives

In this section, you will:

3.5.1 Graph functions using vertical and horizontal shifts.
3.5.2 Graph functions using reflections about the  x-axis  axis and the  y-axis.

3.5.3 Determine whether a function is even, odd, or neither from its graph.
3.5.4 Graph functions using compressions and stretches.
3.5.5 Combine transformations.

Figure 3.68 (credit: "Misko"/Flickr)

We all know that a flat mirror enables us to see an accurate image of ourselves and whatever is behind us. When we tilt
the mirror, the images we see may shift horizontally or vertically. But what happens when we bend a flexible mirror?
Like a carnival funhouse mirror, it presents us with a distorted image of ourselves, stretched or compressed horizontally or
vertically. In a similar way, we can distort or transform mathematical functions to better adapt them to describing objects or
processes in the real world. In this section, we will take a look at several kinds of transformations.

Graphing Functions Using Vertical and Horizontal Shifts
Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs, and
equations. One method we can employ is to adapt the basic graphs of the toolkit functions to build new models for a given
scenario. There are systematic ways to alter functions to construct appropriate models for the problems we are trying to
solve.

Identifying Vertical Shifts
One simple kind of transformation involves shifting the entire graph of a function up, down, right, or left. The simplest
shift is a vertical shift, moving the graph up or down, because this transformation involves adding a positive or negative
constant to the function. In other words, we add the same constant to the output value of the function regardless of the input.
For a function  g(x) = f (x) + k,   the function   f (x)  is shifted vertically  k  units. See Figure 3.69 for an example.

Chapter 3 Functions 317



Figure 3.69 Vertical shift by  k = 1  of the cube root function

  f (x) = x3 .

To help you visualize the concept of a vertical shift, consider that  y = f (x). Therefore,   f (x) + k  is equivalent to  y + k. 
Every unit of  y  is replaced by  y + k,   so the y-value increases or decreases depending on the value of  k. The result is a

shift upward or downward.

Vertical Shift

Given a function f (x), a new function g(x) = f (x) + k, where  k is a constant, is a vertical shift of the function

f (x). All the output values change by k units. If k is positive, the graph will shift up. If k is negative, the graph will

shift down.

Example 3.49

Adding a Constant to a Function

To regulate temperature in a green building, airflow vents near the roof open and close throughout the day. Figure
3.70 shows the area of open vents  V   (in square feet) throughout the day in hours after midnight,  t. During the
summer, the facilities manager decides to try to better regulate temperature by increasing the amount of open
vents by 20 square feet throughout the day and night. Sketch a graph of this new function.

Figure 3.70

Solution
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We can sketch a graph of this new function by adding 20 to each of the output values of the original function.
This will have the effect of shifting the graph vertically up, as shown in Figure 3.71.

Figure 3.71

Notice that in Figure 3.71, for each input value, the output value has increased by 20, so if we call the new
function  S(t), we could write

S(t) = V(t) + 20

This notation tells us that, for any value of  t, S(t)  can be found by evaluating the function  V   at the same input
and then adding 20 to the result. This defines  S  as a transformation of the function  V ,   in this case a vertical shift
up 20 units. Notice that, with a vertical shift, the input values stay the same and only the output values change.
See Table 3.25.

t 0 8 10 17 19 24

V(t) 0 0 220 220 0 0

S(t) 20 20 240 240 20 20

Table 3.25

Given a tabular function, create a new row to represent a vertical shift.

1. Identify the output row or column.

2. Determine the magnitude of the shift.

3. Add the shift to the value in each output cell. Add a positive value for up or a negative value for down.

Example 3.50

Shifting a Tabular Function Vertically
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A function   f (x)  is given in Table 3.26. Create a table for the function  g(x) = f (x) − 3.

x 2 4 6 8

f(x) 1 3 7 11

Table 3.26

Solution
The formula  g(x) = f (x) − 3  tells us that we can find the output values of  g  by subtracting 3 from the output

values of   f .  For example:

f (2) = 1 Given
g(x) = f (x) − 3 Given transformation
g(2) = f (2) − 3

= 1 − 3
= −2

Subtracting 3 from each   f (x)  value, we can complete a table of values for  g(x)  as shown in Table 3.27.

x 2 4 6 8

f(x) 1 3 7 11

g(x) −2 0 4 8

Table 3.27

Analysis
As with the earlier vertical shift, notice the input values stay the same and only the output values change.

The function  h(t) = − 4.9t2 + 30t  gives the height  h  of a ball (in meters) thrown upward from the

ground after  t  seconds. Suppose the ball was instead thrown from the top of a 10-m building. Relate this new
height function  b(t)  to  h(t),   and then find a formula for  b(t).

Identifying Horizontal Shifts
We just saw that the vertical shift is a change to the output, or outside, of the function. We will now look at how changes to
input, on the inside of the function, change its graph and meaning. A shift to the input results in a movement of the graph of
the function left or right in what is known as a horizontal shift, shown in Figure 3.72.
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Figure 3.72 Horizontal shift of the function   f (x) = x3 . Note

that  h = + 1  shifts the graph to the left, that is, towards
negative values of  x.

For example, if   f (x) = x2,   then  g(x) = (x − 2)2   is a new function. Each input is reduced by 2 prior to squaring the

function. The result is that the graph is shifted 2 units to the right, because we would need to increase the prior input by 2
units to yield the same output value as given in   f .

Horizontal Shift

Given a function   f ,   a new function  g(x) = f (x − h),  where  h  is a constant, is a horizontal shift of the function   f . 
If  h  is positive, the graph will shift right. If  h  is negative, the graph will shift left.

Example 3.51

Adding a Constant to an Input

Returning to our building airflow example from Figure 3.70, suppose that in autumn the facilities manager
decides that the original venting plan starts too late, and wants to begin the entire venting program 2 hours earlier.
Sketch a graph of the new function.

Solution
We can set  V(t)  to be the original program and  F(t)  to be the revised program.

V(t) = the original venting plan
F(t) = starting 2 hrs sooner

In the new graph, at each time, the airflow is the same as the original function  V  was 2 hours later. For example,
in the original function  V ,   the airflow starts to change at 8 a.m., whereas for the function  F,   the airflow starts to
change at 6 a.m. The comparable function values are  V(8) = F(6).  See Figure 3.73. Notice also that the vents

first opened to  220 ft2   at 10 a.m. under the original plan, while under the new plan the vents reach  220 ft2   at
8 a.m., so  V(10) = F(8).

In both cases, we see that, because  F(t)  starts 2 hours sooner,  h = − 2. That means that the same output values
are reached when  F(t) = V(t − (−2)) = V(t + 2).
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Figure 3.73

Analysis
Note that  V(t + 2)  has the effect of shifting the graph to the left.

Horizontal changes or “inside changes” affect the domain of a function (the input) instead of the range and
often seem counterintuitive. The new function  F(t)  uses the same outputs as  V(t),   but matches those outputs to
inputs 2 hours earlier than those of  V(t).  Said another way, we must add 2 hours to the input of  V   to find the
corresponding output for F : F(t) = V(t + 2).

Given a tabular function, create a new row to represent a horizontal shift.

1. Identify the input row or column.

2. Determine the magnitude of the shift.

3. Add the shift to the value in each input cell.

Example 3.52

Shifting a Tabular Function Horizontally

A function   f (x)  is given in Table 3.28. Create a table for the function  g(x) = f (x − 3).

x 2 4 6 8

f(x) 1 3 7 11

Table 3.28

Solution
The formula  g(x) = f (x − 3)  tells us that the output values of  g  are the same as the output value of   f   when the

input value is 3 less than the original value. For example, we know that   f (2) = 1. To get the same output from
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the function  g,  we will need an input value that is 3 larger. We input a value that is 3 larger for  g(x)  because

the function takes 3 away before evaluating the function   f .

g(5) = f (5 − 3)
= f (2)
= 1

We continue with the other values to create Table 3.29.

x 5 7 9 11

x − 3 2 4 6 8

f(x) 1 3 7 11

g(x) 1 3 7 11

Table 3.29

The result is that the function  g(x)  has been shifted to the right by 3. Notice the output values for  g(x)  remain

the same as the output values for   f (x),   but the corresponding input values,  x,   have shifted to the right by 3.

Specifically, 2 shifted to 5, 4 shifted to 7, 6 shifted to 9, and 8 shifted to 11.

Analysis
Figure 3.74 represents both of the functions. We can see the horizontal shift in each point.
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Example 3.53

Identifying a Horizontal Shift of a Toolkit Function

Figure 3.75 represents a transformation of the toolkit function   f (x) = x2. Relate this new function  g(x)  to
  f (x),   and then find a formula for  g(x).

Figure 3.75

Solution

Notice that the graph is identical in shape to the   f (x) = x2   function, but the x-values are shifted to the right 2

units. The vertex used to be at (0,0), but now the vertex is at (2,0). The graph is the basic quadratic function
shifted 2 units to the right, so

g(x) = f (x − 2)

Notice how we must input the value  x = 2  to get the output value  y = 0;   the x-values must be 2 units larger

because of the shift to the right by 2 units. We can then use the definition of the   f (x)  function to write a formula

for  g(x)  by evaluating   f (x − 2).

f (x) = x2

g(x) = f (x − 2)

g(x) = f (x − 2) = (x − 2)2

Analysis
To determine whether the shift is  + 2  or  − 2 , consider a single reference point on the graph. For a quadratic,
looking at the vertex point is convenient. In the original function,   f (0) = 0.  In our shifted function,  g(2) = 0. 
To obtain the output value of 0 from the function   f ,  we need to decide whether a plus or a minus sign will work

to satisfy  g(2) = f (x − 2) = f (0) = 0.  For this to work, we will need to subtract 2 units from our input values.

Example 3.54

Interpreting Horizontal versus Vertical Shifts
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3.33

The function  G(m)  gives the number of gallons of gas required to drive  m miles. Interpret  G(m) + 10  and
 G(m + 10).

Solution
G(m) + 10  can be interpreted as adding 10 to the output, gallons. This is the gas required to drive  m miles, plus
another 10 gallons of gas. The graph would indicate a vertical shift.

G(m + 10)  can be interpreted as adding 10 to the input, miles. So this is the number of gallons of gas required to
drive 10 miles more than  m miles. The graph would indicate a horizontal shift.

Given the function   f (x) = x,   graph the original function   f (x)  and the transformation

 g(x) = f (x + 2)  on the same axes. Is this a horizontal or a vertical shift? Which way is the graph shifted and by

how many units?

Combining Vertical and Horizontal Shifts
Now that we have two transformations, we can combine them. Vertical shifts are outside changes that affect the output (y-)
values and shift the function up or down. Horizontal shifts are inside changes that affect the input (x-) values and shift the
function left or right. Combining the two types of shifts will cause the graph of a function to shift up or down and left or
right.

Given a function and both a vertical and a horizontal shift, sketch the graph.

1. Identify the vertical and horizontal shifts from the formula.

2. The vertical shift results from a constant added to the output. Move the graph up for a positive constant
and down for a negative constant.

3. The horizontal shift results from a constant added to the input. Move the graph left for a positive constant
and right for a negative constant.

4. Apply the shifts to the graph in either order.

Example 3.55

Graphing Combined Vertical and Horizontal Shifts

Given   f (x) = |x|,   sketch a graph of  h(x) = f (x + 1) − 3.

Solution
The function   f   is our toolkit absolute value function. We know that this graph has a V shape, with the point at the

origin. The graph of  h  has transformed   f   in two ways:   f (x + 1)  is a change on the inside of the function, giving

a horizontal shift left by 1, and the subtraction by 3 in   f (x + 1) − 3  is a change to the outside of the function,

giving a vertical shift down by 3. The transformation of the graph is illustrated in Figure 3.76.

Let us follow one point of the graph of   f (x) = |x|.

• The point (0, 0) is transformed first by shifting left 1 unit: (0, 0) → (−1, 0)
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• The point (−1, 0) is transformed next by shifting down 3 units: (−1, 0) → (−1, −3)

Figure 3.76

Figure 3.77 shows the graph of  h.

Figure 3.77

Given   f (x) = |x|,   sketch a graph of  h(x) = f (x − 2) + 4.

Example 3.56

Identifying Combined Vertical and Horizontal Shifts

Write a formula for the graph shown in Figure 3.78, which is a transformation of the toolkit square root function.
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Figure 3.78

Solution
The graph of the toolkit function starts at the origin, so this graph has been shifted 1 to the right and up 2. In
function notation, we could write that as

h(x) = f (x − 1) + 2

Using the formula for the square root function, we can write

h(x) = x − 1 + 2

Analysis
Note that this transformation has changed the domain and range of the function. This new graph has domain
 [1, ∞)  and range  [2, ∞).

Write a formula for a transformation of the toolkit reciprocal function   f (x) = 1
x   that shifts the function’s

graph one unit to the right and one unit up.

Graphing Functions Using Reflections about the Axes
Another transformation that can be applied to a function is a reflection over the x- or y-axis. A vertical reflection reflects
a graph vertically across the x-axis, while a horizontal reflection reflects a graph horizontally across the y-axis. The
reflections are shown in Figure 3.79.
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Figure 3.79 Vertical and horizontal reflections of a function.

Notice that the vertical reflection produces a new graph that is a mirror image of the base or original graph about the x-axis.
The horizontal reflection produces a new graph that is a mirror image of the base or original graph about the y-axis.

Reflections

Given a function   f (x), a new function  g(x) = − f (x)  is a vertical reflection of the function   f (x),   sometimes called

a reflection about (or over, or through) the x-axis.

Given a function   f (x),   a new function  g(x) = f ( − x)  is a horizontal reflection of the function   f (x),   sometimes

called a reflection about the y-axis.

Given a function, reflect the graph both vertically and horizontally.

1. Multiply all outputs by –1 for a vertical reflection. The new graph is a reflection of the original graph
about the x-axis.

2. Multiply all inputs by –1 for a horizontal reflection. The new graph is a reflection of the original graph
about the y-axis.

Example 3.57

Reflecting a Graph Horizontally and Vertically

Reflect the graph of  s(t) = t (a) vertically and (b) horizontally.

Solution
a. Reflecting the graph vertically means that each output value will be reflected over the horizontal t-axis as

shown in Figure 3.80.
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(3.3)

Figure 3.80 Vertical reflection of the square root function

Because each output value is the opposite of the original output value, we can write

V(t) = − s(t) or V(t) = − t
Notice that this is an outside change, or vertical shift, that affects the output  s(t)  values, so the negative
sign belongs outside of the function.

b. Reflecting horizontally means that each input value will be reflected over the vertical axis as shown in
Figure 3.81.

Figure 3.81 Horizontal reflection of the square root function

Because each input value is the opposite of the original input value, we can write

H(t) = s( − t) or H(t) = −t
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3.36

Notice that this is an inside change or horizontal change that affects the input values, so the negative sign
is on the inside of the function.

Note that these transformations can affect the domain and range of the functions. While the original
square root function has domain  [0, ∞)  and range  [0, ∞),   the vertical reflection gives the  V(t) 
function the range (−∞,  0] and the horizontal reflection gives the  H(t)  function the domain (−∞,  0].

Reflect the graph of   f (x) = |x − 1| (a) vertically and (b) horizontally.

Example 3.58

Reflecting a Tabular Function Horizontally and Vertically

A function   f (x)  is given as Table 3.30. Create a table for the functions below.

a.  g(x) = − f (x)

b.  h(x) = f (−x)

x 2 4 6 8

f(x) 1 3 7 11

Table 3.30

Solution
a. For  g(x),   the negative sign outside the function indicates a vertical reflection, so the x-values stay the

same and each output value will be the opposite of the original output value. See Table 3.31.

x 2 4 6 8

 g(x)  –1 –3 –7 –11

Table 3.31

b. For  h(x),   the negative sign inside the function indicates a horizontal reflection, so each input value will
be the opposite of the original input value and the  h(x)  values stay the same as the   f (x)  values. See

Table 3.32.
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3.37

x −2 −4 −6 −8

h(x) 1 3 7 11

Table 3.32

A function   f (x)  is given as Table 3.33. Create a table for the functions below.

a. g(x) = − f (x)

b. h(x) = f (−x)

x −2 0 2 4

f(x) 5 10 15 20

Table 3.33

Example 3.59

Applying a Learning Model Equation

A common model for learning has an equation similar to k(t) = − 2−t + 1,   where k is the percentage of

mastery that can be achieved after t practice sessions. This is a transformation of the function f (t) = 2t shown

in Figure 3.82. Sketch a graph of k(t).
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Figure 3.82

Solution
This equation combines three transformations into one equation.

• A horizontal reflection: f (−t) = 2−t

• A vertical reflection:  − f (−t) = − 2−t

• A vertical shift:  − f (−t) + 1 = − 2−t + 1

We can sketch a graph by applying these transformations one at a time to the original function. Let us follow two
points through each of the three transformations. We will choose the points (0, 1) and (1, 2).

1. First, we apply a horizontal reflection: (0, 1) (–1, 2).

2. Then, we apply a vertical reflection: (0, −1) (1, –2).

3. Finally, we apply a vertical shift: (0, 0) (1, 1).

This means that the original points, (0,1) and (1,2) become (0,0) and (1,1) after we apply the transformations.

In Figure 3.83, the first graph results from a horizontal reflection. The second results from a vertical reflection.
The third results from a vertical shift up 1 unit.
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Figure 3.83

Analysis
As a model for learning, this function would be limited to a domain of  t ≥ 0,  with corresponding range  [0, 1).

Given the toolkit function   f (x) = x2,   graph  g(x) = − f (x)  and  h(x) = f ( − x). Take note of any

surprising behavior for these functions.

Determining Even and Odd Functions
Some functions exhibit symmetry so that reflections result in the original graph. For example, horizontally reflecting the
toolkit functions f (x) = x2 or f (x) = |x| will result in the original graph. We say that these types of graphs are symmetric

about the y-axis. A function whose graph is symmetric about the y-axis is called an even function.

If the graphs of   f (x) = x3   or   f (x) = 1
x  were reflected over both axes, the result would be the original graph, as shown in

Figure 3.84.
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Figure 3.84 (a) The cubic toolkit function (b) Horizontal reflection of the cubic toolkit function (c) Horizontal and vertical
reflections reproduce the original cubic function.

We say that these graphs are symmetric about the origin. A function with a graph that is symmetric about the origin is called
an odd function.

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For example,   f (x) = 2x   is neither even

nor odd. Also, the only function that is both even and odd is the constant function   f (x) = 0.

Even and Odd Functions

A function is called an even function if for every input  x
f (x) = f ( − x)

The graph of an even function is symmetric about the y- axis.

A function is called an odd function if for every input  x
f (x) = − f ( − x)

The graph of an odd function is symmetric about the origin.

Given the formula for a function, determine if the function is even, odd, or neither.

1. Determine whether the function satisfies   f (x) = f ( − x).  If it does, it is even.

2. Determine whether the function satisfies   f (x) = − f ( − x).  If it does, it is odd.

3. If the function does not satisfy either rule, it is neither even nor odd.

Example 3.60

Determining whether a Function Is Even, Odd, or Neither

Is the function   f (x) = x3 + 2x  even, odd, or neither?
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Solution
Without looking at a graph, we can determine whether the function is even or odd by finding formulas for the
reflections and determining if they return us to the original function. Let’s begin with the rule for even functions.

f ( − x) = ( − x)3 + 2( − x) = − x3 − 2x

This does not return us to the original function, so this function is not even. We can now test the rule for odd
functions.

− f ( − x) = − ⎛
⎝−x3 − 2x⎞

⎠ = x3 + 2x

Because  − f ( − x) = f (x),   this is an odd function.

Analysis
Consider the graph of   f   in Figure 3.85. Notice that the graph is symmetric about the origin. For every point

 (x, y)  on the graph, the corresponding point  (−x, − y)  is also on the graph. For example, (1, 3) is on the graph

of   f ,   and the corresponding point (−1, −3) is also on the graph.

Figure 3.85

Is the function   f (s) = s4 + 3s2 + 7  even, odd, or neither?

Graphing Functions Using Stretches and Compressions
Adding a constant to the inputs or outputs of a function changed the position of a graph with respect to the axes, but it did
not affect the shape of a graph. We now explore the effects of multiplying the inputs or outputs by some quantity.

We can transform the inside (input values) of a function or we can transform the outside (output values) of a function. Each
change has a specific effect that can be seen graphically.
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Vertical Stretches and Compressions
When we multiply a function by a positive constant, we get a function whose graph is stretched or compressed vertically
in relation to the graph of the original function. If the constant is greater than 1, we get a vertical stretch; if the constant is
between 0 and 1, we get a vertical compression. Figure 3.86 shows a function multiplied by constant factors 2 and 0.5
and the resulting vertical stretch and compression.

Figure 3.86 Vertical stretch and compression

Vertical Stretches and Compressions

Given a function   f (x),   a new function  g(x) = a f (x),  where  a  is a constant, is a vertical stretch or vertical

compression of the function   f (x).

• If  a > 1,   then the graph will be stretched.

• If  0 < a < 1,   then the graph will be compressed.

• If  a < 0,   then there will be combination of a vertical stretch or compression with a vertical reflection.

Given a function, graph its vertical stretch.

1. Identify the value of  a.

2. Multiply all range values by  a.

3. If   a > 1,    the graph is stretched by a factor of  a.

If  0 < a < 1,   the graph is compressed by a factor of  a.

If  a < 0,   the graph is either stretched or compressed and also reflected about the x-axis.

Example 3.61

Graphing a Vertical Stretch

A function  P(t) models the population of fruit flies. The graph is shown in Figure 3.87.
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Figure 3.87

A scientist is comparing this population to another population,  Q,  whose growth follows the same pattern, but
is twice as large. Sketch a graph of this population.

Solution
Because the population is always twice as large, the new population’s output values are always twice the original
function’s output values. Graphically, this is shown in Figure 3.88.

If we choose four reference points, (0, 1), (3, 3), (6, 2) and (7, 0) we will multiply all of the outputs by 2.

The following shows where the new points for the new graph will be located.

(0,  1) → (0,  2)
(3,  3) → (3,  6)
(6,  2) → (6,  4)
(7,  0) → (7,  0)

Figure 3.88

Symbolically, the relationship is written as

Q(t) = 2P(t)
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This means that for any input  t,   the value of the function  Q  is twice the value of the function  P. Notice that the
effect on the graph is a vertical stretching of the graph, where every point doubles its distance from the horizontal
axis. The input values,  t,   stay the same while the output values are twice as large as before.

Given a tabular function and assuming that the transformation is a vertical stretch or compression, create
a table for a vertical compression.

1. Determine the value of  a.

2. Multiply all of the output values by  a.

Example 3.62

Finding a Vertical Compression of a Tabular Function

A function   f   is given as Table 3.34. Create a table for the function  g(x) = 1
2 f (x).

x 2 4 6 8

f(x)  1 3 7 11

Table 3.34

Solution

The formula  g(x) = 1
2 f (x)  tells us that the output values of  g  are half of the output values of   f  with the same

inputs. For example, we know that   f (4) = 3. Then

g(4) = 1
2 f (4) = 1

2(3) = 3
2

We do the same for the other values to produce Table 3.35.

x 2 4 6 8

g(x) 1
2

3
2

7
2

11
2

Table 3.35

Analysis
The result is that the function  g(x)  has been compressed vertically by  12. Each output value is divided in half, so

the graph is half the original height.
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3.40 A function   f   is given as Table 3.36. Create a table for the function  g(x) = 3
4 f (x).

x 2 4 6 8

f (x) 12 16 20 0

Table 3.36

Example 3.63

Recognizing a Vertical Stretch

The graph in Figure 3.89 is a transformation of the toolkit function   f (x) = x3. Relate this new function  g(x) 
to   f (x),   and then find a formula for  g(x).

Figure 3.89

Solution
When trying to determine a vertical stretch or shift, it is helpful to look for a point on the graph that is relatively
clear. In this graph, it appears that  g(2) = 2. With the basic cubic function at the same input,   f (2) = 23 = 8. 
Based on that, it appears that the outputs of  g  are  14   the outputs of the function   f   because  g(2) = 1

4 f (2).  From

this we can fairly safely conclude that  g(x) = 1
4 f (x).

We can write a formula for  g  by using the definition of the function   f .

g(x) = 1
4 f (x) = 1

4x3
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3.41 Write the formula for the function that we get when we stretch the identity toolkit function by a factor of
3, and then shift it down by 2 units.

Horizontal Stretches and Compressions
Now we consider changes to the inside of a function. When we multiply a function’s input by a positive constant, we get a
function whose graph is stretched or compressed horizontally in relation to the graph of the original function. If the constant
is between 0 and 1, we get a horizontal stretch; if the constant is greater than 1, we get a horizontal compression of the
function.

Figure 3.90

Given a function  y = f (x),   the form  y = f (bx)  results in a horizontal stretch or compression. Consider the function

 y = x2. Observe Figure 3.90. The graph of  y = (0.5x)2   is a horizontal stretch of the graph of the function  y = x2   by a

factor of 2. The graph of  y = (2x)2   is a horizontal compression of the graph of the function  y = x2   by a factor of 2.

Horizontal Stretches and Compressions

Given a function   f (x),   a new function  g(x) = f (bx),  where  b  is a constant, is a horizontal stretch or horizontal

compression of the function   f (x).

• If  b > 1,   then the graph will be compressed by  1b.

• If  0 < b < 1,   then the graph will be stretched by  1b.

• If  b < 0,   then there will be combination of a horizontal stretch or compression with a horizontal reflection.

Given a description of a function, sketch a horizontal compression or stretch.

1. Write a formula to represent the function.

2. Set  g(x) = f (bx) where  b > 1  for a compression or  0 < b < 1  for a stretch.
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Example 3.64

Graphing a Horizontal Compression

Suppose a scientist is comparing a population of fruit flies to a population that progresses through its lifespan
twice as fast as the original population. In other words, this new population,  R,  will progress in 1 hour the
same amount as the original population does in 2 hours, and in 2 hours, it will progress as much as the original
population does in 4 hours. Sketch a graph of this population.

Solution
Symbolically, we could write

R(1) = P(2),
R(2) = P(4),  and in general,
R(t) = P(2t).

See Figure 3.91 for a graphical comparison of the original population and the compressed population.

Figure 3.91 (a) Original population graph (b) Compressed population graph

Analysis
Note that the effect on the graph is a horizontal compression where all input values are half of their original
distance from the vertical axis.

Example 3.65

Finding a Horizontal Stretch for a Tabular Function

A function   f (x)  is given as Table 3.37. Create a table for the function  g(x) = f ⎛
⎝
1
2x⎞

⎠.
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x 2 4 6 8

f(x) 1 3 7 11

Table 3.37

Solution

The formula  g(x) = f ⎛
⎝
1
2x⎞

⎠  tells us that the output values for  g  are the same as the output values for the

function   f   at an input half the size. Notice that we do not have enough information to determine  g(2)  because

 g(2) = f ⎛
⎝
1
2 ⋅ 2⎞

⎠ = f (1),   and we do not have a value for   f (1)  in our table. Our input values to  g will need to

be twice as large to get inputs for   f   that we can evaluate. For example, we can determine  g(4).

g(4) = f ⎛
⎝
1
2 ⋅ 4⎞

⎠ = f (2) = 1

We do the same for the other values to produce Table 3.38.

x 4 8 12 16

g(x) 1 3 7 11

Table 3.38

Figure 3.92 shows the graphs of both of these sets of points.

Figure 3.92

Analysis
Because each input value has been doubled, the result is that the function  g(x)  has been stretched horizontally by

a factor of 2.
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Example 3.66

Recognizing a Horizontal Compression on a Graph

Relate the function  g(x)  to   f (x)  in Figure 3.93.

Figure 3.93

Solution
The graph of  g(x)  looks like the graph of   f (x)  horizontally compressed. Because   f (x)  ends at  (6, 4)  and  g(x) 
ends at  (2, 4),  we can see that the  x- values have been compressed by  13,   because  6⎛

⎝
1
3

⎞
⎠ = 2. We might also

notice that  g(2) = f (6)  and  g(1) = f (3). Either way, we can describe this relationship as  g(x) = f (3x). This is

a horizontal compression by  13.

Analysis
Notice that the coefficient needed for a horizontal stretch or compression is the reciprocal of the stretch or
compression. So to stretch the graph horizontally by a scale factor of 4, we need a coefficient of  14   in our

function:   f ⎛
⎝
1
4x⎞

⎠. This means that the input values must be four times larger to produce the same result, requiring

the input to be larger, causing the horizontal stretching.

Write a formula for the toolkit square root function horizontally stretched by a factor of 3.

Performing a Sequence of Transformations
When combining transformations, it is very important to consider the order of the transformations. For example, vertically
shifting by 3 and then vertically stretching by 2 does not create the same graph as vertically stretching by 2 and then
vertically shifting by 3, because when we shift first, both the original function and the shift get stretched, while only the
original function gets stretched when we stretch first.

When we see an expression such as   2 f (x) + 3,  which transformation should we start with? The answer here follows

nicely from the order of operations. Given the output value of   f (x),  we first multiply by 2, causing the vertical stretch, and

then add 3, causing the vertical shift. In other words, multiplication before addition.

Horizontal transformations are a little trickier to think about. When we write  g(x) = f (2x + 3),   for example, we have to

think about how the inputs to the function  g  relate to the inputs to the function    f .  Suppose we know   f (7) = 12. What

input to  g would produce that output? In other words, what value of  x will allow  g(x) = f (2x + 3) = 12?  We would need
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 2x + 3 = 7. To solve for  x,  we would first subtract 3, resulting in a horizontal shift, and then divide by 2, causing a
horizontal compression.

This format ends up being very difficult to work with, because it is usually much easier to horizontally stretch a graph before
shifting. We can work around this by factoring inside the function.

f (bx + p) = f ⎛
⎝b

⎛
⎝x + p

b
⎞
⎠
⎞
⎠

Let’s work through an example.

f (x) = (2x + 4)2

We can factor out a 2.

f (x) = ⎛
⎝2(x + 2)⎞

⎠
2

Now we can more clearly observe a horizontal shift to the left 2 units and a horizontal compression. Factoring in this way
allows us to horizontally stretch first and then shift horizontally.

Combining Transformations

When combining vertical transformations written in the form  a f (x) + k,   first vertically stretch by  a  and then

vertically shift by  k.

When combining horizontal transformations written in the form   f (bx + h),   first horizontally shift by  h  and then

horizontally stretch by  1b.

When combining horizontal transformations written in the form   f (b(x + h)),   first horizontally stretch by  1b   and then

horizontally shift by  h.

Horizontal and vertical transformations are independent. It does not matter whether horizontal or vertical
transformations are performed first.

Example 3.67

Finding a Triple Transformation of a Tabular Function

Given Table 3.39 for the function   f (x),   create a table of values for the function  g(x) = 2 f (3x) + 1.

x 6 12 18 24

f(x) 10 14 15 17

Table 3.39

Solution
There are three steps to this transformation, and we will work from the inside out. Starting with the horizontal
transformations,   f (3x)  is a horizontal compression by  13,  which means we multiply each  x- value by  13. See

Table 3.40.
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x 2 4 6 8

f(3x) 10 14 15 17

Table 3.40

Looking now to the vertical transformations, we start with the vertical stretch, which will multiply the output
values by 2. We apply this to the previous transformation. See Table 3.41.

x 2 4 6 8

2 f(3x) 20 28 30 34

Table 3.41

Finally, we can apply the vertical shift, which will add 1 to all the output values. See Table 3.42.

x 2 4 6 8

g(x) = 2 f(3x) + 1 21 29 31 35

Table 3.42

Example 3.68

Finding a Triple Transformation of a Graph

Use the graph of   f (x)  in Figure 3.94 to sketch a graph of  k(x) = f ⎛
⎝
1
2x + 1⎞

⎠ − 3.
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Figure 3.94

Solution
To simplify, let’s start by factoring out the inside of the function.

f ⎛
⎝
1
2x + 1⎞

⎠ − 3 = f ⎛
⎝
1
2(x + 2)⎞

⎠ − 3

By factoring the inside, we can first horizontally stretch by 2, as indicated by the  12   on the inside of the function.

Remember that twice the size of 0 is still 0, so the point (0,2) remains at (0,2) while the point (2,0) will stretch to
(4,0). See Figure 3.95.

Figure 3.95

Next, we horizontally shift left by 2 units, as indicated by  x + 2.  See Figure 3.96.
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Figure 3.96

Last, we vertically shift down by 3 to complete our sketch, as indicated by the  − 3  on the outside of the function.
See Figure 3.97.

Figure 3.97

Access this online resource for additional instruction and practice with transformation of functions.

• Function Transformations (http://openstaxcollege.org/l/functrans)
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3.5 EXERCISES
Verbal

When examining the formula of a function that is the
result of multiple transformations, how can you tell a
horizontal shift from a vertical shift?

When examining the formula of a function that is the
result of multiple transformations, how can you tell a
horizontal stretch from a vertical stretch?

When examining the formula of a function that is the
result of multiple transformations, how can you tell a
horizontal compression from a vertical compression?

When examining the formula of a function that is the
result of multiple transformations, how can you tell a
reflection with respect to the x-axis from a reflection with
respect to the y-axis?

How can you determine whether a function is odd or
even from the formula of the function?

Algebraic
For the following exercises, write a formula for the function
obtained when the graph is shifted as described.

  f (x) = x  is shifted up 1 unit and to the left 2 units.

f (x) = |x|  is shifted down 3 units and to the right 1

unit.

  f (x) = 1
x   is shifted down 4 units and to the right 3

units.

  f (x) = 1
x2   is shifted up 2 units and to the left 4 units.

For the following exercises, describe how the graph of the
function is a transformation of the graph of the original
function   f .

y = f (x − 49)

y = f (x + 43)

y = f (x + 3)

y = f (x − 4)

y = f (x) + 5

y = f (x) + 8

y = f (x) − 2

y = f (x) − 7

y = f (x − 2) + 3

y = f (x + 4) − 1

For the following exercises, determine the interval(s) on
which the function is increasing and decreasing.

f (x) = 4(x + 1)2 − 5

g(x) = 5(x + 3)2 − 2

a(x) = −x + 4

k(x) = − 3 x − 1

Graphical

For the following exercises, use the graph of   f (x) = 2x

shown in Figure 3.98 to sketch a graph of each

transformation of   f (x).

Figure 3.98

g(x) = 2x + 1

h(x) = 2x − 3

w(x) = 2x − 1

For the following exercises, sketch a graph of the function
as a transformation of the graph of one of the toolkit
functions.

f (t) = (t + 1)2 − 3
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326.

327.

328.

329.

330.

331.

332.

333.

h(x) = |x − 1| + 4

k(x) = (x − 2)3 − 1

m(t) = 3 + t + 2

Numeric

Tabular representations for the functions   f ,  g,   and

 h  are given below. Write  g(x)  and  h(x)  as

transformations of   f (x).

x −2 −1 0 1 2

f(x) −2 −1 −3 1 2

x −1 0 1 2 3

g(x) −2 −1 −3 1 2

x −2 −1 0 1 2

h(x) −1 0 −2 2 3

Tabular representations for the functions   f ,  g,   and

 h  are given below. Write  g(x)  and  h(x)  as

transformations of   f (x).

x −2 −1 0 1 2

f(x) −1 −3 4 2 1

x −3 −2 −1 0 1

g(x) −1 −3 4 2 1

x −2 −1 0 1 2

h(x) −2 −4 3 1 0

For the following exercises, write an equation for each
graphed function by using transformations of the graphs of
one of the toolkit functions.
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334.

335.

336.

337.

338.

339.

For the following exercises, use the graphs of
transformations of the square root function to find a
formula for each of the functions.
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361.
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364.

For the following exercises, use the graphs of the
transformed toolkit functions to write a formula for each of
the resulting functions.

For the following exercises, determine whether the function
is odd, even, or neither.

f (x) = 3x4

g(x) = x

h(x) = 1
x + 3x

f (x) = (x − 2)2

g(x) = 2x4

h(x) = 2x − x3

For the following exercises, describe how the graph of each
function is a transformation of the graph of the original
function   f .

g(x) = − f (x)

g(x) = f ( − x)

g(x) = 4 f (x)

g(x) = 6 f (x)

g(x) = f (5x)

g(x) = f (2x)

g(x) = f ⎛
⎝
1
3x⎞

⎠

g(x) = f ⎛
⎝
1
5x⎞

⎠

g(x) = 3 f (−x)

g(x) = − f (3x)

For the following exercises, write a formula for the function
 g  that results when the graph of a given toolkit function is

transformed as described.

The graph of   f (x) = |x|  is reflected over the  y -axis

and horizontally compressed by a factor of  14 .

The graph of   f (x) = x  is reflected over the  x -axis

and horizontally stretched by a factor of 2.

The graph of   f (x) = 1
x2   is vertically compressed by

a factor of  13,   then shifted to the left 2 units and down 3

units.

The graph of   f (x) = 1
x   is vertically stretched by a

factor of 8, then shifted to the right 4 units and up 2 units.

Chapter 3 Functions 351



365.

366.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

The graph of   f (x) = x2   is vertically compressed by a

factor of  12,   then shifted to the right 5 units and up 1 unit.

The graph of   f (x) = x2   is horizontally stretched by

a factor of 3, then shifted to the left 4 units and down 3
units.

For the following exercises, describe how the formula is a
transformation of a toolkit function. Then sketch a graph of
the transformation.

g(x) = 4(x + 1)2 − 5

g(x) = 5(x + 3)2 − 2

h(x) = − 2|x − 4| + 3

k(x) = − 3 x − 1

m(x) = 1
2x3

n(x) = 1
3|x − 2|

p(x) = ⎛
⎝
1
3x⎞

⎠
3

− 3

q(x) = ⎛
⎝
1
4x⎞

⎠
3

+ 1

a(x) = −x + 4

For the following exercises, use the graph in Figure 3.99
to sketch the given transformations.

Figure 3.99

g(x) = f (x) − 2

g(x) = − f (x)

g(x) = f (x + 1)

g(x) = f (x − 2)
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3.6 | Absolute Value Functions

Learning Objectives

In this section you will:

3.6.1 Graph an absolute value function.
3.6.2 Solve an absolute value equation.

Figure 3.100 Distances in deep space can be measured in all
directions. As such, it is useful to consider distance in terms of
absolute values. (credit: "s58y"/Flickr)

Until the 1920s, the so-called spiral nebulae were believed to be clouds of dust and gas in our own galaxy, some tens of
thousands of light years away. Then, astronomer Edwin Hubble proved that these objects are galaxies in their own right, at
distances of millions of light years. Today, astronomers can detect galaxies that are billions of light years away. Distances
in the universe can be measured in all directions. As such, it is useful to consider distance as an absolute value function. In
this section, we will continue our investigation of absolute value functions.

Understanding Absolute Value
Recall that in its basic form   f (x) = |x|,   the absolute value function is one of our toolkit functions. The absolute value

function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for
whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions
to solve some kinds of real-world problems.

Absolute Value Function

The absolute value function can be defined as a piecewise function

  f (x) = |x| =
⎧

⎩
⎨ x if x ≥ 0
−x if x < 0

 

Example 3.69

Using Absolute Value to Determine Resistance

Electrical parts, such as resistors and capacitors, come with specified values of their operating parameters:
resistance, capacitance, etc. However, due to imprecision in manufacturing, the actual values of these parameters
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vary somewhat from piece to piece, even when they are supposed to be the same. The best that manufacturers can
do is to try to guarantee that the variations will stay within a specified range, often  ±1%, ± 5%,  or  ± 10%.

Suppose we have a resistor rated at 680 ohms,  ± 5%. Use the absolute value function to express the range of
possible values of the actual resistance.

Solution
We can find that 5% of 680 ohms is 34 ohms. The absolute value of the difference between the actual and nominal
resistance should not exceed the stated variability, so, with the resistance  R  in ohms,

|R − 680| ≤ 34

Students who score within 20 points of 80 will pass a test. Write this as a distance from 80 using absolute
value notation.

Graphing an Absolute Value Function
The most significant feature of the absolute value graph is the corner point at which the graph changes direction. This point
is shown at the origin in Figure 3.101.

Figure 3.101

Figure 3.102 shows the graph of  y = 2|x – 3| + 4. The graph of  y = |x|  has been shifted right 3 units, vertically stretched

by a factor of 2, and shifted up 4 units. This means that the corner point is located at  (3, 4)  for this transformed function.
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Figure 3.102

Example 3.70

Writing an Equation for an Absolute Value Function Given a Graph

Write an equation for the function graphed in Figure 3.103.

Figure 3.103

Solution
The basic absolute value function changes direction at the origin, so this graph has been shifted to the right 3 units
and down 2 units from the basic toolkit function. See Figure 3.104.
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Figure 3.104

We also notice that the graph appears vertically stretched, because the width of the final graph on a horizontal line
is not equal to 2 times the vertical distance from the corner to this line, as it would be for an unstretched absolute
value function. Instead, the width is equal to 1 times the vertical distance as shown in Figure 3.105.

Figure 3.105

From this information we can write the equation

f (x) = 2|x − 3| − 2, treating the stretch as a vertical stretch,or
f (x) = |2(x − 3)| − 2, treating the stretch as a horizontal compression.

Analysis
Note that these equations are algebraically equivalent—the stretch for an absolute value function can be written
interchangeably as a vertical or horizontal stretch or compression.
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If we couldn’t observe the stretch of the function from the graphs, could we algebraically determine it?

Yes. If we are unable to determine the stretch based on the width of the graph, we can solve for the stretch factor
by putting in a known pair of values for  x  and   f (x).

f (x) = a|x − 3| − 2
Now substituting in the point (1, 2)

2 = a|1 − 3| − 2
4 = 2a
a = 2

Write the equation for the absolute value function that is horizontally shifted left 2 units, is vertically
flipped, and vertically shifted up 3 units.

Do the graphs of absolute value functions always intersect the vertical axis? The horizontal axis?

Yes, they always intersect the vertical axis. The graph of an absolute value function will intersect the vertical axis
when the input is zero.

No, they do not always intersect the horizontal axis. The graph may or may not intersect the horizontal axis,
depending on how the graph has been shifted and reflected. It is possible for the absolute value function to
intersect the horizontal axis at zero, one, or two points (see Figure 3.106).

Figure 3.106 (a) The absolute value function does not intersect the horizontal axis. (b) The absolute value function intersects
the horizontal axis at one point. (c) The absolute value function intersects the horizontal axis at two points.

Solving an Absolute Value Equation
In Other Type of Equations, we touched on the concepts of absolute value equations. Now that we understand a little
more about their graphs, we can take another look at these types of equations. Now that we can graph an absolute value
function, we will learn how to solve an absolute value equation. To solve an equation such as  8 = |2x − 6|,  we notice that
the absolute value will be equal to 8 if the quantity inside the absolute value is 8 or -8. This leads to two different equations
we can solve independently.

2x − 6 = 8 or 2x − 6 = −8
2x = 14 2x = −2

x = 7 x = −1

Knowing how to solve problems involving absolute value functions is useful. For example, we may need to identify
numbers or points on a line that are at a specified distance from a given reference point.
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An absolute value equation is an equation in which the unknown variable appears in absolute value bars. For example,
|x| = 4,

|2x − 1| = 3, or
|5x + 2| − 4 = 9

Solutions to Absolute Value Equations

For real numbers A and B , an equation of the form |A| = B, with B ≥ 0, will have solutions when A = B or
A = − B. If B < 0, the equation |A| = B has no solution.

Given the formula for an absolute value function, find the horizontal intercepts of its graph.

1. Isolate the absolute value term.

2. Use  |A| = B  to write  A = B  or  −A = B,   assuming  B > 0.

3. Solve for  x.

Example 3.71

Finding the Zeros of an Absolute Value Function

For the function   f (x) = |4x + 1| − 7, find the values of  x  such that   f (x) = 0.

Solution
0 = |4x + 1| − 7 Substitute 0 for f (x).
7 = |4x + 1| Isolate the absolute value on one side of the equation.

7 = 4x + 1 or −7 = 4x + 1 Break into two separate equations and solve.
6 = 4x −8 = 4x

x = 6
4 = 1.5 x = −8

4 = − 2

The function outputs 0 when  x = 3
2   or  x = − 2. See Figure 3.107.
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Figure 3.107

For the function   f (x) = |2x − 1| − 3, find the values of  x  such that   f (x) = 0.

Should we always expect two answers when solving  |A| = B?

No. We may find one, two, or even no answers. For example, there is no solution to  2 + |3x − 5| = 1.

Access these online resources for additional instruction and practice with absolute value.

• Graphing Absolute Value Functions (http://openstaxcollege.org/l/graphabsvalue)

• Graphing Absolute Value Functions 2 (http://openstaxcollege.org/l/graphabsvalue2)
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3.6 EXERCISES
Verbal

How do you solve an absolute value equation?

How can you tell whether an absolute value function
has two x-intercepts without graphing the function?

When solving an absolute value function, the isolated
absolute value term is equal to a negative number. What
does that tell you about the graph of the absolute value
function?

How can you use the graph of an absolute value
function to determine the x-values for which the function
values are negative?

Algebraic

Describe all numbers  x  that are at a distance of 4
from the number 8. Express this set of numbers using
absolute value notation.

Describe all numbers  x  that are at a distance of 1
2

from the number −4. Express this set of numbers using
absolute value notation.

Describe the situation in which the distance that point
 x  is from 10 is at least 15 units. Express this set of
numbers using absolute value notation.

Find all function values   f (x)  such that the distance

from   f (x)  to the value 8 is less than 0.03 units. Express

this set of numbers using absolute value notation.

For the following exercises, find the x- and y-intercepts of
the graphs of each function.

f (x) = 4|x − 3| + 4

f (x) = − 3|x − 2| − 1

f (x) = − 2|x + 1| + 6

f (x) = − 5|x + 2| + 15

f (x) = 2|x − 1| − 6

f (x) = | − 2x + 1| − 13

f (x) = − |x − 9| + 16

Graphical
For the following exercises, graph the absolute value
function. Plot at least five points by hand for each graph.

y = |x − 1|

y = |x + 1|

y = |x| + 1

For the following exercises, graph the given functions by
hand.

y = |x| − 2

y = − |x|

y = − |x| − 2

y = − |x − 3| − 2

f (x) = − |x − 1| − 2

f (x) = − |x + 3| + 4

f (x) = 2|x + 3| + 1

f (x) = 3|x − 2| + 3

f (x) = |2x − 4| − 3

f (x) = |3x + 9| + 2

f (x) = − |x − 1| − 3

f (x) = − |x + 4| − 3

f (x) = 1
2|x + 4| − 3

Technology

Use a graphing utility to graph f (x) = 10|x − 2| on

the viewing window [0, 4]. Identify the corresponding
range. Show the graph.

Use a graphing utility to graph
f (x) = − 100|x| + 100  on the viewing window  ⎡⎣−5, 5⎤

⎦. 
Identify the corresponding range. Show the graph.

For the following exercises, graph each function using a
graphing utility. Specify the viewing window.

f (x) = − 0.1|0.1(0.2 − x)| + 0.3

f (x) = 4×109 |x − ⎛
⎝5×109⎞

⎠| + 2×109
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Extensions
For the following exercises, solve the inequality.

If possible, find all values of a such that there are no
x- intercepts for f (x) = 2|x + 1| + a.

If possible, find all values of  a  such that there are no
 y -intercepts for   f (x) = 2|x + 1| + a.

Real-World Applications

Cities A and B are on the same east-west line.
Assume that city A is located at the origin. If the distance
from city A to city B is at least 100 miles and  x  represents
the distance from city B to city A, express this using
absolute value notation.

The true proportion  p  of people who give a favorable

rating to Congress is 8% with a margin of error of 1.5%.
Describe this statement using an absolute value equation.

Students who score within 18 points of the number 82
will pass a particular test. Write this statement using
absolute value notation and use the variable  x  for the score.

A machinist must produce a bearing that is within
0.01 inches of the correct diameter of 5.0 inches. Using  x 
as the diameter of the bearing, write this statement using
absolute value notation.

The tolerance for a ball bearing is 0.01. If the true
diameter of the bearing is to be 2.0 inches and the measured
value of the diameter is  x  inches, express the tolerance
using absolute value notation.
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3.7 | Inverse Functions

Learning Objectives

In this section, you will:

3.7.1 Verify inverse functions.
3.7.2 Determine the domain and range of an inverse function, and restrict the domain of a
function to make it one-to-one.
3.7.3 Find or evaluate the inverse of a function.
3.7.4 Use the graph of a one-to-one function to graph its inverse function on the same axes.

A reversible heat pump is a climate-control system that is an air conditioner and a heater in a single device. Operated in one
direction, it pumps heat out of a house to provide cooling. Operating in reverse, it pumps heat into the building from the
outside, even in cool weather, to provide heating. As a heater, a heat pump is several times more efficient than conventional
electrical resistance heating.

If some physical machines can run in two directions, we might ask whether some of the function “machines” we have been
studying can also run backwards. Figure 3.108 provides a visual representation of this question. In this section, we will
consider the reverse nature of functions.

Figure 3.108 Can a function “machine” operate in reverse?

Verifying That Two Functions Are Inverse Functions
Suppose a fashion designer traveling to Milan for a fashion show wants to know what the temperature will be. He is not
familiar with the Celsius scale. To get an idea of how temperature measurements are related, he asks his assistant, Betty, to
convert 75 degrees Fahrenheit to degrees Celsius. She finds the formula

C = 5
9(F − 32)

and substitutes 75 for  F  to calculate

5
9(75 − 32) ≈ 24°C

Knowing that a comfortable 75 degrees Fahrenheit is about 24 degrees Celsius, he sends his assistant the week’s weather
forecast from Figure 3.109 for Milan, and asks her to convert all of the temperatures to degrees Fahrenheit.
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Figure 3.109

At first, Betty considers using the formula she has already found to complete the conversions. After all, she knows her
algebra, and can easily solve the equation for  F  after substituting a value for  C.  For example, to convert 26 degrees
Celsius, she could write

26 = 5
9(F − 32)

26 ⋅ 9
5 = F − 32

F = 26 ⋅ 9
5 + 32 ≈ 79

After considering this option for a moment, however, she realizes that solving the equation for each of the temperatures will
be awfully tedious. She realizes that since evaluation is easier than solving, it would be much more convenient to have a
different formula, one that takes the Celsius temperature and outputs the Fahrenheit temperature.

The formula for which Betty is searching corresponds to the idea of an inverse function, which is a function for which the
input of the original function becomes the output of the inverse function and the output of the original function becomes the
input of the inverse function.

Given a function   f (x),  we represent its inverse as   f −1(x),   read as  “ f   inverse of  x.” The raised  −1  is part of the

notation. It is not an exponent; it does not imply a power of  −1  . In other words,   f −1(x)  does not mean   1
f (x)   because

  1
f (x)   is the reciprocal of   f   and not the inverse.

The “exponent-like” notation comes from an analogy between function composition and multiplication: just as  a−1 a = 1 
(1 is the identity element for multiplication) for any nonzero number  a,   so   f −1 ∘ f   equals the identity function, that is,

⎛
⎝ f −1 ∘ f ⎞

⎠(x) = f −1 ⎛
⎝ f (x)⎞

⎠ = f −1 (y) = x

This holds for all  x  in the domain of   f .  Informally, this means that inverse functions “undo” each other. However, just as

zero does not have a reciprocal, some functions do not have inverses.

Given a function   f (x),  we can verify whether some other function  g(x)  is the inverse of   f (x)  by checking whether either

 g( f (x)) = x  or   f (g(x)) = x  is true. We can test whichever equation is more convenient to work with because they are

logically equivalent (that is, if one is true, then so is the other.)

For example,  y = 4x  and  y = 1
4x  are inverse functions.

⎛
⎝ f −1 ∘ f ⎞

⎠(x) = f −1 (4x) = 1
4(4x) = x

and

⎛
⎝ f ∘ f −1⎞

⎠(x) = f ⎛
⎝
1
4x⎞

⎠ = 4⎛
⎝
1
4x⎞

⎠ = x
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A few coordinate pairs from the graph of the function  y = 4x  are (−2, −8), (0, 0), and (2, 8). A few coordinate pairs from

the graph of the function  y = 1
4x  are (−8, −2), (0, 0), and (8, 2). If we interchange the input and output of each coordinate

pair of a function, the interchanged coordinate pairs would appear on the graph of the inverse function.

Inverse Function

For any one-to-one function   f (x) = y,   a function   f −1 (x)  is an inverse function of   f   if   f −1(y) = x. This can also

be written as   f −1( f (x)) = x  for all  x  in the domain of   f .  It also follows that   f ( f −1(x)) = x  for all  x  in the domain

of   f −1   if   f −1   is the inverse of   f .

The notation f −1 is read “ f inverse.” Like any other function, we can use any variable name as the input for f −1,

so we will often write   f −1(x), which we read as “ f inverse of x.” Keep in mind that

f −1(x) ≠ 1
f (x)

and not all functions have inverses.

Example 3.72

Identifying an Inverse Function for a Given Input-Output Pair

If for a particular one-to-one function   f (2) = 4  and   f (5) = 12,  what are the corresponding input and output

values for the inverse function?

Solution
The inverse function reverses the input and output quantities, so if

f (2) = 4,  then f −1(4) = 2;

f (5) = 12,  then f−1(12) = 5.

Alternatively, if we want to name the inverse function  g,   then  g(4) = 2  and  g(12) = 5.

Analysis
Notice that if we show the coordinate pairs in a table form, the input and output are clearly reversed. See Table
3.42.

⎛
⎝x, f(x)⎞⎠ ⎛

⎝x, g(x)⎞⎠

(2, 4) (4, 2)

(5, 12) (12, 5)

Table 3.42

Given that  h−1(6) = 2,  what are the corresponding input and output values of the original function  h?
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Given two functions    f(x)   and  g(x),   test whether the functions are inverses of each other.

1. Determine whether   f (g(x)) = x  or  g( f (x)) = x.

2. If either statement is true, then both are true, and  g = f −1   and   f = g−1.  If either statement is false, then

both are false, and  g ≠ f −1   and   f ≠ g−1.

Example 3.73

Testing Inverse Relationships Algebraically

If   f (x) = 1
x + 2   and  g(x) = 1

x − 2,   is  g = f −1?

Solution

g( f (x)) = 1
⎛
⎝

1
x + 2

⎞
⎠

− 2

= x + 2 − 2
= x

so

g = f −1  and f = g−1

This is enough to answer yes to the question, but we can also verify the other formula.

f (g(x)) = 1
1
x − 2 + 2

= 1
1
x

= x

Analysis
Notice the inverse operations are in reverse order of the operations from the original function.

If   f (x) = x3 − 4  and  g(x) = x + 4 3 ,   is  g = f −1?

Example 3.74

Determining Inverse Relationships for Power Functions

If   f (x) = x3   (the cube function) and  g(x) = 1
3x,   is  g = f −1?

Solution

f ⎛
⎝g(x)⎞

⎠ = x3

27 ≠ x

No, the functions are not inverses.
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Analysis

The correct inverse to the cube is, of course, the cube root   x3 = x
1
3,   that is, the one-third is an exponent, not a

multiplier.

If   f (x) = (x − 1)3  and g(x) = x3 + 1,   is  g = f −1?

Finding Domain and Range of Inverse Functions
The outputs of the function   f   are the inputs to   f −1,   so the range of   f   is also the domain of   f −1. Likewise, because the

inputs to   f   are the outputs of   f −1,   the domain of   f   is the range of   f −1. We can visualize the situation as in Figure
3.110.

Figure 3.110 Domain and range of a function and its inverse

When a function has no inverse function, it is possible to create a new function where that new function on a limited domain
does have an inverse function. For example, the inverse of   f (x) = x  is   f −1(x) = x2,   because a square “undoes” a square

root; but the square is only the inverse of the square root on the domain  [0, ∞),   since that is the range of   f (x) = x.

We can look at this problem from the other side, starting with the square (toolkit quadratic) function   f (x) = x2.  If we

want to construct an inverse to this function, we run into a problem, because for every given output of the quadratic
function, there are two corresponding inputs (except when the input is 0). For example, the output 9 from the quadratic
function corresponds to the inputs 3 and –3. But an output from a function is an input to its inverse; if this inverse input
corresponds to more than one inverse output (input of the original function), then the “inverse” is not a function at all! To
put it differently, the quadratic function is not a one-to-one function; it fails the horizontal line test, so it does not have an
inverse function. In order for a function to have an inverse, it must be a one-to-one function.

In many cases, if a function is not one-to-one, we can still restrict the function to a part of its domain on which it is one-
to-one. For example, we can make a restricted version of the square function   f (x) = x2  with its range limited to  [0, ∞),
which is a one-to-one function (it passes the horizontal line test) and which has an inverse (the square-root function).

If   f (x) = (x − 1)2   on  [1, ∞),   then the inverse function is   f −1(x) = x + 1.

• The domain of   f   = range of   f −1   =  [1, ∞).

• The domain of   f −1   = range of   f   =  [0, ∞).

Is it possible for a function to have more than one inverse?

No. If two supposedly different functions, say,  g  and  h,   both meet the definition of being inverses of another

function   f ,   then you can prove that  g = h. We have just seen that some functions only have inverses if we restrict

the domain of the original function. In these cases, there may be more than one way to restrict the domain, leading
to different inverses. However, on any one domain, the original function still has only one unique inverse.
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Domain and Range of Inverse Functions

The range of a function   f (x)  is the domain of the inverse function   f −1(x).

The domain of   f (x)  is the range of   f −1(x).

Given a function, find the domain and range of its inverse.

1. If the function is one-to-one, write the range of the original function as the domain of the inverse, and
write the domain of the original function as the range of the inverse.

2. If the domain of the original function needs to be restricted to make it one-to-one, then this restricted
domain becomes the range of the inverse function.

Example 3.75

Finding the Inverses of Toolkit Functions

Identify which of the toolkit functions besides the quadratic function are not one-to-one, and find a restricted
domain on which each function is one-to-one, if any. The toolkit functions are reviewed in Table 3.43. We
restrict the domain in such a fashion that the function assumes all y-values exactly once.

Constant Identity Quadratic Cubic Reciprocal

f (x) = c f (x) = x f (x) = x2 f (x) = x3 f (x) = 1
x

Reciprocal
squared Cube root Square

root
Absolute

value

f (x) = 1
x2 f (x) = x3 f (x) = x f (x) = |x|

Table 3.43

Solution
The constant function is not one-to-one, and there is no domain (except a single point) on which it could be one-
to-one, so the constant function has no inverse.

The absolute value function can be restricted to the domain  [0, ∞), where it is equal to the identity function.

The reciprocal-squared function can be restricted to the domain  (0, ∞).

Analysis
We can see that these functions (if unrestricted) are not one-to-one by looking at their graphs, shown in Figure
3.111. They both would fail the horizontal line test. However, if a function is restricted to a certain domain so
that it passes the horizontal line test, then in that restricted domain, it can have an inverse.
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Figure 3.111 (a) Absolute value (b) Reciprocal square

The domain of function   f   is  (1, ∞)  and the range of function   f   is  (−∞, −2).  Find the domain and

range of the inverse function.

Finding and Evaluating Inverse Functions
Once we have a one-to-one function, we can evaluate its inverse at specific inverse function inputs or construct a complete
representation of the inverse function in many cases.

Inverting Tabular Functions
Suppose we want to find the inverse of a function represented in table form. Remember that the domain of a function is the
range of the inverse and the range of the function is the domain of the inverse. So we need to interchange the domain and
range.

Each row (or column) of inputs becomes the row (or column) of outputs for the inverse function. Similarly, each row (or
column) of outputs becomes the row (or column) of inputs for the inverse function.

Example 3.76

Interpreting the Inverse of a Tabular Function

A function   f (t)  is given in Table 3.44, showing distance in miles that a car has traveled in  t minutes. Find and

interpret   f −1(70).

t (minutes) 30 50 70 90

f(t) (miles) 20 40 60 70

Table 3.44
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Solution

The inverse function takes an output of   f   and returns an input for   f .  So in the expression   f −1(70),   70 is an

output value of the original function, representing 70 miles. The inverse will return the corresponding input of the
original function   f ,   90 minutes, so   f −1(70) = 90. The interpretation of this is that, to drive 70 miles, it took

90 minutes.

Alternatively, recall that the definition of the inverse was that if   f (a) = b,   then   f −1(b) = a. By this definition,

if we are given   f −1(70) = a,   then we are looking for a value  a  so that   f (a) = 70.  In this case, we are looking

for a  t  so that   f (t) = 70,  which is when  t = 90.

Using Table 3.45, find and interpret (a)  f (60), and (b)  f −1(60).

t (minutes) 30 50 60 70 90

f(t) (miles) 20 40 50 60 70

Table 3.45

Evaluating the Inverse of a Function, Given a Graph of the Original Function
We saw in Functions and Function Notation that the domain of a function can be read by observing the horizontal
extent of its graph. We find the domain of the inverse function by observing the vertical extent of the graph of the original
function, because this corresponds to the horizontal extent of the inverse function. Similarly, we find the range of the inverse
function by observing the horizontal extent of the graph of the original function, as this is the vertical extent of the inverse
function. If we want to evaluate an inverse function, we find its input within its domain, which is all or part of the vertical
axis of the original function’s graph.

Given the graph of a function, evaluate its inverse at specific points.

1. Find the desired input on the y-axis of the given graph.

2. Read the inverse function’s output from the x-axis of the given graph.

Example 3.77

Evaluating a Function and Its Inverse from a Graph at Specific Points

A function  g(x)  is given in Figure 3.112. Find  g(3)  and  g−1(3).
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Figure 3.112

Solution
To evaluate g(3),  we find 3 on the x-axis and find the corresponding output value on the y-axis. The point

 (3, 1)  tells us that  g(3) = 1.

To evaluate  g−1(3),   recall that by definition  g−1(3) means the value of x for which  g(x) = 3. By looking for

the output value 3 on the vertical axis, we find the point  (5, 3)  on the graph, which means  g(5) = 3,   so by

definition,  g−1(3) = 5.  See Figure 3.113.

Figure 3.113

Using the graph in Figure 3.113, (a) find  g−1(1), and (b) estimate  g−1(4).

Finding Inverses of Functions Represented by Formulas
Sometimes we will need to know an inverse function for all elements of its domain, not just a few. If the original function
is given as a formula—for example,  y  as a function of  x— we can often find the inverse function by solving to obtain  x  as

a function of  y.

Given a function represented by a formula, find the inverse.

1. Make sure   f   is a one-to-one function.

2. Solve for  x.

3. Interchange  x  and  y.
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Example 3.78

Inverting the Fahrenheit-to-Celsius Function

Find a formula for the inverse function that gives Fahrenheit temperature as a function of Celsius temperature.

C = 5
9(F − 32)

Solution

C = 5
9(F − 32)

C ⋅ 9
5 = F − 32

F = 9
5C + 32

By solving in general, we have uncovered the inverse function. If

C = h(F) = 5
9(F − 32),

then

F = h−1(C) = 9
5C + 32

In this case, we introduced a function  h  to represent the conversion because the input and output variables are

descriptive, and writing  C−1   could get confusing.

Solve for  x  in terms of  y  given  y = 1
3(x − 5).

Example 3.79

Solving to Find an Inverse Function

Find the inverse of the function   f (x) = 2
x − 3 + 4.

Solution

y = 2
x − 3 + 4 Set up an equation.

y − 4 = 2
x − 3 Subtract 4 from both sides.

x − 3 = 2
y − 4 Multiply both sides by x − 3 and divide by y − 4.

x = 2
y − 4 + 3 Add 3 to both sides.

So   f −1 (y) = 2
y − 4 + 3  or   f −1 (x) = 2

x − 4 + 3.

Analysis
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The domain and range of   f   exclude the values 3 and 4, respectively.   f   and   f −1   are equal at two points but are

not the same function, as we can see by creating Table 3.45.

x 1 2 5 f −1(y)

f(x) 3 2 5 y

Table 3.45

Example 3.80

Solving to Find an Inverse with Radicals

Find the inverse of the function   f (x) = 2 + x − 4.

Solution

y = 2 + x − 4

(y − 2)2 = x − 4

x = (y − 2)2 + 4

So   f −1 (x) = (x − 2)2 + 4.

The domain of   f   is  [4, ∞). Notice that the range of   f   is  [2, ∞),   so this means that the domain of the inverse

function   f −1   is also  [2, ∞).

Analysis
The formula we found for   f −1 (x)  looks like it would be valid for all real  x. However,   f −1   itself must have an

inverse (namely,   f   ) so we have to restrict the domain of   f −1   to  [2, ∞)  in order to make   f −1   a one-to-one

function. This domain of   f −1   is exactly the range of   f .

What is the inverse of the function   f (x) = 2 − x? State the domains of both the function and the

inverse function.

Finding Inverse Functions and Their Graphs
Now that we can find the inverse of a function, we will explore the graphs of functions and their inverses. Let us return to
the quadratic function   f (x) = x2   restricted to the domain  [0, ∞), on which this function is one-to-one, and graph it as in

Figure 3.114.

372 Chapter 3 Functions

This content is available for free at https://cnx.org/content/col11758/1.5



Figure 3.114 Quadratic function with domain restricted to [0,
∞).

Restricting the domain to  [0, ∞) makes the function one-to-one (it will obviously pass the horizontal line test), so it has an
inverse on this restricted domain.

We already know that the inverse of the toolkit quadratic function is the square root function, that is, f −1(x) = x. What

happens if we graph both f  and f −1 on the same set of axes, using the x- axis for the input to both f  and  f −1?

We notice a distinct relationship: The graph of   f −1(x)  is the graph of   f (x)  reflected about the diagonal line  y = x,  which

we will call the identity line, shown in Figure 3.115.

Figure 3.115 Square and square-root functions on the non-
negative domain

This relationship will be observed for all one-to-one functions, because it is a result of the function and its inverse swapping
inputs and outputs. This is equivalent to interchanging the roles of the vertical and horizontal axes.

Example 3.81

Finding the Inverse of a Function Using Reflection about the Identity Line

Given the graph of   f (x)  in Figure 3.116, sketch a graph of   f −1(x).
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Figure 3.116

Solution
This is a one-to-one function, so we will be able to sketch an inverse. Note that the graph shown has an
apparent domain of  (0, ∞)  and range of  (−∞, ∞),   so the inverse will have a domain of  (−∞, ∞)  and range
of  (0, ∞).

If we reflect this graph over the line  y = x,   the point  (1, 0)  reflects to  (0, 1)  and the point  (4, 2)  reflects to

 (2, 4).  Sketching the inverse on the same axes as the original graph gives Figure 3.117.

Figure 3.117 The function and its inverse, showing reflection
about the identity line

Draw graphs of the functions   f  and  f −1 from Example 3.79.
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Is there any function that is equal to its own inverse?

Yes. If   f = f −1,   then   f ⎛
⎝ f (x)⎞

⎠ = x,   and we can think of several functions that have this property. The identity

function does, and so does the reciprocal function, because

1
1
x

= x

Any function   f (x) = c − x,  where  c  is a constant, is also equal to its own inverse.

Access these online resources for additional instruction and practice with inverse functions.

• Inverse Functions (http://openstaxcollege.org/l/inversefunction)

• One-to-one Functions (http://openstaxcollege.org/l/onetoone)

• Inverse Function Values Using Graph (http://openstaxcollege.org/l/inversfuncgraph)

• Restricting the Domain and Finding the Inverse (http://openstaxcollege.org/l/
restrictdomain)

Visit this website (http://openstaxcollege.org/l/PreCalcLPC01) for additional practice questions from
Learningpod.
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3.7 EXERCISES
Verbal

Describe why the horizontal line test is an effective
way to determine whether a function is one-to-one?

Why do we restrict the domain of the function
  f (x) = x2   to find the function’s inverse?

Can a function be its own inverse? Explain.

Are one-to-one functions either always increasing or
always decreasing? Why or why not?

How do you find the inverse of a function
algebraically?

Algebraic

Show that the function   f (x) = a − x  is its own

inverse for all real numbers  a.

For the following exercises, find   f −1(x)  for each function.

f (x) = x + 3

f (x) = x + 5

f (x) = 2 − x

f (x) = 3 − x

f (x) = x
x + 2

f (x) = 2x + 3
5x + 4

For the following exercises, find a domain on which each
function   f   is one-to-one and non-decreasing. Write the

domain in interval notation. Then find the inverse of   f  
restricted to that domain.

f (x) = (x + 7)2

f (x) = (x − 6)2

f (x) = x2 − 5

Given   f (x) = x3 − 5  and  g(x) = 2x
1 − x :

a. Find   f (g(x))  and  g( f (x)).

b. What does the answer tell us about the relationship
between   f (x)  and  g(x)?

For the following exercises, use function composition to
verify that   f (x)  and  g(x)  are inverse functions.

f (x) = x − 13   and  g(x) = x3 + 1

f (x) = − 3x + 5  and  g(x) = x − 5
−3

Graphical
For the following exercises, use a graphing utility to
determine whether each function is one-to-one.

f (x) = x

f (x) = 3x + 13

f (x) = −5x + 1

f (x) = x3 − 27

For the following exercises, determine whether the graph
represents a one-to-one function.
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459.

460.

For the following exercises, use the graph of   f   shown in

Figure 3.118.

Figure 3.118

Find   f (0).

Solve   f (x) = 0.

Find   f −1 (0).

Solve   f −1 (x) = 0.

For the following exercises, use the graph of the one-to-one
function shown in Figure 3.119.

Figure 3.119

Sketch the graph of   f −1. 

Find   f (6) and f −1(2).

If the complete graph of   f   is shown, find the domain

of   f . 

If the complete graph of   f   is shown, find the range of

  f .

Numeric
For the following exercises, evaluate or solve, assuming
that the function   f   is one-to-one.

If   f (6) = 7,   find    f −1(7).

If   f (3) = 2,   find   f −1(2).

If   f −1 (−4) = − 8,   find   f ( − 8).

If   f −1 (−2) = − 1,   find   f ( − 1).

For the following exercises, use the values listed in Table
3.46 to evaluate or solve.

x f(x)

0 8

1 0

2 7

3 4

4 2

5 6

6 5

7 3

8 9

9 1

Table 3.46

Find   f (1).

Solve   f (x) = 3.

Find   f −1 (0).

Solve   f −1 (x) = 7.
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467.

Use the tabular representation of   f   in Table 3.47 to

create a table for   f −1 (x).

x 3 6 9 13 14

f(x) 1 4 7 12 16

Table 3.47

Technology
For the following exercises, find the inverse function.
Then, graph the function and its inverse.

f (x) = 3
x − 2

f (x) = x3 − 1

Find the inverse function of   f (x) = 1
x − 1. Use a

graphing utility to find its domain and range. Write the
domain and range in interval notation.

Real-World Applications

To convert from  x  degrees Celsius to  y  degrees

Fahrenheit, we use the formula   f (x) = 9
5x + 32.  Find the

inverse function, if it exists, and explain its meaning.

The circumference  C  of a circle is a function of its
radius given by  C(r) = 2πr. Express the radius of a circle
as a function of its circumference. Call this function  r(C). 
Find  r(36π)  and interpret its meaning.

A car travels at a constant speed of 50 miles per hour.
The distance the car travels in miles is a function of time,
 t,   in hours given by  d(t) = 50t.  Find the inverse
function by expressing the time of travel in terms of the
distance traveled. Call this function  t(d).  Find  t(180)  and
interpret its meaning.

378 Chapter 3 Functions

This content is available for free at https://cnx.org/content/col11758/1.5



absolute maximum

absolute minimum

average rate of change

composite function

decreasing function

dependent variable

domain

even function

function

horizontal compression

horizontal line test

horizontal reflection

horizontal shift

horizontal stretch

increasing function

independent variable

input

interval notation

inverse function

local extrema

local maximum

local minimum

odd function

one-to-one function

CHAPTER 3 REVIEW

KEY TERMS
the greatest value of a function over an interval

the lowest value of a function over an interval

the difference in the output values of a function found for two values of the input divided by the
difference between the inputs

the new function formed by function composition, when the output of one function is used as the
input of another

a function is decreasing in some open interval if   f (b) < f (a)  for any two input values  a  and  b  in
the given interval where  b > a

an output variable

the set of all possible input values for a relation

a function whose graph is unchanged by horizontal reflection,   f (x) = f ( − x),   and is symmetric about

the y- axis

a relation in which each input value yields a unique output value

a transformation that compresses a function’s graph horizontally, by multiplying the input by a
constant  b > 1

a method of testing whether a function is one-to-one by determining whether any horizontal line
intersects the graph more than once

a transformation that reflects a function’s graph across the y-axis by multiplying the input by  −1

a transformation that shifts a function’s graph left or right by adding a positive or negative constant to the
input

a transformation that stretches a function’s graph horizontally by multiplying the input by a constant
 0 < b < 1

a function is increasing in some open interval if   f (b) > f (a)  for any two input values  a  and  b  in
the given interval where  b > a

an input variable

each object or value in a domain that relates to another object or value by a relationship known as a function

a method of describing a set that includes all numbers between a lower limit and an upper limit; the
lower and upper values are listed between brackets or parentheses, a square bracket indicating inclusion in the set, and
a parenthesis indicating exclusion

for any one-to-one function   f (x),   the inverse is a function   f −1(x)  such that   f −1 ⎛
⎝ f (x)⎞

⎠ = x  for all  x 
in the domain of   f ;   this also implies that   f ⎛

⎝ f −1 (x)⎞
⎠ = x  for all  x  in the domain of   f −1

collectively, all of a function's local maxima and minima

a value of the input where a function changes from increasing to decreasing as the input value increases.

a value of the input where a function changes from decreasing to increasing as the input value increases.

a function whose graph is unchanged by combined horizontal and vertical reflection,   f (x) = − f ( − x),  
and is symmetric about the origin

a function for which each value of the output is associated with a unique input value
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output

piecewise function

range

rate of change

relation

set-builder notation

vertical compression

vertical line test

vertical reflection

vertical shift

vertical stretch

each object or value in the range that is produced when an input value is entered into a function

a function in which more than one formula is used to define the output

the set of output values that result from the input values in a relation

the change of an output quantity relative to the change of the input quantity

a set of ordered pairs

a method of describing a set by a rule that all of its members obey; it takes the form
 {x| statement about x}

a function transformation that compresses the function’s graph vertically by multiplying the
output by a constant  0 < a < 1

a method of testing whether a graph represents a function by determining whether a vertical line
intersects the graph no more than once

a transformation that reflects a function’s graph across the x-axis by multiplying the output by  −1

a transformation that shifts a function’s graph up or down by adding a positive or negative constant to the
output

a transformation that stretches a function’s graph vertically by multiplying the output by a constant
 a > 1

KEY EQUATIONS

Constant function f (x) = c, where  c  is a constant

Identity function f (x) = x

Absolute value function f (x) = |x|

Quadratic function f (x) = x2

Cubic function f (x) = x3

Reciprocal function f (x) = 1
x

Reciprocal squared function f (x) = 1
x2

Square root function f (x) = x

Cube root function f (x) = x3

Average rate of change
Δy
Δx = f (x2) − f (x1)

x2 − x1
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Composite function
⎛
⎝ f ∘g⎞

⎠(x) = f ⎛
⎝g(x)⎞

⎠

Vertical shift g(x) = f (x) + k  (up for  k > 0 )

Horizontal shift g(x) = f (x − h) (right for  h > 0 )

Vertical reflection g(x) = − f (x)

Horizontal reflection g(x) = f ( − x)

Vertical stretch g(x) = a f (x)  ( a > 0 )

Vertical compression g(x) = a f (x)  (0 < a < 1)

Horizontal stretch g(x) = f (bx) (0 < b < 1)

Horizontal compression. g(x) = f (bx)  ( b > 1 )

KEY CONCEPTS
3.1 Functions and Function Notation

• A relation is a set of ordered pairs. A function is a specific type of relation in which each domain value, or input,
leads to exactly one range value, or output. See Example 3.1 and Example 3.2.

• Function notation is a shorthand method for relating the input to the output in the form  y = f (x).  See Example
3.3 and Example 3.4.

• In tabular form, a function can be represented by rows or columns that relate to input and output values. See
Example 3.5.

• To evaluate a function, we determine an output value for a corresponding input value. Algebraic forms of a function
can be evaluated by replacing the input variable with a given value. See Example 3.6 and Example 3.7.

• To solve for a specific function value, we determine the input values that yield the specific output value. See
Example 3.8.

• An algebraic form of a function can be written from an equation. See Example 3.9 and Example 3.10.

• Input and output values of a function can be identified from a table. See Example 3.11.

• Relating input values to output values on a graph is another way to evaluate a function. See Example 3.12.

• A function is one-to-one if each output value corresponds to only one input value. See Example 3.13.

• A graph represents a function if any vertical line drawn on the graph intersects the graph at no more than one point.
See Example 3.14.

• The graph of a one-to-one function passes the horizontal line test. See Example 3.15.
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3.2 Domain and Range

• The domain of a function includes all real input values that would not cause us to attempt an undefined mathematical
operation, such as dividing by zero or taking the square root of a negative number.

• The domain of a function can be determined by listing the input values of a set of ordered pairs. See Example
3.16.

• The domain of a function can also be determined by identifying the input values of a function written as an equation.
See Example 3.17, Example 3.18, and Example 3.19.

• Interval values represented on a number line can be described using inequality notation, set-builder notation, and
interval notation. See Example 3.20.

• For many functions, the domain and range can be determined from a graph. See Example 3.21 and Example
3.22.

• An understanding of toolkit functions can be used to find the domain and range of related functions. See Example
3.23, Example 3.24, and Example 3.25.

• A piecewise function is described by more than one formula. See Example 3.26 and Example 3.27.

• A piecewise function can be graphed using each algebraic formula on its assigned subdomain. See Example 3.28.

3.3 Rates of Change and Behavior of Graphs

• A rate of change relates a change in an output quantity to a change in an input quantity. The average rate of change
is determined using only the beginning and ending data. See Example 3.29.

• Identifying points that mark the interval on a graph can be used to find the average rate of change. See Example
3.30.

• Comparing pairs of input and output values in a table can also be used to find the average rate of change. See
Example 3.31.

• An average rate of change can also be computed by determining the function values at the endpoints of an interval
described by a formula. See Example 3.32 and Example 3.33.

• The average rate of change can sometimes be determined as an expression. See Example 3.34.

• A function is increasing where its rate of change is positive and decreasing where its rate of change is negative. See
Example 3.35.

• A local maximum is where a function changes from increasing to decreasing and has an output value larger (more
positive or less negative) than output values at neighboring input values.

• A local minimum is where the function changes from decreasing to increasing (as the input increases) and has an
output value smaller (more negative or less positive) than output values at neighboring input values.

• Minima and maxima are also called extrema.

• We can find local extrema from a graph. See Example 3.36 and Example 3.37.

• The highest and lowest points on a graph indicate the maxima and minima. See Example 3.38.

3.4 Composition of Functions

• We can perform algebraic operations on functions. See Example 3.39.

• When functions are combined, the output of the first (inner) function becomes the input of the second (outer)
function.

• The function produced by combining two functions is a composite function. See Example 3.40 and Example
3.41.

• The order of function composition must be considered when interpreting the meaning of composite functions. See
Example 3.42.
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• A composite function can be evaluated by evaluating the inner function using the given input value and then
evaluating the outer function taking as its input the output of the inner function.

• A composite function can be evaluated from a table. See Example 3.43.

• A composite function can be evaluated from a graph. See Example 3.44.

• A composite function can be evaluated from a formula. See Example 3.45.

• The domain of a composite function consists of those inputs in the domain of the inner function that correspond to
outputs of the inner function that are in the domain of the outer function. See Example 3.46 and Example 3.47.

• Just as functions can be combined to form a composite function, composite functions can be decomposed into
simpler functions.

• Functions can often be decomposed in more than one way. See Example 3.48.

3.5 Transformation of Functions

• A function can be shifted vertically by adding a constant to the output. See Example 3.49 and Example 3.50.

• A function can be shifted horizontally by adding a constant to the input. See Example 3.51, Example 3.52, and
Example 3.53.

• Relating the shift to the context of a problem makes it possible to compare and interpret vertical and horizontal
shifts. See Example 3.54.

• Vertical and horizontal shifts are often combined. See Example 3.55 and Example 3.56.

• A vertical reflection reflects a graph about the  x- axis. A graph can be reflected vertically by multiplying the output
by –1.

• A horizontal reflection reflects a graph about the y- axis. A graph can be reflected horizontally by multiplying the

input by –1.

• A graph can be reflected both vertically and horizontally. The order in which the reflections are applied does not
affect the final graph. See Example 3.57.

• A function presented in tabular form can also be reflected by multiplying the values in the input and output rows or
columns accordingly. See Example 3.58.

• A function presented as an equation can be reflected by applying transformations one at a time. See Example 3.59.

• Even functions are symmetric about the y- axis, whereas odd functions are symmetric about the origin.

• Even functions satisfy the condition   f (x) = f ( − x).

• Odd functions satisfy the condition   f (x) = − f ( − x).

• A function can be odd, even, or neither. See Example 3.60.

• A function can be compressed or stretched vertically by multiplying the output by a constant. See Example 3.61,
Example 3.62, and Example 3.63.

• A function can be compressed or stretched horizontally by multiplying the input by a constant. See Example 3.64,
Example 3.65, and Example 3.66.

• The order in which different transformations are applied does affect the final function. Both vertical and horizontal
transformations must be applied in the order given. However, a vertical transformation may be combined with a
horizontal transformation in any order. See Example 3.67 and Example 3.68.

3.6 Absolute Value Functions

• Applied problems, such as ranges of possible values, can also be solved using the absolute value function. See
Example 3.69.

• The graph of the absolute value function resembles a letter V. It has a corner point at which the graph changes
direction. See Example 3.70.
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• In an absolute value equation, an unknown variable is the input of an absolute value function.

• If the absolute value of an expression is set equal to a positive number, expect two solutions for the unknown
variable. See Example 3.71.

3.7 Inverse Functions

• If  g(x)  is the inverse of   f (x),   then  g( f (x)) = f (g(x)) = x.  See Example 3.72, Example 3.73, and Example
3.74.

• Only some of the toolkit functions have an inverse. See Example 3.75.

• For a function to have an inverse, it must be one-to-one (pass the horizontal line test).

• A function that is not one-to-one over its entire domain may be one-to-one on part of its domain.

• For a tabular function, exchange the input and output rows to obtain the inverse. See Example 3.76.

• The inverse of a function can be determined at specific points on its graph. See Example 3.77.

• To find the inverse of a formula, solve the equation  y = f (x)  for  x  as a function of  y. Then exchange the labels  x
and   y.   See Example 3.78, Example 3.79, and Example 3.80.

• The graph of an inverse function is the reflection of the graph of the original function across the line  y = x.  See

Example 3.81.

CHAPTER 3 REVIEW EXERCISES
Functions and Function Notation

For the following exercises, determine whether the relation
is a function.

468. {(a, b), (c, d), (e, d)}

469. ⎧

⎩
⎨(5, 2), (6, 1), (6, 2), (4, 8)⎫

⎭
⎬

470. y2 + 4 = x,   for  x  the independent variable and  y 
the dependent variable

471. Is the graph in Figure 3.120 a function?

Figure 3.120

For the following exercises, evaluate the function at the
indicated values:
  f ( − 3);    f (2);     f ( − a);    − f (a);     f (a + h).

472. f (x) = − 2x2 + 3x

473. f (x) = 2|3x − 1|

For the following exercises, determine whether the
functions are one-to-one.

474. f (x) = − 3x + 5

475. f (x) = |x − 3|

For the following exercises, use the vertical line test to
determine if the relation whose graph is provided is a
function.

476.

477.
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478.

For the following exercises, graph the functions.

479. f (x) = |x + 1|

480. f (x) = x2 − 2

For the following exercises, use Figure 3.121 to
approximate the values.

Figure 3.121

481. f (2)

482. f (−2)

483. If   f (x) = −2,   then solve for  x.

484. If   f (x) = 1,   then solve for  x.

For the following exercises, use the function
 h(t) = − 16t2 + 80t  to find the values in simplest form.

485. h(2) − h(1)
2 − 1

486. h(a) − h(1)
a − 1

Domain and Range

For the following exercises, find the domain of each
function, expressing answers using interval notation.

487. f (x) = 2
3x + 2

488. f (x) = x − 3
x2 − 4x − 12

489. f (x) = x − 6
x − 4

490. Graph this piecewise function:

f (x) =
⎧

⎩
⎨x + 1        x < − 2
−2x − 3   x ≥ − 2

Rates of Change and Behavior of Graphs

For the following exercises, find the average rate of change
of the functions from  x = 1 to x = 2.

491. f (x) = 4x − 3

492. f (x) = 10x2 + x

493. f (x) = − 2
x2

For the following exercises, use the graphs to determine the
intervals on which the functions are increasing, decreasing,
or constant.

494.

Chapter 3 Functions 385



495.

496.

497. Find the local minimum of the function graphed in
Exercise 3.494.

498. Find the local extrema for the function graphed in
Exercise 3.495.

499. For the graph in Figure 3.122, the domain of the
function is  [−3, 3]. The range is  [−10, 10].  Find the
absolute minimum of the function on this interval.

500. Find the absolute maximum of the function graphed
in Figure 3.122.

Figure 3.122

Composition of Functions

For the following exercises, find  ( f ∘g)(x)  and  (g ∘ f )(x) 
for each pair of functions.

501. f (x) = 4 − x,  g(x) = − 4x

502. f (x) = 3x + 2,  g(x) = 5 − 6x

503. f (x) = x2 + 2x,  g(x) = 5x + 1

504. f (x) = x + 2,  g(x) = 1
x
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505.   f (x) = x + 3
2 ,  g(x) = 1 − x 

For the following exercises, find  ⎛⎝ f ∘g⎞
⎠  and the domain for

 ⎛⎝ f ∘g⎞
⎠(x)  for each pair of functions.

506. f (x) = x + 1
x + 4,  g(x) = 1

x

507. f (x) = 1
x + 3,  g(x) = 1

x − 9

508. f (x) = 1
x ,  g(x) = x

509. f (x) = 1
x2 − 1

,  g(x) = x + 1

For the following exercises, express each function  H  as
a composition of two functions   f   and  g where

 H(x) = ( f ∘g)(x).

510. H(x) = 2x − 1
3x + 4

511. H(x) = 1
(3x2 − 4)−3

Transformation of Functions

For the following exercises, sketch a graph of the given
function.

512. f (x) = (x − 3)2

513. f (x) = (x + 4)3

514. f (x) = x + 5

515. f (x) = − x3

516. f (x) = −x3

517. f (x) = 5 −x − 4

518. f (x) = 4[|x − 2| − 6]

519. f (x) = − (x + 2)2 − 1

For the following exercises, sketch the graph of the
function  g  if the graph of the function   f   is shown in

Figure 3.123.

Figure 3.123

520. g(x) = f (x − 1)

521. g(x) = 3 f (x)

For the following exercises, write the equation for the
standard function represented by each of the graphs below.

522.

523.

For the following exercises, determine whether each
function below is even, odd, or neither.

524. f (x) = 3x4

525. g(x) = x
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526. h(x) = 1
x + 3x

For the following exercises, analyze the graph and
determine whether the graphed function is even, odd, or
neither.

527.

528.

529.

Absolute Value Functions

For the following exercises, write an equation for the
transformation of   f (x) = |x|.

530.

531.

532.

For the following exercises, graph the absolute value
function.

533. f (x) = |x − 5|

534. f (x) = − |x − 3|

535. f (x) = |2x − 4|

Inverse Functions

For the following exercises, find  f −1(x) for each

function.

536. f (x) = 9 + 10x

537. f (x) = x
x + 2

For the following exercise, find a domain on which the
function  f  is one-to-one and non-decreasing. Write the

domain in interval notation. Then find the inverse of  f  
restricted to that domain.
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538. f (x) = x2 + 1

539. Given f (x) = x3 − 5 and g(x) = x + 53 :
a. Find  f (g(x)) and g( f (x)).
b. What does the answer tell us about the
relationship between f (x) and g(x)?

For the following exercises, use a graphing utility to
determine whether each function is one-to-one.

540. f (x) = 1
x

541. f (x) = − 3x2 + x

542. If f (5) = 2, find f −1(2).

543. If f (1) = 4, find f −1(4).

CHAPTER 3 PRACTICE TEST
For the following exercises, determine whether each of the
following relations is a function.

544. y = 2x + 8

545. {(2, 1), (3, 2), ( − 1, 1), (0, − 2)}

For the following exercises, evaluate the function
  f (x) = − 3x2 + 2x  at the given input.

546. f (−2)

547.   f (a) 

548. Show that the function   f (x) = − 2(x − 1)2 + 3  is
not one-to-one.

549. Write the domain of the function   f (x) = 3 − x  in
interval notation.

550. Given   f (x) = 2x2 − 5x,   find f (a + 1) − f (1)  in
simplest form.

551. Graph the function

f (x) =
⎧

⎩
⎨ x + 1   if −2 < x < 3
   − x    if  x ≥ 3

552. Find the average rate of change of the function

  f (x) = 3 − 2x2 + x  by finding   f (b) − f (a)
b − a   in simplest

form.

For the following exercises, use the functions
  f (x) = 3 − 2x2 + x and g(x) = x  to find the composite

functions.

553. ⎛
⎝g ∘ f ⎞

⎠(x)

554. ⎛
⎝g ∘ f ⎞

⎠(1)

555. Express  H(x) = 5x2 − 3x
3

  as a composition of two

functions,   f   and  g,  where  ⎛⎝ f ∘g⎞
⎠(x) = H(x).

For the following exercises, graph the functions by
translating, stretching, and/or compressing a toolkit
function.

556. f (x) = x + 6 − 1

557. f (x) = 1
x + 2 − 1

For the following exercises, determine whether the
functions are even, odd, or neither.

558. f (x) = − 5
x2 + 9x6
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559. f (x) = − 5
x3 + 9x5

560. f (x) = 1
x

561. Graph the absolute value function
f (x) = − 2|x − 1| + 3.

For the following exercises, find the inverse of the function.

562. f (x) = 3x − 5

563. f (x) = 4
x + 7

For the following exercises, use the graph of  g  shown in

Figure 3.124.

Figure 3.124

564. On what intervals is the function increasing?

565. On what intervals is the function decreasing?

566. Approximate the local minimum of the function.
Express the answer as an ordered pair.

567. Approximate the local maximum of the function.
Express the answer as an ordered pair.

For the following exercises, use the graph of the piecewise
function shown in Figure 3.125.

Figure 3.125

568. Find   f (2).

569. Find   f (−2).

570. Write an equation for the piecewise function.

For the following exercises, use the values listed in Table
3.48.

x F(x)

0 1

1 3

2 5

3 7

4 9

5 11

6 13

7 15

8 17

Table 3.48

571. Find  F(6).

572. Solve the equation  F(x) = 5.

573. Is the graph increasing or decreasing on its domain?
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574. Is the function represented by the graph one-to-one?

575. Find  F−1(15).

576. Given   f (x) = − 2x + 11,   find   f −1(x).
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4 | LINEAR FUNCTIONS
Chapter Outline

4.1 Linear Functions

4.2 Modeling with Linear Functions

4.3 Fitting Linear Models to Data

Introduction

Figure 4.1 A bamboo forest in China (credit: "JFXie"/Flickr)

Imagine placing a plant in the ground one day and finding that it has doubled its height just a few days later. Although
it may seem incredible, this can happen with certain types of bamboo species. These members of the grass family are the
fastest-growing plants in the world. One species of bamboo has been observed to grow nearly 1.5 inches every hour. [1] In a
twenty-four hour period, this bamboo plant grows about 36 inches, or an incredible 3 feet! A constant rate of change, such
as the growth cycle of this bamboo plant, is a linear function.

Recall from Functions and Function Notation that a function is a relation that assigns to every element in the domain
exactly one element in the range. Linear functions are a specific type of function that can be used to model many real-world
applications, such as plant growth over time. In this chapter, we will explore linear functions, their graphs, and how to relate
them to data.

1. http://www.guinnessworldrecords.com/records-3000/fastest-growing-plant/
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4.1 | Linear Functions

Learning Objectives

In this section you will:

4.1.1 Represent a linear function.
4.1.2 Determine whether a linear function is increasing, decreasing, or constant.
4.1.3 Interpret slope as a rate of change.
4.1.4 Write and interpret an equation for a linear function.
4.1.5 Graph linear functions.
4.1.6 Determine whether lines are parallel or perpendicular.
4.1.7 Write the equation of a line parallel or perpendicular to a given line.

Figure 4.2 Shanghai MagLev Train (credit: "kanegen"/Flickr)

Just as with the growth of a bamboo plant, there are many situations that involve constant change over time. Consider, for
example, the first commercial maglev train in the world, the Shanghai MagLev Train (Figure 4.2). It carries passengers
comfortably for a 30-kilometer trip from the airport to the subway station in only eight minutes[2].

Suppose a maglev train travels a long distance, and maintains a constant speed of 83 meters per second for a period of time
once it is 250 meters from the station. How can we analyze the train’s distance from the station as a function of time? In this
section, we will investigate a kind of function that is useful for this purpose, and use it to investigate real-world situations
such as the train’s distance from the station at a given point in time.

Representing Linear Functions
The function describing the train’s motion is a linear function, which is defined as a function with a constant rate of change.
This is a polynomial of degree 1. There are several ways to represent a linear function, including word form, function
notation, tabular form, and graphical form. We will describe the train’s motion as a function using each method.

Representing a Linear Function in Word Form
Let’s begin by describing the linear function in words. For the train problem we just considered, the following word sentence
may be used to describe the function relationship.

• The train’s distance from the station is a function of the time during which the train moves at a constant speed plus
its original distance from the station when it began moving at constant speed.

The speed is the rate of change. Recall that a rate of change is a measure of how quickly the dependent variable changes
with respect to the independent variable. The rate of change for this example is constant, which means that it is the same
for each input value. As the time (input) increases by 1 second, the corresponding distance (output) increases by 83 meters.
The train began moving at this constant speed at a distance of 250 meters from the station.

2. http://www.chinahighlights.com/shanghai/transportation/maglev-train.htm
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Representing a Linear Function in Function Notation
Another approach to representing linear functions is by using function notation. One example of function notation is an
equation written in the slope-intercept form of a line, where  x  is the input value,  m  is the rate of change, and  b  is the initial
value of the dependent variable.

Equation form y = mx + b
Function notation f (x) = mx + b

In the example of the train, we might use the notation  D(t) where the total distance  D  is a function of the time  t. The rate,
 m,   is 83 meters per second. The initial value of the dependent variable  b  is the original distance from the station, 250
meters. We can write a generalized equation to represent the motion of the train.

D(t) = 83t + 250
Representing a Linear Function in Tabular Form
A third method of representing a linear function is through the use of a table. The relationship between the distance from
the station and the time is represented in Figure 4.3. From the table, we can see that the distance changes by 83 meters for
every 1 second increase in time.

Figure 4.3 Tabular representation of the function  D  showing
selected input and output values

Can the input in the previous example be any real number?

No. The input represents time so while nonnegative rational and irrational numbers are possible, negative real
numbers are not possible for this example. The input consists of non-negative real numbers.

Representing a Linear Function in Graphical Form
Another way to represent linear functions is visually, using a graph. We can use the function relationship from above,
 D(t) = 83t + 250,   to draw a graph as represented in Figure 4.4. Notice the graph is a line. When we plot a linear
function, the graph is always a line.

The rate of change, which is constant, determines the slant, or slope of the line. The point at which the input value is zero is
the vertical intercept, or y-intercept, of the line. We can see from the graph that the y-intercept in the train example we just
saw is  (0, 250)  and represents the distance of the train from the station when it began moving at a constant speed.

Figure 4.4 The graph of  D(t) = 83t + 250  . Graphs of

linear functions are lines because the rate of change is constant.
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Notice that the graph of the train example is restricted, but this is not always the case. Consider the graph of the line
  f (x) = 2x + 1.  Ask yourself what numbers can be input to the function. In other words, what is the domain of the

function? The domain is comprised of all real numbers because any number may be doubled, and then have one added to
the product.

Linear Function

A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept form of a
line

f (x) = mx + b

where  b  is the initial or starting value of the function (when input,  x = 0  ), and  m  is the constant rate of change, or
slope of the function. The y-intercept is at  (0, b).

Example 4.1

Using a Linear Function to Find the Pressure on a Diver

The pressure,  P, in pounds per square inch (PSI) on the diver in Figure 4.5 depends upon her depth below the
water surface,  d, in feet. This relationship may be modeled by the equation,  P(d) = 0.434d + 14.696. Restate
this function in words.

Figure 4.5 (credit: Ilse Reijs and Jan-Noud Hutten)

Solution
To restate the function in words, we need to describe each part of the equation. The pressure as a function of depth
equals four hundred thirty-four thousandths times depth plus fourteen and six hundred ninety-six thousandths.

Analysis
The initial value, 14.696, is the pressure in PSI on the diver at a depth of 0 feet, which is the surface of the water.
The rate of change, or slope, is 0.434 PSI per foot. This tells us that the pressure on the diver increases 0.434 PSI
for each foot her depth increases.

396 Chapter 4 Linear Functions

This content is available for free at https://cnx.org/content/col11758/1.5



Determining Whether a Linear Function Is Increasing, Decreasing, or
Constant
The linear functions we used in the two previous examples increased over time, but not every linear function does. A linear
function may be increasing, decreasing, or constant. For an increasing function, as with the train example, the output values
increase as the input values increase. The graph of an increasing function has a positive slope. A line with a positive slope
slants upward from left to right as in Figure 4.6(a). For a decreasing function, the slope is negative. The output values
decrease as the input values increase. A line with a negative slope slants downward from left to right as in Figure 4.6(b).
If the function is constant, the output values are the same for all input values so the slope is zero. A line with a slope of zero
is horizontal as in Figure 4.6(c).

Figure 4.6

Increasing and Decreasing Functions

The slope determines if the function is an increasing linear function, a decreasing linear function, or a constant
function.

f (x) = mx + b  is an increasing function if  m > 0.

f (x) = mx + b  is a decreasing function if  m < 0.

f (x) = mx + b  is a constant function if  m = 0.

Example 4.2

Deciding Whether a Function Is Increasing, Decreasing, or Constant

Some recent studies suggest that a teenager sends an average of 60 texts per day[3]. For each of the following
scenarios, find the linear function that describes the relationship between the input value and the output value.
Then, determine whether the graph of the function is increasing, decreasing, or constant.

a. The total number of texts a teen sends is considered a function of time in days. The input is the number
of days, and output is the total number of texts sent.

b. A teen has a limit of 500 texts per month in his or her data plan. The input is the number of days, and
output is the total number of texts remaining for the month.

c. A teen has an unlimited number of texts in his or her data plan for a cost of $50 per month. The input is
the number of days, and output is the total cost of texting each month.

3. http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-are-sending-60-texts-a-day-study-says/
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Solution
Analyze each function.

a. The function can be represented as   f (x) = 60x where  x  is the number of days. The slope, 60, is positive

so the function is increasing. This makes sense because the total number of texts increases with each day.

b. The function can be represented as   f (x) = 500 − 60x where  x is the number of days. In this case, the

slope is negative so the function is decreasing. This makes sense because the number of texts remaining
decreases each day and this function represents the number of texts remaining in the data plan after  x
days.

c. The cost function can be represented as   f (x) = 50  because the number of days does not affect the total

cost. The slope is 0 so the function is constant.

Interpreting Slope as a Rate of Change
In the examples we have seen so far, the slope was provided to us. However, we often need to calculate the slope given input
and output values. Recall that given two values for the input,  x1 and  x2, and two corresponding values for the output,  y1

and  y2  —which can be represented by a set of points,  (x1 , y1)  and  (x2 , y2) —we can calculate the slope m.

m = change in output (rise)
change in input (run) = Δy

Δx = y2 − y1
x2 − x1

Note that in function notation we can obtain two corresponding values for the output  y1   and  y2   for the function   f ,

 y1 = f ⎛
⎝x1

⎞
⎠  and  y2 = f ⎛

⎝x2
⎞
⎠, so we could equivalently write

m = f ⎛
⎝x2

⎞
⎠ – f ⎛

⎝x1
⎞
⎠

x2 – x1

Figure 4.7 indicates how the slope of the line between the points,  (x1, y1)  and  (x2, y2),   is calculated. Recall that the

slope measures steepness, or slant. The greater the absolute value of the slope, the steeper the slant is.
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Figure 4.7 The slope of a function is calculated by the change
in  y  divided by the change in  x.  It does not matter which

coordinate is used as the  (x2, y2)  and which is the  (x1, y1),  
as long as each calculation is started with the elements from the
same coordinate pair.

Are the units for slope always  units for the output
units for the input  ?

Yes. Think of the units as the change of output value for each unit of change in input value. An example of slope
could be miles per hour or dollars per day. Notice the units appear as a ratio of units for the output per units for
the input.

Calculate Slope

The slope, or rate of change, of a function  m  can be calculated according to the following:

m = change in output (rise)
change in input (run) = Δy

Δx = y2 − y1
x2 − x1

where  x1   and  x2   are input values,  y1   and  y2   are output values.

Given two points from a linear function, calculate and interpret the slope.

1. Determine the units for output and input values.

2. Calculate the change of output values and change of input values.

3. Interpret the slope as the change in output values per unit of the input value.
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4.1

4.2

Example 4.3

Finding the Slope of a Linear Function

If   f (x)  is a linear function, and  (3, −2)  and  (8, 1)  are points on the line, find the slope. Is this function

increasing or decreasing?

Solution
The coordinate pairs are  (3, −2)  and  (8, 1). To find the rate of change, we divide the change in output by the
change in input.

m = change in output
change in input = 1 − (−2)

8 − 3 = 3
5

We could also write the slope as  m = 0.6. The function is increasing because  m > 0.

Analysis
As noted earlier, the order in which we write the points does not matter when we compute the slope of the line as
long as the first output value, or y-coordinate, used corresponds with the first input value, or x-coordinate, used.
Note that if we had reversed them, we would have obtained the same slope.

m = (−2) − (1)
3 − 8 = −3

−5 = 3
5

If   f (x)  is a linear function, and  (2, 3)  and  (0, 4)  are points on the line, find the slope. Is this function

increasing or decreasing?

Example 4.4

Finding the Population Change from a Linear Function

The population of a city increased from 23,400 to 27,800 between 2008 and 2012. Find the change of population
per year if we assume the change was constant from 2008 to 2012.

Solution
The rate of change relates the change in population to the change in time. The population increased by
 27, 800 − 23, 400 = 4400  people over the four-year time interval. To find the rate of change, divide the change
in the number of people by the number of years.

4,400 people
4 years = 1,100 people

year

So the population increased by 1,100 people per year.

Analysis
Because we are told that the population increased, we would expect the slope to be positive. This positive slope
we calculated is therefore reasonable.

The population of a small town increased from 1,442 to 1,868 between 2009 and 2012. Find the change of
population per year if we assume the change was constant from 2009 to 2012.
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Writing and Interpreting an Equation for a Linear Function
Recall from Equations and Inequalities that we wrote equations in both the slope-intercept form and the point-slope
form. Now we can choose which method to use to write equations for linear functions based on the information we are
given. That information may be provided in the form of a graph, a point and a slope, two points, and so on. Look at the
graph of the function   f   in Figure 4.8.

Figure 4.8

We are not given the slope of the line, but we can choose any two points on the line to find the slope. Let’s choose  (0, 7) 
and  (4, 4). 

m = y2 − y1
x2 − x1

= 4 − 7
4 − 0

= −3
4

Now we can substitute the slope and the coordinates of one of the points into the point-slope form.

y − y1 = m(x − x1)

 y − 4 = −3
4(x − 4)

If we want to rewrite the equation in the slope-intercept form, we would find

y − 4 = −3
4(x − 4)

y − 4 = −3
4x + 3

y = −3
4x + 7

If we want to find the slope-intercept form without first writing the point-slope form, we could have recognized that the line
crosses the y-axis when the output value is 7. Therefore,  b = 7. We now have the initial value  b  and the slope  m  so we
can substitute  m  and  b  into the slope-intercept form of a line.

So the function is f (x) = − 3
4x + 7, and the linear equation would be  y = − 3

4x + 7.
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Given the graph of a linear function, write an equation to represent the function.

1. Identify two points on the line.

2. Use the two points to calculate the slope.

3. Determine where the line crosses the y-axis to identify the y-intercept by visual inspection.

4. Substitute the slope and y-intercept into the slope-intercept form of a line equation.

Example 4.5

Writing an Equation for a Linear Function

Write an equation for a linear function given a graph of   f   shown in Figure 4.9.

Figure 4.9

Solution
Identify two points on the line, such as  (0, 2)  and  (−2, −4). Use the points to calculate the slope.

m = y2 − y1
x2 − x1

= −4 − 2
−2 − 0

= −6
−2

= 3

Substitute the slope and the coordinates of one of the points into the point-slope form.

y − y1 = m(x − x1)
y − (−4) = 3(x − (−2))

y + 4 = 3(x + 2)

We can use algebra to rewrite the equation in the slope-intercept form.

y + 4 = 3(x + 2)
y + 4 = 3x + 6

y = 3x + 2

Analysis
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This makes sense because we can see from Figure 4.10 that the line crosses the y-axis at the point  (0,  2),  
which is the y-intercept, so  b = 2.

Figure 4.10

Example 4.6

Writing an Equation for a Linear Cost Function

Suppose Ben starts a company in which he incurs a fixed cost of $1,250 per month for the overhead, which
includes his office rent. His production costs are $37.50 per item. Write a linear function  C where  C(x)  is the
cost for  x  items produced in a given month.

Solution
The fixed cost is present every month, $1,250. The costs that can vary include the cost to produce each item,
which is $37.50. The variable cost, called the marginal cost, is represented by  37.5. The cost Ben incurs is the
sum of these two costs, represented by  C(x) = 1250 + 37.5x.

Analysis
If Ben produces 100 items in a month, his monthly cost is found by substituting 100 for  x.

C(100) = 1250 + 37.5(100)
= 5000

So his monthly cost would be $5,000.

Example 4.7

Writing an Equation for a Linear Function Given Two Points

If   f   is a linear function, with   f (3) = −2, and   f (8) = 1, find an equation for the function in slope-intercept

form.
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Solution
We can write the given points using coordinates.

f (3) = −2 → (3, −2)
f (8) = 1 → (8, 1)

We can then use the points to calculate the slope.

m = y2 − y1
x2 − x1

= 1 − (−2)
8 − 3

= 3
5

Substitute the slope and the coordinates of one of the points into the point-slope form.

y − y1 = m(x − x1)

y − (−2) = 3
5(x − 3)

We can use algebra to rewrite the equation in the slope-intercept form.

y + 2 = 3
5(x − 3)

y + 2 = 3
5x − 9

5
y = 3

5x − 19
5

If   f (x)  is a linear function, with   f (2) = –11, and   f (4) = −25, write an equation for the function in

slope-intercept form.

Modeling Real-World Problems with Linear Functions
In the real world, problems are not always explicitly stated in terms of a function or represented with a graph. Fortunately,
we can analyze the problem by first representing it as a linear function and then interpreting the components of the function.
As long as we know, or can figure out, the initial value and the rate of change of a linear function, we can solve many
different kinds of real-world problems.

Given a linear function   f   and the initial value and rate of change, evaluate   f(c).

1. Determine the initial value and the rate of change (slope).

2. Substitute the values into   f (x) = mx + b.

3. Evaluate the function at  x = c.

Example 4.8

Using a Linear Function to Determine the Number of Songs in a Music Collection
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Marcus currently has 200 songs in his music collection. Every month, he adds 15 new songs. Write a formula for
the number of songs,  N, in his collection as a function of time,  t, the number of months. How many songs will
he own at the end of one year?

Solution
The initial value for this function is 200 because he currently owns 200 songs, so  N(0) = 200, which means that
 b = 200.

The number of songs increases by 15 songs per month, so the rate of change is 15 songs per month. Therefore
we know that  m = 15. We can substitute the initial value and the rate of change into the slope-intercept form of
a line.

We can write the formula  N(t) = 15t + 200.

With this formula, we can then predict how many songs Marcus will have at the end of one year (12 months). In
other words, we can evaluate the function at  t = 12.

N(12) = 15(12) + 200
= 180 + 200
= 380

Marcus will have 380 songs in 12 months.

Analysis
Notice that N is an increasing linear function. As the input (the number of months) increases, the output (number
of songs) increases as well.

Example 4.9

Using a Linear Function to Calculate Salary Based on Commission

Working as an insurance salesperson, Ilya earns a base salary plus a commission on each new policy. Therefore,
Ilya’s weekly income  I, depends on the number of new policies,  n, he sells during the week. Last week he sold
3 new policies, and earned $760 for the week. The week before, he sold 5 new policies and earned $920. Find an
equation for  I(n), and interpret the meaning of the components of the equation.

Solution
The given information gives us two input-output pairs:  (3, 760)  and  (5, 920). We start by finding the rate of
change.

m = 920 − 760
5 − 3

= $160
2  policies

= $80 per policy
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Keeping track of units can help us interpret this quantity. Income increased by $160 when the number of policies
increased by 2, so the rate of change is $80 per policy. Therefore, Ilya earns a commission of $80 for each policy
sold during the week.

We can then solve for the initial value.

I(n) = 80n + b
760 = 80(3) + b  when n = 3, I(3) = 760
760 − 80(3) = b
520 = b

The value of  b  is the starting value for the function and represents Ilya’s income when  n = 0,   or when no new
policies are sold. We can interpret this as Ilya’s base salary for the week, which does not depend upon the number
of policies sold.

We can now write the final equation.

I(n) = 80n + 520

Our final interpretation is that Ilya’s base salary is $520 per week and he earns an additional $80 commission for
each policy sold.

Example 4.10

Using Tabular Form to Write an Equation for a Linear Function

Table 4.1 relates the number of rats in a population to time, in weeks. Use the table to write a linear equation.

number of weeks, w 0 2 4 6

number of rats, P(w) 1000 1080 1160 1240

Table 4.1

Solution
We can see from the table that the initial value for the number of rats is 1000, so  b = 1000.

Rather than solving for  m, we can tell from looking at the table that the population increases by 80 for every 2
weeks that pass. This means that the rate of change is 80 rats per 2 weeks, which can be simplified to 40 rats per
week.

P(w) = 40w + 1000

If we did not notice the rate of change from the table we could still solve for the slope using any two points from
the table. For example, using  (2, 1080)  and  (6, 1240)

m = 1240 − 1080
6 − 2

= 160
4

= 40

406 Chapter 4 Linear Functions

This content is available for free at https://cnx.org/content/col11758/1.5



4.4

Is the initial value always provided in a table of values like Table 4.1?

No. Sometimes the initial value is provided in a table of values, but sometimes it is not. If you see an input of 0, then
the initial value would be the corresponding output. If the initial value is not provided because there is no value
of input on the table equal to 0, find the slope, substitute one coordinate pair and the slope into   f (x) = mx + b,  
and solve for  b.

A new plant food was introduced to a young tree to test its effect on the height of the tree. Table 4.2
shows the height of the tree, in feet,  x months since the measurements began. Write a linear function,  H(x),
where  x  is the number of months since the start of the experiment.

x 0 2 4 8 12

H(x) 12.5 13.5 14.5 16.5 18.5

Table 4.2

Graphing Linear Functions
Now that we’ve seen and interpreted graphs of linear functions, let’s take a look at how to create the graphs. There are
three basic methods of graphing linear functions. The first is by plotting points and then drawing a line through the points.
The second is by using the y-intercept and slope. And the third method is by using transformations of the identity function
  f (x) = x.

Graphing a Function by Plotting Points
To find points of a function, we can choose input values, evaluate the function at these input values, and calculate output
values. The input values and corresponding output values form coordinate pairs. We then plot the coordinate pairs on a grid.
In general, we should evaluate the function at a minimum of two inputs in order to find at least two points on the graph. For
example, given the function,   f (x) = 2x, we might use the input values 1 and 2. Evaluating the function for an input value

of 1 yields an output value of 2, which is represented by the point  (1, 2). Evaluating the function for an input value of 2
yields an output value of 4, which is represented by the point  (2, 4). Choosing three points is often advisable because if all
three points do not fall on the same line, we know we made an error.

Given a linear function, graph by plotting points.

1. Choose a minimum of two input values.

2. Evaluate the function at each input value.

3. Use the resulting output values to identify coordinate pairs.

4. Plot the coordinate pairs on a grid.

5. Draw a line through the points.

Example 4.11

Graphing by Plotting Points

Graph   f (x) = − 2
3x + 5  by plotting points.
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Solution
Begin by choosing input values. This function includes a fraction with a denominator of 3, so let’s choose
multiples of 3 as input values. We will choose 0, 3, and 6.

Evaluate the function at each input value, and use the output value to identify coordinate pairs.

x = 0 f (0) = − 2
3(0) + 5 = 5 ⇒ (0, 5)

x = 3 f (3) = − 2
3(3) + 5 = 3 ⇒ (3, 3)

x = 6 f (6) = − 2
3(6) + 5 = 1 ⇒ (6, 1)

Plot the coordinate pairs and draw a line through the points. Figure 4.11 represents the graph of the function
  f (x) = − 2

3x + 5.

Figure 4.11 The graph of the linear function

  f (x) = − 2
3x + 5.

Analysis
The graph of the function is a line as expected for a linear function. In addition, the graph has a downward slant,
which indicates a negative slope. This is also expected from the negative, constant rate of change in the equation
for the function.

Graph   f (x) = − 3
4x + 6  by plotting points.

Graphing a Function Using y-intercept and Slope
Another way to graph linear functions is by using specific characteristics of the function rather than plotting points. The
first characteristic is its y-intercept, which is the point at which the input value is zero. To find the y-intercept, we can set
x = 0  in the equation.

The other characteristic of the linear function is its slope.

Let’s consider the following function.

f (x) = 1
2x + 1
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The slope is  12. Because the slope is positive, we know the graph will slant upward from left to right. The y-intercept is the

point on the graph when  x = 0. The graph crosses the y-axis at  (0, 1). Now we know the slope and the y-intercept. We can
begin graphing by plotting the point  (0, 1). We know that the slope is the change in the y-coordinate over the change in the

x-coordinate. This is commonly referred to as rise over run,  m = rise
run.  From our example, we have  m = 1

2, which means

that the rise is 1 and the run is 2. So starting from our y-intercept  (0, 1), we can rise 1 and then run 2, or run 2 and then

rise 1. We repeat until we have a few points, and then we draw a line through the points as shown in Figure 4.12.

Figure 4.12

Graphical Interpretation of a Linear Function

In the equation   f (x) = mx + b

• b  is the y-intercept of the graph and indicates the point  (0, b)  at which the graph crosses the y-axis.

• m  is the slope of the line and indicates the vertical displacement (rise) and horizontal displacement (run)
between each successive pair of points. Recall the formula for the slope:

m = change in output (rise)
change in input (run) = Δy

Δx = y2 − y1
x2 − x1

Do all linear functions have y-intercepts?

Yes. All linear functions cross the y-axis and therefore have y-intercepts. (Note: A vertical line is parallel to the
y-axis does not have a y-intercept, but it is not a function.)

Given the equation for a linear function, graph the function using the y-intercept and slope.

1. Evaluate the function at an input value of zero to find the y-intercept.

2. Identify the slope as the rate of change of the input value.

3. Plot the point represented by the y-intercept.

4. Use  rise
run   to determine at least two more points on the line.

5. Sketch the line that passes through the points.
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Example 4.12

Graphing by Using the y-intercept and Slope

Graph   f (x) = − 2
3x + 5  using the y-intercept and slope.

Solution
Evaluate the function at  x = 0  to find the y-intercept. The output value when  x = 0  is 5, so the graph will cross
the y-axis at  (0, 5).

According to the equation for the function, the slope of the line is  − 2
3. This tells us that for each vertical

decrease in the “rise” of   – 2  units, the “run” increases by 3 units in the horizontal direction. We can now graph
the function by first plotting the y-intercept on the graph in Figure 4.13. From the initial value  (0, 5) we move
down 2 units and to the right 3 units. We can extend the line to the left and right by repeating, and then drawing a
line through the points.

Figure 4.13 Graph of f (x) = −2/3x + 5 and shows how to

calculate the rise over run for the slope.

Analysis
The graph slants downward from left to right, which means it has a negative slope as expected.

Find a point on the graph we drew in Example 4.14 that has a negative x-value.

Graphing a Function Using Transformations
Another option for graphing is to use a transformation of the identity function   f (x) = x. A function may be transformed by

a shift up, down, left, or right. A function may also be transformed using a reflection, stretch, or compression.

Vertical Stretch or Compression

In the equation   f (x) = mx, the  m  is acting as the vertical stretch or compression of the identity function. When  m  is
negative, there is also a vertical reflection of the graph. Notice in Figure 4.14 that multiplying the equation of   f (x) = x 
by  m  stretches the graph of   f   by a factor of  m  units if  m > 1  and compresses the graph of   f   by a factor of  m  units if

 0 < m < 1. This means the larger the absolute value of  m,   the steeper the slope.
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Figure 4.14 Vertical stretches and compressions and reflections on the function   f (x) = x

Vertical Shift

In   f (x) = mx + b, the  b  acts as the vertical shift, moving the graph up and down without affecting the slope of the line.

Notice in Figure 4.15 that adding a value of  b  to the equation of   f (x) = x  shifts the graph of   f   a total of  b  units up if

 b  is positive and  |b|  units down if  b  is negative.
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Figure 4.15 This graph illustrates vertical shifts of the function f (x) = x.

Using vertical stretches or compressions along with vertical shifts is another way to look at identifying different types of
linear functions. Although this may not be the easiest way to graph this type of function, it is still important to practice each
method.

Given the equation of a linear function, use transformations to graph the linear function in the form
  f(x) = mx + b.

1. Graph   f (x) = x.

2. Vertically stretch or compress the graph by a factor  m.

3. Shift the graph up or down  b  units.

Example 4.13

Graphing by Using Transformations
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Graph   f (x) = 1
2x − 3  using transformations.

Solution

The equation for the function shows that  m = 1
2   so the identity function is vertically compressed by  12. The

equation for the function also shows that  b = − 3  so the identity function is vertically shifted down 3 units. First,
graph the identity function, and show the vertical compression as in Figure 4.16.

Figure 4.16 The function,  y = x, compressed by a factor of

 12

Then show the vertical shift as in Figure 4.17.

Figure 4.17 The function  y = 1
2x, shifted down 3 units

Graph   f (x) = 4 + 2x  using transformations.
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In Example 4.15, could we have sketched the graph by reversing the order of the transformations?

No. The order of the transformations follows the order of operations. When the function is evaluated at a given
input, the corresponding output is calculated by following the order of operations. This is why we performed the
compression first. For example, following the order: Let the input be 2.

f (2) = 1
2(2) − 3

= 1 − 3
= −2

Writing the Equation for a Function from the Graph of a Line
Earlier, we wrote the equation for a linear function from a graph. Now we can extend what we know about graphing linear
functions to analyze graphs a little more closely. Begin by taking a look at Figure 4.18. We can see right away that the
graph crosses the y-axis at the point  (0, 4)  so this is the y-intercept.

Figure 4.18

Then we can calculate the slope by finding the rise and run. We can choose any two points, but let’s look at the point
 ( – 2, 0). To get from this point to the y-intercept, we must move up 4 units (rise) and to the right 2 units (run). So the
slope must be

m = rise
run = 4

2 = 2

Substituting the slope and y-intercept into the slope-intercept form of a line gives

y = 2x + 4

Given a graph of linear function, find the equation to describe the function.

1. Identify the y-intercept of an equation.

2. Choose two points to determine the slope.

3. Substitute the y-intercept and slope into the slope-intercept form of a line.

Example 4.14

Matching Linear Functions to Their Graphs

Match each equation of the linear functions with one of the lines in Figure 4.19.
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a.  f (x) = 2x + 3
b. g(x) = 2x − 3
c. h(x) = −2x + 3

d. j(x) = 1
2x + 3

Figure 4.19

Solution
Analyze the information for each function.

a. This function has a slope of 2 and a y-intercept of 3. It must pass through the point (0, 3) and slant upward
from left to right. We can use two points to find the slope, or we can compare it with the other functions
listed. Function  g  has the same slope, but a different y-intercept. Lines I and III have the same slant

because they have the same slope. Line III does not pass through  (0, 3)  so   f  must be represented by line

I.

b. This function also has a slope of 2, but a y-intercept of  −3.  It must pass through the point  (0, −3)  and
slant upward from left to right. It must be represented by line III.

c. This function has a slope of –2 and a y-intercept of 3. This is the only function listed with a negative
slope, so it must be represented by line IV because it slants downward from left to right.

d. This function has a slope of  12   and a y-intercept of 3. It must pass through the point (0, 3) and slant

upward from left to right. Lines I and II pass through  (0, 3), but the slope of   j  is less than the slope of

  f   so the line for   j must be flatter. This function is represented by Line II.

Now we can re-label the lines as in Figure 4.20.
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Figure 4.20

Finding the x-intercept of a Line
So far we have been finding the y-intercepts of a function: the point at which the graph of the function crosses the y-axis.
Recall that a function may also have an x-intercept, which is the x-coordinate of the point where the graph of the function
crosses the x-axis. In other words, it is the input value when the output value is zero.

To find the x-intercept, set a function   f (x)  equal to zero and solve for the value of  x.  For example, consider the function

shown.

f (x) = 3x − 6

Set the function equal to 0 and solve for  x.

0 = 3x − 6
6 = 3x
2 = x
x = 2

The graph of the function crosses the x-axis at the point  (2, 0).
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Do all linear functions have x-intercepts?

No. However, linear functions of the form  y = c, where  c  is a nonzero real number are the only examples of

linear functions with no x-intercept. For example,  y = 5  is a horizontal line 5 units above the x-axis. This function

has no x-intercepts, as shown in Figure 4.21.

Figure 4.21

x-intercept

The x-intercept of the function is value of  x when   f (x) = 0.  It can be solved by the equation  0 = mx + b.

Example 4.15

Finding an x-intercept

Find the x-intercept of   f (x) = 1
2x − 3.

Solution
Set the function equal to zero to solve for  x.

0 = 1
2x − 3

3 = 1
2x

6 = x
x = 6

The graph crosses the x-axis at the point  (6, 0).

Analysis
A graph of the function is shown in Figure 4.22. We can see that the x-intercept is  (6, 0)  as we expected.
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Figure 4.22

Find the x-intercept of   f (x) = 1
4x − 4.

Describing Horizontal and Vertical Lines
There are two special cases of lines on a graph—horizontal and vertical lines. A horizontal line indicates a constant output,
or y-value. In Figure 4.23, we see that the output has a value of 2 for every input value. The change in outputs between
any two points, therefore, is 0. In the slope formula, the numerator is 0, so the slope is 0. If we use  m = 0  in the equation
  f (x) = mx + b, the equation simplifies to   f (x) = b.  In other words, the value of the function is a constant. This graph

represents the function   f (x) = 2.

Figure 4.23 A horizontal line representing the function
  f (x) = 2

A vertical line indicates a constant input, or x-value. We can see that the input value for every point on the line is 2, but the
output value varies. Because this input value is mapped to more than one output value, a vertical line does not represent a
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function. Notice that between any two points, the change in the input values is zero. In the slope formula, the denominator
will be zero, so the slope of a vertical line is undefined.

Figure 4.24 Example of how a line has a vertical slope. 0 in
the denominator of the slope.

A vertical line, such as the one in Figure 4.25, has an x-intercept, but no y-intercept unless it’s the line  x = 0. This graph
represents the line  x = 2.

Figure 4.25 The vertical line,  x = 2,  which does not
represent a function

Horizontal and Vertical Lines

Lines can be horizontal or vertical.

A horizontal line is a line defined by an equation in the form   f (x) = b.

A vertical line is a line defined by an equation in the form  x = a.

Example 4.16

Writing the Equation of a Horizontal Line

Write the equation of the line graphed in Figure 4.26.
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Figure 4.26

Solution
For any x-value, the y-value is  − 4,   so the equation is  y = − 4.

Example 4.17

Writing the Equation of a Vertical Line

Write the equation of the line graphed in Figure 4.27.

Figure 4.27

Solution
The constant x-value is  7, so the equation is  x = 7.
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Determining Whether Lines are Parallel or Perpendicular
The two lines in Figure 4.28 are parallel lines: they will never intersect. They have exactly the same steepness, which
means their slopes are identical. The only difference between the two lines is the y-intercept. If we shifted one line vertically
toward the other, they would become coincident.

Figure 4.28 Parallel lines

We can determine from their equations whether two lines are parallel by comparing their slopes. If the slopes are the same
and the y-intercepts are different, the lines are parallel. If the slopes are different, the lines are not parallel.

f (x) = − 2x + 6
f (x) = − 2x − 4

⎫

⎭
⎬ parallel

f (x) = 3x + 2
f (x) = 2x + 2

⎫

⎭
⎬ not parallel

Unlike parallel lines, perpendicular lines do intersect. Their intersection forms a right, or 90-degree, angle. The two lines in
Figure 4.29 are perpendicular.

Figure 4.29 Perpendicular lines

Perpendicular lines do not have the same slope. The slopes of perpendicular lines are different from one another in a specific
way. The slope of one line is the negative reciprocal of the slope of the other line. The product of a number and its reciprocal
is  1.  So, if  m1  and m2   are negative reciprocals of one another, they can be multiplied together to yield  –1.
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m1 m2 = −1

To find the reciprocal of a number, divide 1 by the number. So the reciprocal of 8 is  18,   and the reciprocal of  18   is 8. To

find the negative reciprocal, first find the reciprocal and then change the sign.

As with parallel lines, we can determine whether two lines are perpendicular by comparing their slopes, assuming that the
lines are neither horizontal nor vertical. The slope of each line below is the negative reciprocal of the other so the lines are
perpendicular.

f (x) = 1
4x + 2 negative reciprocal of  14 is −4

f (x) = −4x + 3 negative reciprocal of  −4 is 14

The product of the slopes is –1.

−4⎛
⎝
1
4

⎞
⎠ = − 1

Parallel and Perpendicular Lines

Two lines are parallel lines if they do not intersect. The slopes of the lines are the same.

f (x) = m1 x + b1  and g(x) = m2 x + b2  are parallel if and only if m1 = m2

If and only if  b1 = b2   and  m1 = m2,  we say the lines coincide. Coincident lines are the same line.

Two lines are perpendicular lines if they intersect to form a right angle.

f (x) = m1 x + b1  and g(x) = m2 x + b2  are perpendicular if and only if

m1 m2 = − 1, so m2 = − 1
m1

Example 4.18

Identifying Parallel and Perpendicular Lines

Given the functions below, identify the functions whose graphs are a pair of parallel lines and a pair of
perpendicular lines.

f (x) = 2x + 3 h(x) = −2x + 2

g(x) = 1
2x − 4 j(x) = 2x − 6

Solution
Parallel lines have the same slope. Because the functions   f (x) = 2x + 3  and   j(x) = 2x − 6  each have a slope

of 2, they represent parallel lines. Perpendicular lines have negative reciprocal slopes. Because −2 and  12   are

negative reciprocals, the functions  g(x) = 1
2x − 4  and  h(x) = −2x + 2  represent perpendicular lines.

Analysis
A graph of the lines is shown in Figure 4.30.
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Figure 4.30

The graph shows that the lines   f (x) = 2x + 3  and   j(x) = 2x – 6  are parallel, and the lines  g(x) = 1
2x – 4  and

 h(x) = − 2x + 2  are perpendicular.

Writing the Equation of a Line Parallel or Perpendicular to a Given
Line
If we know the equation of a line, we can use what we know about slope to write the equation of a line that is either parallel
or perpendicular to the given line.

Writing Equations of Parallel Lines
Suppose for example, we are given the equation shown.

f (x) = 3x + 1

We know that the slope of the line formed by the function is 3. We also know that the y-intercept is  (0, 1). Any other line
with a slope of 3 will be parallel to   f (x).  So the lines formed by all of the following functions will be parallel to   f (x).

g(x) = 3x + 6
h(x) = 3x + 1

p(x) = 3x + 2
3

Suppose then we want to write the equation of a line that is parallel to   f   and passes through the point  (1, 7). This type of

problem is often described as a point-slope problem because we have a point and a slope. In our example, we know that the
slope is 3. We need to determine which value of  b will give the correct line. We can begin with the point-slope form of an
equation for a line, and then rewrite it in the slope-intercept form.

y − y1 = m(x − x1)
y − 7 = 3(x − 1)
y − 7 = 3x − 3

y = 3x + 4

So  g(x) = 3x + 4  is parallel to   f (x) = 3x + 1  and passes through the point  (1, 7).
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Given the equation of a function and a point through which its graph passes, write the equation of a line
parallel to the given line that passes through the given point.

1. Find the slope of the function.

2. Substitute the given values into either the general point-slope equation or the slope-intercept equation for
a line.

3. Simplify.

Example 4.19

Finding a Line Parallel to a Given Line

Find a line parallel to the graph of   f (x) = 3x + 6  that passes through the point  (3, 0).

Solution
The slope of the given line is 3. If we choose the slope-intercept form, we can substitute  m = 3, x = 3, and
  f (x) = 0  into the slope-intercept form to find the y-intercept.

g(x) = 3x + b
0 = 3(3) + b
b = –9

The line parallel to   f (x)  that passes through  (3, 0)  is  g(x) = 3x − 9.

Analysis
We can confirm that the two lines are parallel by graphing them. Figure 4.31 shows that the two lines will never
intersect.
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Figure 4.31

Writing Equations of Perpendicular Lines
We can use a very similar process to write the equation for a line perpendicular to a given line. Instead of using the same
slope, however, we use the negative reciprocal of the given slope. Suppose we are given the function shown.

f (x) = 2x + 4

The slope of the line is 2, and its negative reciprocal is  − 1
2. Any function with a slope of  − 1

2  will be perpendicular to

  f (x).  So the lines formed by all of the following functions will be perpendicular to   f (x).
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g(x) = −1
2x + 4

h(x) = −1
2x + 2

p(x) = −1
2x − 1

2

As before, we can narrow down our choices for a particular perpendicular line if we know that it passes through a given
point. Suppose then we want to write the equation of a line that is perpendicular to   f (x)  and passes through the point

 (4, 0). We already know that the slope is  − 1
2. Now we can use the point to find the y-intercept by substituting the given

values into the slope-intercept form of a line and solving for  b.

g(x) = mx + b

0 = −1
2(4) + b

0 = −2 + b
2 = b
b = 2

The equation for the function with a slope of  − 1
2   and a y-intercept of 2 is

g(x) = − 1
2x + 2

So  g(x) = − 1
2x + 2  is perpendicular to   f (x) = 2x + 4  and passes through the point  (4, 0). Be aware that perpendicular

lines may not look obviously perpendicular on a graphing calculator unless we use the square zoom feature.

A horizontal line has a slope of zero and a vertical line has an undefined slope. These two lines are
perpendicular, but the product of their slopes is not –1. Doesn’t this fact contradict the definition of
perpendicular lines?

No. For two perpendicular linear functions, the product of their slopes is –1. However, a vertical line is not a
function so the definition is not contradicted.

Given the equation of a function and a point through which its graph passes, write the equation of a line
perpendicular to the given line.

1. Find the slope of the function.

2. Determine the negative reciprocal of the slope.

3. Substitute the new slope and the values for  x  and  y  from the coordinate pair provided into

 g(x) = mx + b.

4. Solve for  b.

5. Write the equation of the line.

Example 4.20

Finding the Equation of a Perpendicular Line

Find the equation of a line perpendicular to   f (x) = 3x + 3  that passes through the point  (3, 0).

Solution
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The original line has slope  m = 3,   so the slope of the perpendicular line will be its negative reciprocal, or  − 1
3. 

Using this slope and the given point, we can find the equation of the line.

g(x) = – 1
3x + b

0 = – 1
3(3) + b

1 = b
b = 1

The line perpendicular to   f (x)  that passes through  (3, 0)  is  g(x) = − 1
3x + 1.

Analysis
A graph of the two lines is shown in Figure 4.32.

Figure 4.32

Note that that if we graph perpendicular lines on a graphing calculator using standard zoom, the lines may not
appear to be perpendicular. Adjusting the window will make it possible to zoom in further to see the intersection
more closely.
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4.9 Given the function  h(x) = 2x − 4, write an equation for the line passing through  (0, 0)  that is

a. parallel to  h(x)

b. perpendicular to  h(x)

Given two points on a line and a third point, write the equation of the perpendicular line that passes through
the point.

1. Determine the slope of the line passing through the points.

2. Find the negative reciprocal of the slope.

3. Use the slope-intercept form or point-slope form to write the equation by substituting the known values.

4. Simplify.

Example 4.21

Finding the Equation of a Line Perpendicular to a Given Line Passing through a
Point

A line passes through the points  (−2, 6)  and  (4, 5).  Find the equation of a perpendicular line that passes through
the point  (4, 5).

Solution
From the two points of the given line, we can calculate the slope of that line.

m1 = 5 − 6
4 − (−2)

= −1
6

= −1
6

Find the negative reciprocal of the slope.

m2 = −1
− 1

6

= −1⎛
⎝−

6
1

⎞
⎠

= 6

We can then solve for the y-intercept of the line passing through the point  (4, 5).

g(x) = 6x + b
5 = 6(4) + b
5 = 24 + b

−19 = b
b = −19

The equation for the line that is perpendicular to the line passing through the two given points and also passes
through point  (4, 5)  is

y = 6x − 19
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4.10 A line passes through the points,  (−2, −15)  and  (2, −3).  Find the equation of a perpendicular line that

passes through the point,  (6, 4).

Access this online resource for additional instruction and practice with linear functions.

• Linear Functions (http://Openstaxcollege.org/l/linearfunctions)

• Finding Input of Function from the Output and Graph (http://Openstaxcollege.org/l/
findinginput)

• Graphing Functions using Tables (http://Openstaxcollege.org/l/graphwithtable)
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4.1 EXERCISES
Verbal

Terry is skiing down a steep hill. Terry's elevation,
 E(t), in feet after  t  seconds is given by
 E(t) = 3000 − 70t. Write a complete sentence describing
Terry’s starting elevation and how it is changing over time.

Jessica is walking home from a friend’s house. After 2
minutes she is 1.4 miles from home. Twelve minutes after
leaving, she is 0.9 miles from home. What is her rate in
miles per hour?

A boat is 100 miles away from the marina, sailing
directly toward it at 10 miles per hour. Write an equation for
the distance of the boat from the marina after t hours.

If the graphs of two linear functions are perpendicular,
describe the relationship between the slopes and the y-
intercepts.

If a horizontal line has the equation   f (x) = a  and a

vertical line has the equation  x = a,  what is the point of
intersection? Explain why what you found is the point of
intersection.

Algebraic
For the following exercises, determine whether the
equation of the curve can be written as a linear function.

y = 1
4x + 6

y = 3x − 5

y = 3x2 − 2

3x + 5y = 15

3x2 + 5y = 15

3x + 5y2 = 15

−2x2 + 3y2 = 6

− x − 3
5 = 2y

For the following exercises, determine whether each
function is increasing or decreasing.

f (x) = 4x + 3

g(x) = 5x + 6

a(x) = 5 − 2x

b(x) = 8 − 3x

h(x) = −2x + 4

k(x) = −4x + 1

j(x) = 1
2x − 3

p(x) = 1
4x − 5

n(x) = − 1
3x − 2

m(x) = − 3
8x + 3

For the following exercises, find the slope of the line that
passes through the two given points.

(2, 4)  and  (4, 10)

(1, 5)  and  (4, 11)

(–1, 4)  and  (5, 2)

(8, –2)  and  (4, 6)

(6, 11)  and  (–4, 3)

For the following exercises, given each set of information,
find a linear equation satisfying the conditions, if possible.

f ( − 5) = −4,   and   f (5) = 2

f (−1) = 4,   and   f (5) = 1

Passes through  (2, 4)  and  (4, 10)

Passes through  (1, 5)  and  (4, 11)

Passes through  (−1, 4)  and  (5, 2)

Passes through  (−2, 8)  and  (4, 6)

x intercept at  (−2, 0)  and y intercept at  (0, −3)

x intercept at  (−5, 0)  and y intercept at  (0, 4)

For the following exercises, determine whether the lines
given by the equations below are parallel, perpendicular, or
neither.
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48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

4x − 7y = 10
7x + 4y = 1

3y + x = 12
−y = 8x + 1

3y + 4x = 12
−6y = 8x + 1

6x − 9y = 10
3x + 2y = 1

For the following exercises, find the x- and y-intercepts of
each equation.

f (x) = − x + 2

g(x) = 2x + 4

h(x) = 3x − 5

k(x) = −5x + 1

−2x + 5y = 20

7x + 2y = 56

For the following exercises, use the descriptions of each
pair of lines given below to find the slopes of Line 1
and Line 2. Is each pair of lines parallel, perpendicular, or
neither?

Line 1: Passes through  (0, 6)  and  (3, −24)

Line 2: Passes through  (−1, 19)  and  (8, −71)

Line 1: Passes through  (−8, −55)  and  (10, 89)

Line 2: Passes through  (9, − 44)  and  (4, − 14)

Line 1: Passes through  (2, 3)  and  (4, −1)

Line 2: Passes through  (6, 3)  and  (8, 5)

Line 1: Passes through  (1, 7)  and  (5, 5)

Line 2: Passes through  (−1, −3)  and  (1, 1)

Line 1: Passes through  (2, 5)  and  (5, − 1)

Line 2: Passes through  (−3, 7)  and  (3, −5)

For the following exercises, write an equation for the line
described.

Write an equation for a line parallel to   f (x) = − 5x − 3 
and passing through the point  (2, –12).

Write an equation for a line parallel to  g(x) = 3x − 1 
and passing through the point  (4, 9).

Write an equation for a line perpendicular to
 h(t) = −2t + 4  and passing through the point  (−4, –1).

Write an equation for a line perpendicular to
 p(t) = 3t + 4  and passing through the point  (3, 1).

Graphical
For the following exercises, find the slope of the
line graphed.
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For the following exercises, write an equation for the line
graphed.
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For the following exercises, match the given linear
equation with its graph in Figure 4.33.

Figure 4.33

f (x) = − x − 1

f (x) = −2x − 1

f (x) = − 1
2x − 1

f (x) = 2

f (x) = 2 + x

f (x) = 3x + 2

For the following exercises, sketch a line with the given
features.

An x-intercept of  (–4, 0)  and y-intercept of  (0, –2)

An x-intercept  (–2, 0)  and y-intercept of  (0, 4)

A y-intercept of  (0, 7)  and slope  − 3
2

A y-intercept of  (0, 3)  and slope  25

Passing through the points  (–6, –2)  and  (6, –6)

Passing through the points  (–3, –4)  and  (3, 0)

For the following exercises, sketch the graph of each
equation.

f (x) = −2x − 1

f (x) = −3x + 2

f (x) = 1
3x + 2

f (x) = 2
3x − 3

f (t) = 3 + 2t

p(t) = −2 + 3t

x = 3

x = −2

r(x) = 4

For the following exercises, write the equation of the line
shown in the graph.
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95.

96.

Numeric
For the following exercises, which of the tables could
represent a linear function? For each that could be linear,
find a linear equation that models the data.

x 0 5 10 15

g(x) 5 –10 –25 –40

x 0 5 10 15

h(x) 5 30 105 230

x 0 5 10 15

f (x) –5 20 45 70

x 5 10 20 25

k(x) 13 28 58 73

x 0 2 4 6

g(x) 6 –19 –44 –69

x 2 4 8 10

h(x) 13 23 43 53

x 2 4 6 8

f (x) –4 16 36 56
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111.

112.

113.

x 0 2 6 8

k(x) 6 31 106 231

Technology
For the following exercises, use a calculator or graphing
technology to complete the task.

If   f   is a linear function,

  f (0.1) = 11.5,  and  f (0.4) = –5.9,   find an equation

for the function.

Graph the function   f   on a domain of

 [–10, 10] : f (x) = 0.02x − 0.01. Enter the function in a

graphing utility. For the viewing window, set the minimum
value of  x  to be  −10  and the maximum value of  x  to be
 10.

Graph the function   f   on a domain of

 [–10, 10] : f x) = 2, 500x + 4, 000

Table 4.3 shows the input,  w, and output,  k, for a
linear function  k.  a. Fill in the missing values of the table.
b. Write the linear function  k, round to 3 decimal places.

w –10 5.5 67.5 b

k 30 –26 a –44

Table 4.3

Table 4.4 shows the input,  p, and output,  q, for a

linear function  q.  a. Fill in the missing values of the table.

b. Write the linear function  k.

p 0.5 0.8 12 b

q 400 700 a 1,000,000

Table 4.4

Graph the linear function   f   on a domain of

 [−10, 10]  for the function whose slope is  18   and y-

intercept is  31
16. Label the points for the input values of

 −10  and  10.

Graph the linear function   f   on a domain of

 [−0.1, 0.1]  for the function whose slope is 75 and y-
intercept is  −22.5. Label the points for the input values of
 −0.1  and  0.1.

Graph the linear function   f  where   f (x) = ax + b  on

the same set of axes on a domain of  [−4, 4]  for the
following values of  a  and  b.

i. a = 2; b = 3

ii. a = 2; b = 4

iii. a = 2; b = –4

iv. a = 2; b = –5

Extensions

Find the value of  x  if a linear function goes through
the following points and has the following slope:
 (x, 2), (−4, 6),  m = 3

Find the value of y if a linear function goes through
the following points and has the following slope:
 (10, y), (25, 100),  m = −5

Find the equation of the line that passes through the
following points:

 (a,  b)  and  (a,  b + 1)

Find the equation of the line that passes through the
following points:

(2a, b)  and  (a, b + 1)

Find the equation of the line that passes through the
following points:

(a, 0) and  (c, d)

Find the equation of the line parallel to the line
 g(x) = −0.01x+2.01  through the point  (1, 2).

Find the equation of the line perpendicular to the line
 g(x) = −0.01x+2.01  through the point  (1, 2).

For the following exercises, use the functions
  f (x) = −0.1x+200 and g(x) = 20x + 0.1.

Find the point of intersection of the lines   f   and  g.
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115.

116.

117.

118.

119.

120.

121.

122.

Where is   f (x)  greater than  g(x)?  Where is  g(x)  greater

than   f (x)?

Real-World Applications

At noon, a barista notices that she has $20 in her tip
jar. If she makes an average of $0.50 from each customer,
how much will she have in her tip jar if she serves  n more
customers during her shift?

A gym membership with two personal training
sessions costs $125, while gym membership with five
personal training sessions costs $260. What is cost per
session?

A clothing business finds there is a linear relationship
between the number of shirts,  n, it can sell and the price,
p, it can charge per shirt. In particular, historical data

shows that 1,000 shirts can be sold at a price of  $30, while
3,000 shirts can be sold at a price of $22. Find a linear
equation in the form  p(n) = mn + b  that gives the price

p  they can charge for  n  shirts.

A phone company charges for service according to
the formula:  C(n) = 24 + 0.1n, where  n  is the number of
minutes talked, and  C(n)  is the monthly charge, in dollars.
Find and interpret the rate of change and initial value.

A farmer finds there is a linear relationship between
the number of bean stalks,  n, she plants and the yield,  y,
each plant produces. When she plants 30 stalks, each plant
yields 30 oz of beans. When she plants 34 stalks, each plant
produces 28 oz of beans. Find a linear relationships in the
form  y = mn + b  that gives the yield when  n  stalks are

planted.

A city’s population in the year 1960 was 287,500. In
1989 the population was 275,900. Compute the rate of
growth of the population and make a statement about the
population rate of change in people per year.

A town’s population has been growing linearly. In
2003, the population was 45,000, and the population has
been growing by 1,700 people each year. Write an equation,
 P(t), for the population  t  years after 2003.

Suppose that average annual income (in dollars) for
the years 1990 through 1999 is given by the linear function:
 I(x) = 1054x + 23, 286, where  x  is the number of years
after 1990. Which of the following interprets the slope in
the context of the problem?

a. As of 1990, average annual income was $23,286.

b. In the ten-year period from 1990–1999, average
annual income increased by a total of $1,054.

c. Each year in the decade of the 1990s, average
annual income increased by $1,054.

d. Average annual income rose to a level of $23,286
by the end of 1999.

When temperature is 0 degrees Celsius, the
Fahrenheit temperature is 32. When the Celsius
temperature is 100, the corresponding Fahrenheit
temperature is 212. Express the Fahrenheit temperature as a
linear function of  C, the Celsius temperature,  F(C).

a. Find the rate of change of Fahrenheit temperature
for each unit change temperature of Celsius.

b. Find and interpret  F(28).

c. Find and interpret  F(–40).
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4.2 | Modeling with Linear Functions

Learning Objectives

In this section you will:

4.2.1 Build linear models from verbal descriptions.
4.2.2 Model a set of data with a linear function.

Figure 4.34 (credit: EEK Photography/Flickr)

Emily is a college student who plans to spend a summer in Seattle. She has saved $3,500 for her trip and anticipates
spending $400 each week on rent, food, and activities. How can we write a linear model to represent her situation? What
would be the x-intercept, and what can she learn from it? To answer these and related questions, we can create a model
using a linear function. Models such as this one can be extremely useful for analyzing relationships and making predictions
based on those relationships. In this section, we will explore examples of linear function models.

Building Linear Models from Verbal Descriptions
When building linear models to solve problems involving quantities with a constant rate of change, we typically follow the
same problem strategies that we would use for any type of function. Let’s briefly review them:

1. Identify changing quantities, and then define descriptive variables to represent those quantities. When appropriate,
sketch a picture or define a coordinate system.

2. Carefully read the problem to identify important information. Look for information that provides values for the
variables or values for parts of the functional model, such as slope and initial value.

3. Carefully read the problem to determine what we are trying to find, identify, solve, or interpret.

4. Identify a solution pathway from the provided information to what we are trying to find. Often this will involve
checking and tracking units, building a table, or even finding a formula for the function being used to model the
problem.

5. When needed, write a formula for the function.

6. Solve or evaluate the function using the formula.

7. Reflect on whether your answer is reasonable for the given situation and whether it makes sense mathematically.

8. Clearly convey your result using appropriate units, and answer in full sentences when necessary.

Now let’s take a look at the student in Seattle. In her situation, there are two changing quantities: time and money. The
amount of money she has remaining while on vacation depends on how long she stays. We can use this information to define
our variables, including units.

Output: M, money remaining, in dollars
Input: t, time, in weeks
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So, the amount of money remaining depends on the number of weeks:  M(t) .

We can also identify the initial value and the rate of change.
             Initial Value: She saved $3,500, so $3,500 is the initial value for  M.
             Rate of Change: She anticipates spending $400 each week, so − $400 per week is the rate of change, or slope.

Notice that the unit of dollars per week matches the unit of our output variable divided by our input variable. Also, because
the slope is negative, the linear function is decreasing. This should make sense because she is spending money each week.

The rate of change is constant, so we can start with the linear model  M(t) = mt + b. Then we can substitute the intercept
and slope provided.

To find the x-intercept, we set the output to zero, and solve for the input.

0 = −400t + 3500
t = 3500

400
= 8.75

The x-intercept is 8.75 weeks. Because this represents the input value when the output will be zero, we could say that Emily
will have no money left after 8.75 weeks.

When modeling any real-life scenario with functions, there is typically a limited domain over which that model will be
valid—almost no trend continues indefinitely. Here the domain refers to the number of weeks. In this case, it doesn’t make
sense to talk about input values less than zero. A negative input value could refer to a number of weeks before she saved
$3,500, but the scenario discussed poses the question once she saved $3,500 because this is when her trip and subsequent
spending starts. It is also likely that this model is not valid after the x-intercept, unless Emily uses a credit card and goes
into debt. The domain represents the set of input values, so the reasonable domain for this function is  0 ≤ t ≤ 8.75.

In this example, we were given a written description of the situation. We followed the steps of modeling a problem to
analyze the information. However, the information provided may not always be the same. Sometimes we might be provided
with an intercept. Other times we might be provided with an output value. We must be careful to analyze the information
we are given, and use it appropriately to build a linear model.

Using a Given Intercept to Build a Model
Some real-world problems provide the y-intercept, which is the constant or initial value. Once the y-intercept is known, the
x-intercept can be calculated. Suppose, for example, that Hannah plans to pay off a no-interest loan from her parents. Her
loan balance is $1,000. She plans to pay $250 per month until her balance is $0. The y-intercept is the initial amount of her
debt, or $1,000. The rate of change, or slope, is -$250 per month. We can then use the slope-intercept form and the given
information to develop a linear model.

f (x) = mx + b
= −250x + 1000

Now we can set the function equal to 0, and solve for  x  to find the x-intercept.

0 = −250x + 1000
1000 = 250x

4 = x
x = 4

The x-intercept is the number of months it takes her to reach a balance of $0. The x-intercept is 4 months, so it will take
Hannah four months to pay off her loan.
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Using a Given Input and Output to Build a Model
Many real-world applications are not as direct as the ones we just considered. Instead they require us to identify some aspect
of a linear function. We might sometimes instead be asked to evaluate the linear model at a given input or set the equation
of the linear model equal to a specified output.

Given a word problem that includes two pairs of input and output values, use the linear function to solve a
problem.

1. Identify the input and output values.

2. Convert the data to two coordinate pairs.

3. Find the slope.

4. Write the linear model.

5. Use the model to make a prediction by evaluating the function at a given x-value.

6. Use the model to identify an x-value that results in a given y-value.

7. Answer the question posed.

Example 4.22

Using a Linear Model to Investigate a Town’s Population

A town’s population has been growing linearly. In 2004, the population was 6,200. By 2009, the population had
grown to 8,100. Assume this trend continues.

a. Predict the population in 2013.

b. Identify the year in which the population will reach 15,000.

Solution
The two changing quantities are the population size and time. While we could use the actual year value as the
input quantity, doing so tends to lead to very cumbersome equations because the y-intercept would correspond to
the year 0, more than 2000 years ago!

To make computation a little nicer, we will define our input as the number of years since 2004.

Input: t, years since 2004
Output: P(t), the town’s population

To predict the population in 2013 ( t = 9 ), we would first need an equation for the population. Likewise, to find
when the population would reach 15,000, we would need to solve for the input that would provide an output of
15,000. To write an equation, we need the initial value and the rate of change, or slope.

To determine the rate of change, we will use the change in output per change in input.

m = change in output
change in input

The problem gives us two input-output pairs. Converting them to match our defined variables, the year 2004
would correspond to  t = 0, giving the point  (0, 6200). Notice that through our clever choice of variable
definition, we have “given” ourselves the y-intercept of the function. The year 2009 would correspond to  t = 5,
giving the point  (5, 8100).

The two coordinate pairs are  (0, 6200)  and  (5, 8100). Recall that we encountered examples in which we were
provided two points earlier in the chapter. We can use these values to calculate the slope.
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4.12

m = 8100 − 6200
5 − 0

= 1900
5

= 380 people per year

We already know the y-intercept of the line, so we can immediately write the equation:

P(t) = 380t + 6200

To predict the population in 2013, we evaluate our function at  t = 9.

P(9) = 380(9) + 6,200
= 9,620

If the trend continues, our model predicts a population of 9,620 in 2013.

To find when the population will reach 15,000, we can set  P(t) = 15000  and solve for  t.

15000 = 380t + 6200
8800 = 380t

t ≈ 23.158

Our model predicts the population will reach 15,000 in a little more than 23 years after 2004, or somewhere
around the year 2027.

A company sells doughnuts. They incur a fixed cost of $25,000 for rent, insurance, and other expenses. It
costs $0.25 to produce each doughnut.

a. Write a linear model to represent the cost  C  of the company as a function of  x, the number of
doughnuts produced.

b. Find and interpret the y-intercept.

A city’s population has been growing linearly. In 2008, the population was 28,200. By 2012, the
population was 36,800. Assume this trend continues.

a. Predict the population in 2014.

b. Identify the year in which the population will reach 54,000.

Using a Diagram to Build a Model
It is useful for many real-world applications to draw a picture to gain a sense of how the variables representing the input and
output may be used to answer a question. To draw the picture, first consider what the problem is asking for. Then, determine
the input and the output. The diagram should relate the variables. Often, geometrical shapes or figures are drawn. Distances
are often traced out. If a right triangle is sketched, the Pythagorean Theorem relates the sides. If a rectangle is sketched,
labeling width and height is helpful.

Example 4.23

Using a Diagram to Model Distance Walked
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Anna and Emanuel start at the same intersection. Anna walks east at 4 miles per hour while Emanuel walks south
at 3 miles per hour. They are communicating with a two-way radio that has a range of 2 miles. How long after
they start walking will they fall out of radio contact?

Solution
In essence, we can partially answer this question by saying they will fall out of radio contact when they are 2
miles apart, which leads us to ask a new question:

"How long will it take them to be 2 miles apart"?

In this problem, our changing quantities are time and position, but ultimately we need to know how long will it
take for them to be 2 miles apart. We can see that time will be our input variable, so we’ll define our input and
output variables.

Input: t, time in hours.
Output: A(t), distance in miles, and E(t), distance in miles

Because it is not obvious how to define our output variable, we’ll start by drawing a picture such as Figure 4.35.

Figure 4.35

Initial Value: They both start at the same intersection so when  t = 0, the distance traveled by each person should
also be 0. Thus the initial value for each is 0.

Rate of Change: Anna is walking 4 miles per hour and Emanuel is walking 3 miles per hour, which are both rates
of change. The slope for  A  is 4 and the slope for  E  is 3.

Using those values, we can write formulas for the distance each person has walked.

A(t) = 4t
E(t) = 3t

For this problem, the distances from the starting point are important. To notate these, we can define a coordinate
system, identifying the “starting point” at the intersection where they both started. Then we can use the variable,
 A, which we introduced above, to represent Anna’s position, and define it to be a measurement from the starting
point in the eastward direction. Likewise, can use the variable,  E, to represent Emanuel’s position, measured
from the starting point in the southward direction. Note that in defining the coordinate system, we specified both
the starting point of the measurement and the direction of measure.

We can then define a third variable,  D, to be the measurement of the distance between Anna and Emanuel.
Showing the variables on the diagram is often helpful, as we can see from Figure 4.36.
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Recall that we need to know how long it takes for  D, the distance between them, to equal 2 miles. Notice that
for any given input  t, the outputs  A(t), E(t), and  D(t)  represent distances.

Figure 4.36

Figure 4.35 shows us that we can use the Pythagorean Theorem because we have drawn a right angle.

Using the Pythagorean Theorem, we get:

D(t)2 = A(t)2 + E(t)2

= (4t)2 + (3t)2

= 16t2 + 9t2

= 25t2

 D(t) = ± 25t2 Solve for D(t) using the square root.
= ± 5|t|

In this scenario we are considering only positive values of  t,   so our distance  D(t) will always be positive. We
can simplify this answer to  D(t) = 5t. This means that the distance between Anna and Emanuel is also a linear
function. Because  D  is a linear function, we can now answer the question of when the distance between them
will reach 2 miles. We will set the output  D(t) = 2  and solve for  t.

D(t) = 2
5t = 2
t = 2

5 = 0.4

They will fall out of radio contact in 0.4 hour, or 24 minutes.

Should I draw diagrams when given information based on a geometric shape?

Yes. Sketch the figure and label the quantities and unknowns on the sketch.

Example 4.24
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Using a Diagram to Model Distance Between Cities

There is a straight road leading from the town of Westborough to Agritown 30 miles east and 10 miles north.
Partway down this road, it junctions with a second road, perpendicular to the first, leading to the town of
Eastborough. If the town of Eastborough is located 20 miles directly east of the town of Westborough, how far is
the road junction from Westborough?

Solution
It might help here to draw a picture of the situation. See Figure 4.37. It would then be helpful to introduce a
coordinate system. While we could place the origin anywhere, placing it at Westborough seems convenient. This
puts Agritown at coordinates  (30, 10), and Eastborough at  (20, 0).

Figure 4.37

Using this point along with the origin, we can find the slope of the line from Westborough to Agritown.

m = 10 − 0
30 − 0 = 1

3

Now we can write an equation to describe the road from Westborough to Agritown.

W(x) = 1
3x

From this, we can determine the perpendicular road to Eastborough will have slope  m = – 3. Because the town
of Eastborough is at the point (20, 0), we can find the equation.

E(x) = −3x + b
0 = −3(20) + b Substitute (20, 0)into the equation.
b = 60

E(x) = −3x + 60

We can now find the coordinates of the junction of the roads by finding the intersection of these lines. Setting
them equal,

 13x = −3x + 60

10
3 x = 60

 10x = 180
x = 18 Substituting this back into W(x).
y = W(18)

= 1
3(18)

= 6

The roads intersect at the point (18, 6). Using the distance formula, we can now find the distance from
Westborough to the junction.
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distance = (x2 − x1)2 + (y2 − y1)2

= (18 − 0)2 + (6 − 0)2

≈  18.974 miles

Analysis
One nice use of linear models is to take advantage of the fact that the graphs of these functions are lines. This
means real-world applications discussing maps need linear functions to model the distances between reference
points.

There is a straight road leading from the town of Timpson to Ashburn 60 miles east and 12 miles north.
Partway down the road, it junctions with a second road, perpendicular to the first, leading to the town of
Garrison. If the town of Garrison is located 22 miles directly east of the town of Timpson, how far is the road
junction from Timpson?

Modeling a Set of Data with Linear Functions
Real-world situations including two or more linear functions may be modeled with a system of linear equations. Remember,
when solving a system of linear equations, we are looking for points the two lines have in common. Typically, there are
three types of answers possible, as shown in Figure 4.38.

Figure 4.38

Given a situation that represents a system of linear equations, write the system of equations and identify the
solution.

1. Identify the input and output of each linear model.

2. Identify the slope and y-intercept of each linear model.

3. Find the solution by setting the two linear functions equal to another and solving for  x, or find the point
of intersection on a graph.

Example 4.25

Building a System of Linear Models to Choose a Truck Rental Company
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Jamal is choosing between two truck-rental companies. The first, Keep on Trucking, Inc., charges an up-front
fee of $20, then 59 cents a mile. The second, Move It Your Way, charges an up-front fee of $16, then 63 cents a
mile[4]. When will Keep on Trucking, Inc. be the better choice for Jamal?

Solution
The two important quantities in this problem are the cost and the number of miles driven. Because we have two
companies to consider, we will define two functions in Table 4.5.

Input d, distance driven in miles

Outputs
K(d) :   cost, in dollars, for renting from Keep on Trucking

M(d)  cost, in dollars, for renting from Move It Your Way

Initial Value Up-front fee:  K(0) = 20  and  M(0) = 16

Rate of Change K(d) = $0.59  /mile and  P(d) = $0.63  /mile

Table 4.5

A linear function is of the form   f (x) = mx + b. Using the rates of change and initial charges, we can write the

equations

K(d) = 0.59d + 20
M(d) = 0.63d + 16

Using these equations, we can determine when Keep on Trucking, Inc., will be the better choice. Because all
we have to make that decision from is the costs, we are looking for when Move It Your Way, will cost less,
or when  K(d) < M(d). The solution pathway will lead us to find the equations for the two functions, find the
intersection, and then see where the  K(d)  function is smaller.

These graphs are sketched in Figure 4.39, with  K(d)  in blue.

4. Rates retrieved Aug 2, 2010 from http://www.budgettruck.com and http://www.uhaul.com/
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Figure 4.39

To find the intersection, we set the equations equal and solve:

K(d) = M(d)
0.59d + 20 = 0.63d + 16

4 = 0.04d
 100 = d

d = 100

This tells us that the cost from the two companies will be the same if 100 miles are driven. Either by looking at
the graph, or noting that  K(d)  is growing at a slower rate, we can conclude that Keep on Trucking, Inc. will be
the cheaper price when more than 100 miles are driven, that is  d > 100 .

Access this online resource for additional instruction and practice with linear function models.

• Interpreting a Linear Function (http://Openstaxcollege.org/l/interpretlinear)
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4.2 EXERCISES
Verbal

Explain how to find the input variable in a word
problem that uses a linear function.

Explain how to find the output variable in a word
problem that uses a linear function.

Explain how to interpret the initial value in a word
problem that uses a linear function.

Explain how to determine the slope in a word problem
that uses a linear function.

Algebraic

Find the area of a parallelogram bounded by the y-
axis, the line  x = 3, the line   f (x) = 1 + 2x, and the line

parallel to   f (x)  passing through  (2, 7).

Find the area of a triangle bounded by the x-axis, the
line   f (x) = 12 – 1

3x, and the line perpendicular to   f (x) 
that passes through the origin.

Find the area of a triangle bounded by the y-axis, the
line   f (x) = 9 – 6

7x, and the line perpendicular to   f (x) 
that passes through the origin.

Find the area of a parallelogram bounded by the x-
axis, the line  g(x) = 2, the line   f (x) = 3x, and the line

parallel to   f (x)  passing through  (6, 1).

For the following exercises, consider this scenario: A
town’s population has been decreasing at a constant rate. In
2010 the population was 5,900. By 2012 the population had
dropped 4,700. Assume this trend continues.

Predict the population in 2016.

Identify the year in which the population will reach 0.

For the following exercises, consider this scenario: A
town’s population has been increased at a constant rate. In
2010 the population was 46,020. By 2012 the population
had increased to 52,070. Assume this trend continues.

Predict the population in 2016.

Identify the year in which the population will reach
75,000.

For the following exercises, consider this scenario: A town
has an initial population of 75,000. It grows at a constant
rate of 2,500 per year for 5 years.

Find the linear function that models the town’s population
 P  as a function of the year,  t, where  t  is the number of
years since the model began.

Find a reasonable domain and range for the function
 P.

If the function  P  is graphed, find and interpret the x-
and y-intercepts.

If the function  P  is graphed, find and interpret the
slope of the function.

When will the population reach 100,000?

What is the population in the year 12 years from the
onset of the model?

For the following exercises, consider this scenario: The
weight of a newborn is 7.5 pounds. The baby gained one-
half pound a month for its first year.

Find the linear function that models the baby’s weight
 W   as a function of the age of the baby, in months,  t.

Find a reasonable domain and range for the function
 W.

If the function  W   is graphed, find and interpret the x-
and y-intercepts.

If the function W is graphed, find and interpret the
slope of the function.

When did the baby weight 10.4 pounds?

What is the output when the input is 6.2?

For the following exercises, consider this scenario: The
number of people afflicted with the common cold in the
winter months steadily decreased by 205 each year from
2005 until 2010. In 2005, 12,025 people were inflicted.

Find the linear function that models the number of
people inflicted with the common cold  C  as a function of
the year,  t.

Find a reasonable domain and range for the function
 C.

If the function  C  is graphed, find and interpret the x-
and y-intercepts.

If the function  C  is graphed, find and interpret the
slope of the function.

When will the output reach 0?

Chapter 4 Linear Functions 447



152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

In what year will the number of people be 9,700?

Graphical
For the following exercises, use the graph in Figure 4.40,
which shows the profit,  y, in thousands of dollars, of a

company in a given year,  t, where  t  represents the number
of years since 1980.

Figure 4.40

Find the linear function  y, where  y  depends on  t,
the number of years since 1980.

Find and interpret the y-intercept.

Find and interpret the x-intercept.

Find and interpret the slope.

For the following exercises, use the graph in Figure 4.41,
which shows the profit,  y, in thousands of dollars, of a

company in a given year,  t, where  t  represents the number
of years since 1980.

Figure 4.41

Find the linear function  y, where  y  depends on  t,
the number of years since 1980.

Find and interpret the y-intercept.

Find and interpret the x-intercept.

Find and interpret the slope.

Numeric
For the following exercises, use the median home values
in Mississippi and Hawaii (adjusted for inflation) shown
in Table 4.6. Assume that the house values are changing
linearly.

Year Mississippi Hawaii

1950 $25,200 $74,400

2000 $71,400 $272,700

Table 4.6

In which state have home values increased at a higher
rate?

If these trends were to continue, what would be the
median home value in Mississippi in 2010?

If we assume the linear trend existed before 1950 and
continues after 2000, the two states’ median house values
will be (or were) equal in what year? (The answer might be
absurd.)

For the following exercises, use the median home values
in Indiana and Alabama (adjusted for inflation) shown in
Table 4.7. Assume that the house values are changing
linearly.

Year Indiana Alabama

1950 $37,700 $27,100

2000 $94,300 $85,100

Table 4.7

In which state have home values increased at a higher
rate?

If these trends were to continue, what would be the
median home value in Indiana in 2010?

If we assume the linear trend existed before 1950 and
continues after 2000, the two states’ median house values
will be (or were) equal in what year? (The answer might be
absurd.)

Real-World Applications

In 2004, a school population was 1001. By 2008 the
population had grown to 1697. Assume the population is
changing linearly.

a. How much did the population grow between the
year 2004 and 2008?
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177.

b. How long did it take the population to grow from
1001 students to 1697 students?

c. What is the average population growth per year?

d. What was the population in the year 2000?

e. Find an equation for the population,  P, of the
school t years after 2000.

f. Using your equation, predict the population of the
school in 2011.

In 2003, a town’s population was 1431. By 2007 the
population had grown to 2134. Assume the population is
changing linearly.

a. How much did the population grow between the
year 2003 and 2007?

b. How long did it take the population to grow from
1431 people to 2134 people?

c. What is the average population growth per year?

d. What was the population in the year 2000?

e. Find an equation for the population,  P, of the town
 t  years after 2000.

f. Using your equation, predict the population of the
town in 2014.

A phone company has a monthly cellular plan where a
customer pays a flat monthly fee and then a certain amount
of money per minute used on the phone. If a customer uses
410 minutes, the monthly cost will be $71.50. If the
customer uses 720 minutes, the monthly cost will be $118.

a. Find a linear equation for the monthly cost of the
cell plan as a function of x, the number of monthly
minutes used.

b. Interpret the slope and y-intercept of the equation.

c. Use your equation to find the total monthly cost if
687 minutes are used.

A phone company has a monthly cellular data plan
where a customer pays a flat monthly fee of $10 and then a
certain amount of money per megabyte (MB) of data used
on the phone. If a customer uses 20 MB, the monthly cost
will be $11.20. If the customer uses 130 MB, the monthly
cost will be $17.80.

a. Find a linear equation for the monthly cost of the
data plan as a function of  x, the number of MB
used.

b. Interpret the slope and y-intercept of the equation.

c. Use your equation to find the total monthly cost if
250 MB are used.

In 1991, the moose population in a park was
measured to be 4,360. By 1999, the population was
measured again to be 5,880. Assume the population
continues to change linearly.

a. Find a formula for the moose population, P since
1990.

b. What does your model predict the moose
population to be in 2003?

In 2003, the owl population in a park was measured to
be 340. By 2007, the population was measured again to be
285. The population changes linearly. Let the input be years
since 1990.

a. Find a formula for the owl population,  P. Let the
input be years since 2003.

b. What does your model predict the owl population
to be in 2012?

The Federal Helium Reserve held about 16 billion
cubic feet of helium in 2010 and is being depleted by about
2.1 billion cubic feet each year.

a. Give a linear equation for the remaining federal
helium reserves,  R, in terms of  t, the number of
years since 2010.

b. In 2015, what will the helium reserves be?

c. If the rate of depletion doesn’t change, in what year
will the Federal Helium Reserve be depleted?

Suppose the world’s oil reserves in 2014 are 1,820
billion barrels. If, on average, the total reserves are
decreasing by 25 billion barrels of oil each year:

a. Give a linear equation for the remaining oil
reserves,  R, in terms of  t, the number of years
since now.

b. Seven years from now, what will the oil reserves
be?

c. If the rate at which the reserves are decreasing
is constant, when will the world’s oil reserves be
depleted?

You are choosing between two different prepaid cell
phone plans. The first plan charges a rate of 26 cents per
minute. The second plan charges a monthly fee of $19.95
plus 11 cents per minute. How many minutes would you
have to use in a month in order for the second plan to be
preferable?

You are choosing between two different window
washing companies. The first charges $5 per window. The
second charges a base fee of $40 plus $3 per window. How
many windows would you need to have for the second
company to be preferable?

When hired at a new job selling jewelry, you are given
two pay options:

Option A: Base salary of $17,000 a year with a commission
of 12% of your sales

Option B: Base salary of $20,000 a year with a commission
of 5% of your sales
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179.

180.

How much jewelry would you need to sell for option A to
produce a larger income?

When hired at a new job selling electronics, you are
given two pay options:

Option A: Base salary of $14,000 a year with a commission
of 10% of your sales

Option B: Base salary of $19,000 a year with a commission
of 4% of your sales

How much electronics would you need to sell for option A
to produce a larger income?

When hired at a new job selling electronics, you are
given two pay options:

Option A: Base salary of $20,000 a year with a commission
of 12% of your sales

Option B: Base salary of $26,000 a year with a commission
of 3% of your sales

How much electronics would you need to sell for option A
to produce a larger income?

When hired at a new job selling electronics, you are
given two pay options:

Option A: Base salary of $10,000 a year with a commission
of 9% of your sales

Option B: Base salary of $20,000 a year with a commission
of 4% of your sales

How much electronics would you need to sell for option A
to produce a larger income?
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4.3 | Fitting Linear Models to Data

Learning Objectives

In this section you will:

4.3.1 Draw and interpret scatter diagrams.
4.3.2 Use a graphing utility to find the line of best fit.
4.3.3 Distinguish between linear and nonlinear relations.
4.3.4 Fit a regression line to a set of data and use the linear model to make predictions.

A professor is attempting to identify trends among final exam scores. His class has a mixture of students, so he wonders if
there is any relationship between age and final exam scores. One way for him to analyze the scores is by creating a diagram
that relates the age of each student to the exam score received. In this section, we will examine one such diagram known as
a scatter plot.

Drawing and Interpreting Scatter Plots
A scatter plot is a graph of plotted points that may show a relationship between two sets of data. If the relationship is from
a linear model, or a model that is nearly linear, the professor can draw conclusions using his knowledge of linear functions.
Figure 4.42 shows a sample scatter plot.

Figure 4.42 A scatter plot of age and final exam score
variables

Notice this scatter plot does not indicate a linear relationship. The points do not appear to follow a trend. In other words,
there does not appear to be a relationship between the age of the student and the score on the final exam.

Example 4.26

Using a Scatter Plot to Investigate Cricket Chirps

Table 4.8 shows the number of cricket chirps in 15 seconds, for several different air temperatures, in degrees
Fahrenheit[5]. Plot this data, and determine whether the data appears to be linearly related.

5. Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/. Retrieved Aug 3, 2010
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Chirps 44 35 20.4 33 31 35 18.5 37 26

Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Table 4.8
Cricket Chirps vs Air Temperature

Solution
Plotting this data, as depicted in Figure 4.43 suggests that there may be a trend. We can see from the trend in
the data that the number of chirps increases as the temperature increases. The trend appears to be roughly linear,
though certainly not perfectly so.

Figure 4.43

Finding the Line of Best Fit
Once we recognize a need for a linear function to model that data, the natural follow-up question is “what is that linear
function?” One way to approximate our linear function is to sketch the line that seems to best fit the data. Then we can
extend the line until we can verify the y-intercept. We can approximate the slope of the line by extending it until we can
estimate the  rise

run.

Example 4.27

Finding a Line of Best Fit

Find a linear function that fits the data in Table 4.8 by “eyeballing” a line that seems to fit.

Solution
On a graph, we could try sketching a line. Using the starting and ending points of our hand drawn line, points (0,
30) and (50, 90), this graph has a slope of
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m = 60
50

     = 1.2

and a y-intercept at 30. This gives an equation of

T(c) = 1.2c + 30

where  c  is the number of chirps in 15 seconds, and  T(c)  is the temperature in degrees Fahrenheit. The resulting
equation is represented in Figure 4.44.

Figure 4.44

Analysis
This linear equation can then be used to approximate answers to various questions we might ask about the trend.

Recognizing Interpolation or Extrapolation
While the data for most examples does not fall perfectly on the line, the equation is our best guess as to how the relationship
will behave outside of the values for which we have data. We use a process known as interpolation when we predict a value
inside the domain and range of the data. The process of extrapolation is used when we predict a value outside the domain
and range of the data.

Figure 4.45 compares the two processes for the cricket-chirp data addressed in Example 4.27. We can see that
interpolation would occur if we used our model to predict temperature when the values for chirps are between 18.5 and
44. Extrapolation would occur if we used our model to predict temperature when the values for chirps are less than 18.5 or
greater than 44.

There is a difference between making predictions inside the domain and range of values for which we have data and outside
that domain and range. Predicting a value outside of the domain and range has its limitations. When our model no longer
applies after a certain point, it is sometimes called model breakdown. For example, predicting a cost function for a period
of two years may involve examining the data where the input is the time in years and the output is the cost. But if we try
to extrapolate a cost when  x = 50, that is in 50 years, the model would not apply because we could not account for factors
fifty years in the future.
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Figure 4.45 Interpolation occurs within the domain and range
of the provided data whereas extrapolation occurs outside.

Interpolation and Extrapolation

Different methods of making predictions are used to analyze data.

The method of interpolation involves predicting a value inside the domain and/or range of the data.
The method of extrapolation involves predicting a value outside the domain and/or range of the data.
Model breakdown occurs at the point when the model no longer applies.

Example 4.28

Understanding Interpolation and Extrapolation

Use the cricket data from Table 4.8 to answer the following questions:

a. Would predicting the temperature when crickets are chirping 30 times in 15 seconds be interpolation or
extrapolation? Make the prediction, and discuss whether it is reasonable.

b. Would predicting the number of chirps crickets will make at 40 degrees be interpolation or extrapolation?
Make the prediction, and discuss whether it is reasonable.

Solution
a. The number of chirps in the data provided varied from 18.5 to 44. A prediction at 30 chirps per 15 seconds

is inside the domain of our data, so would be interpolation. Using our model:
T (30) = 30 + 1.2(30)

= 66 degrees
Based on the data we have, this value seems reasonable.

b. The temperature values varied from 52 to 80.5. Predicting the number of chirps at 40 degrees is
extrapolation because 40 is outside the range of our data. Using our model:

40 = 30 + 1.2c
10 = 1.2c
  c ≈ 8.33
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4.14

We can compare the regions of interpolation and extrapolation using Figure 4.46.

Figure 4.46

Analysis
Our model predicts the crickets would chirp 8.33 times in 15 seconds. While this might be possible, we have
no reason to believe our model is valid outside the domain and range. In fact, generally crickets stop chirping
altogether below around 50 degrees.

According to the data from Table 4.8, what temperature can we predict it is if we counted 20 chirps in 15
seconds?

Finding the Line of Best Fit Using a Graphing Utility
While eyeballing a line works reasonably well, there are statistical techniques for fitting a line to data that minimize the
differences between the line and data values[6]. One such technique is called least squares regression and can be computed
by many graphing calculators, spreadsheet software, statistical software, and many web-based calculators[7]. Least squares
regression is one means to determine the line that best fits the data, and here we will refer to this method as linear regression.

Given data of input and corresponding outputs from a linear function, find the best fit line using linear
regression.

1. Enter the input in List 1 (L1).

2. Enter the output in List 2 (L2).

3. On a graphing utility, select Linear Regression (LinReg).

Example 4.29

Finding a Least Squares Regression Line

6. Technically, the method minimizes the sum of the squared differences in the vertical direction between the line and the
data values.
7. For example, http://www.shodor.org/unchem/math/lls/leastsq.html
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Find the least squares regression line using the cricket-chirp data in Table 4.9.

Solution
1. Enter the input (chirps) in List 1 (L1).

2. Enter the output (temperature) in List 2 (L2). See Table 4.9.

L1 44 35 20.4 33 31 35 18.5 37 26

L2 80.5 70.5 57 66 68 72 52 73.5 53

Table 4.9

3. On a graphing utility, select Linear Regression (LinReg). Using the cricket chirp data from earlier, with
technology we obtain the equation:

T(c) = 30.281 + 1.143c

Analysis
Notice that this line is quite similar to the equation we “eyeballed” but should fit the data better. Notice also that
using this equation would change our prediction for the temperature when hearing 30 chirps in 15 seconds from
66 degrees to:

T(30) = 30.281 + 1.143(30)
= 64.571
≈ 64.6 degrees

The graph of the scatter plot with the least squares regression line is shown in Figure 4.47.

Figure 4.47

Will there ever be a case where two different lines will serve as the best fit for the data?

No. There is only one best fit line.
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Distinguishing Between Linear and Nonlinear Models
As we saw above with the cricket-chirp model, some data exhibit strong linear trends, but other data, like the final exam
scores plotted by age, are clearly nonlinear. Most calculators and computer software can also provide us with the correlation
coefficient, which is a measure of how closely the line fits the data. Many graphing calculators require the user to turn a
”diagnostic on” selection to find the correlation coefficient, which mathematicians label as  r The correlation coefficient
provides an easy way to get an idea of how close to a line the data falls.

We should compute the correlation coefficient only for data that follows a linear pattern or to determine the degree to which
a data set is linear. If the data exhibits a nonlinear pattern, the correlation coefficient for a linear regression is meaningless.
To get a sense for the relationship between the value of  r  and the graph of the data, Figure 4.48 shows some large data
sets with their correlation coefficients. Remember, for all plots, the horizontal axis shows the input and the vertical axis
shows the output.

Figure 4.48 Plotted data and related correlation coefficients. (credit: “DenisBoigelot,” Wikimedia Commons)

Correlation Coefficient

The correlation coefficient is a value,  r, between –1 and 1.

• r > 0  suggests a positive (increasing) relationship

• r < 0  suggests a negative (decreasing) relationship

• The closer the value is to 0, the more scattered the data.

• The closer the value is to 1 or –1, the less scattered the data is.

Example 4.30

Finding a Correlation Coefficient

Calculate the correlation coefficient for cricket-chirp data in Table 4.8.

Solution
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Because the data appear to follow a linear pattern, we can use technology to calculate  r Enter the inputs and
corresponding outputs and select the Linear Regression. The calculator will also provide you with the correlation
coefficient,  r = 0.9509. This value is very close to 1, which suggests a strong increasing linear relationship.

Note: For some calculators, the Diagnostics must be turned "on" in order to get the correlation coefficient when
linear regression is performed: [2nd]>[0]>[alpha][x–1], then scroll to DIAGNOSTICSON.

Fitting a Regression Line to a Set of Data
Once we determine that a set of data is linear using the correlation coefficient, we can use the regression line to make
predictions. As we learned above, a regression line is a line that is closest to the data in the scatter plot, which means that
only one such line is a best fit for the data.

Example 4.31

Using a Regression Line to Make Predictions

Gasoline consumption in the United States has been steadily increasing. Consumption data from 1994 to 2004 is
shown in Table 4.10.[8] Determine whether the trend is linear, and if so, find a model for the data. Use the model
to predict the consumption in 2008.

Year '94 '95 '96 '97 '98 '99 '00 '01 '02 '03 '04

Consumption
(billions of
gallons)

113 116 118 119 123 125 126 128 131 133 136

Table 4.10

The scatter plot of the data, including the least squares regression line, is shown in Figure 4.49.

Figure 4.49

8. http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html
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4.15

Solution
We can introduce new input variable,  t, representing years since 1994.

The least squares regression equation is:

C(t) = 113.318 + 2.209t

Using technology, the correlation coefficient was calculated to be 0.9965, suggesting a very strong increasing
linear trend.

Using this to predict consumption in 2008  (t = 14),

C(14) = 113.318 + 2.209(14)
         = 144.244

The model predicts 144.244 billion gallons of gasoline consumption in 2008.

Use the model we created using technology in Example 4.31 to predict the gas consumption in 2011. Is
this an interpolation or an extrapolation?

Access these online resources for additional instruction and practice with fitting linear models to data.

• Introduction to Regression Analysis (http://Openstaxcollege.org/l/introregress)

• Linear Regression (http://Openstaxcollege.org/l/linearregress)
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182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

4.3 EXERCISES
Verbal

Describe what it means if there is a model breakdown
when using a linear model.

What is interpolation when using a linear model?

What is extrapolation when using a linear model?

Explain the difference between a positive and a
negative correlation coefficient.

Explain how to interpret the absolute value of a
correlation coefficient.

Algebraic

A regression was run to determine whether there is a
relationship between hours of TV watched per day  (x)  and
number of sit-ups a person can do  (y). The results of the

regression are given below. Use this to predict the number
of sit-ups a person who watches 11 hours of TV can do.

y = ax + b
a = −1.341
b = 32.234
 r = −0.896

A regression was run to determine whether there is a
relationship between the diameter of a tree (  x, in inches)
and the tree’s age (  y, in years). The results of the

regression are given below. Use this to predict the age of a
tree with diameter 10 inches.

y = ax + b
a = 6.301
b = −1.044
 r = −0.970

For the following exercises, draw a scatter plot for the data
provided. Does the data appear to be linearly related?

0 2 4 6 8 10

–22 –19 –15 –11 –6 –2

1 2 3 4 5 6

46 50 59 75 100 136

100 250 300 450 600 750

12 12.6 13.1 14 14.5 15.2

1 3 5 7 9 11

1 9 28 65 125 216

For the following data, draw a scatter plot. If we
wanted to know when the population would reach 15,000,
would the answer involve interpolation or extrapolation?
Eyeball the line, and estimate the answer.

Year Population

1990 11,500

1995 12,100

2000 12,700

2005 13,000

2010 13,750

For the following data, draw a scatter plot. If we
wanted to know when the temperature would reach 28°F,
would the answer involve interpolation or extrapolation?
Eyeball the line and estimate the answer.

Temperature,°F 16 18 20 25 30

Time, seconds 46 50 54 55 62

Graphical
For the following exercises, match each scatterplot with
one of the four specified correlations in Figure 4.50 and
Figure 4.51.
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195.

196.

197.

198.

Figure 4.50 Figure 4.51

r = 0.95

r = −0.89

r = −0.26

r = −0.39

For the following exercises, draw a best-fit line for the
plotted data.
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199.

200.

201.

202.

203.

Numeric

The U.S. Census tracks the percentage of persons 25
years or older who are college graduates. That data for
several years is given in Table 4.11.[9] Determine whether
the trend appears linear. If so, and assuming the trend
continues, in what year will the percentage exceed 35%?

Year Percent Graduates

1990 21.3

1992 21.4

1994 22.2

1996 23.6

1998 24.4

2000 25.6

2002 26.7

2004 27.7

2006 28

2008 29.4

Table 4.11

The U.S. import of wine (in hectoliters) for several
years is given in Table 4.12. Determine whether the trend
appears linear. If so, and assuming the trend continues, in
what year will imports exceed 12,000 hectoliters?

9. Based on data from http://www.census.gov/hhes/socdemo/education/data/cps/historical/index.html. Accessed 5/1/
2014.
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204.

205.

206.

207.

Year Imports

1992 2665

1994 2688

1996 3565

1998 4129

2000 4584

2002 5655

2004 6549

2006 7950

2008 8487

2009 9462

Table 4.12

Table 4.13 shows the year and the number of people
unemployed in a particular city for several years.
Determine whether the trend appears linear. If so, and
assuming the trend continues, in what year will the number
of unemployed reach 5?

Year Number Unemployed

1990 750

1992 670

1994 650

1996 605

1998 550

2000 510

2002 460

2004 420

2006 380

2008 320

Table 4.13

Technology
For the following exercises, use each set of data to calculate
the regression line using a calculator or other technology
tool, and determine the correlation coefficient to 3 decimal
places of accuracy.

x 8 15 26 31 56

y 23 41 53 72 103

x 5 7 10 12 15

y 4 12 17 22 24
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208.

209.

210.

211.

212.

213.

x y x y

3 21.9 10 18.54

4 22.22 11 15.76

5 22.74 12 13.68

6 22.26 13 14.1

7 20.78 14 14.02

8 17.6 15 11.94

9 16.52 16 12.76

x y

4 44.8

5 43.1

6 38.8

7 39

8 38

9 32.7

10 30.1

11 29.3

12 27

13 25.8

x 21 25 30 31 40 50

y 17 11 2 –1 –18 –40

x y

100 2000

80 1798

60 1589

55 1580

40 1390

20 1202

x 900 988 1000 1010 1200 1205

y 70 80 82 84 105 108

Extensions

Graph   f (x) = 0.5x + 10.  Pick a set of five ordered

pairs using inputs  x = −2, 1, 5, 6, 9  and use linear
regression to verify that the function is a good fit for the
data.

Graph   f (x) = − 2x − 10.  Pick a set of five ordered

pairs using inputs  x = −2, 1, 5, 6, 9  and use linear
regression to verify the function.

For the following exercises, consider this scenario: The
profit of a company decreased steadily over a ten-year span.
The following ordered pairs shows dollars and the number
of units sold in hundreds and the profit in thousands of over
the ten-year span, (number of units sold, profit) for specific
recorded years:

(46, 1, 600), (48, 1, 550), (50, 1, 505), (52, 1, 540), (54, 1, 495).

464 Chapter 4 Linear Functions

This content is available for free at https://cnx.org/content/col11758/1.5



214.

215.

216.

217.

218.

219.

220.

221.

222.

Use linear regression to determine a function  P 
where the profit in thousands of dollars depends on the
number of units sold in hundreds.

Find to the nearest tenth and interpret the x-intercept.

Find to the nearest tenth and interpret the y-intercept.

Real-World Applications
For the following exercises, consider this scenario: The
population of a city increased steadily over a ten-year span.
The following ordered pairs shows the population and the
year over the ten-year span, (population, year) for specific
recorded years:

(2500, 2000), (2650, 2001), (3000, 2003), (3500, 2006), (4200, 2010)

Use linear regression to determine a function  y,
where the year depends on the population. Round to three
decimal places of accuracy.

Predict when the population will hit 8,000.

For the following exercises, consider this scenario: The
profit of a company increased steadily over a ten-year span.
The following ordered pairs show the number of units sold
in hundreds and the profit in thousands of over the ten year
span, (number of units sold, profit) for specific recorded
years:

(46, 250), (48, 305), (50, 350), (52, 390), (54, 410).

Use linear regression to determine a function y, where
the profit in thousands of dollars depends on the number of
units sold in hundreds.

Predict when the profit will exceed one million
dollars.

For the following exercises, consider this scenario: The
profit of a company decreased steadily over a ten-year span.
The following ordered pairs show dollars and the number
of units sold in hundreds and the profit in thousands of over
the ten-year span (number of units sold, profit) for specific
recorded years:

(46, 250), (48, 225), (50, 205), (52, 180), (54, 165).

Use linear regression to determine a function y, where
the profit in thousands of dollars depends on the number of
units sold in hundreds.

Predict when the profit will dip below the $25,000
threshold.
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correlation coefficient

decreasing linear function

extrapolation

horizontal line

increasing linear function

interpolation

least squares regression

linear function

model breakdown

parallel lines

perpendicular lines

point-slope form

slope

slope-intercept form

vertical line

CHAPTER 4 REVIEW

KEY TERMS
a value,  r, between –1 and 1 that indicates the degree of linear correlation of variables, or how

closely a regression line fits a data set.

a function with a negative slope: If   f (x) = mx + b,  then  m < 0.

predicting a value outside the domain and range of the data

a line defined by   f (x) = b, where  b  is a real number. The slope of a horizontal line is 0.

a function with a positive slope: If   f (x) = mx + b,  then  m > 0.

predicting a value inside the domain and range of the data

a statistical technique for fitting a line to data in a way that minimizes the differences between
the line and data values

a function with a constant rate of change that is a polynomial of degree 1, and whose graph is a straight
line

when a model no longer applies after a certain point

two or more lines with the same slope

two lines that intersect at right angles and have slopes that are negative reciprocals of each other

the equation for a line that represents a linear function of the form  y − y1 = m(x − x1)

the ratio of the change in output values to the change in input values; a measure of the steepness of a line

the equation for a line that represents a linear function in the form   f (x) = mx + b

a line defined by  x = a, where  a  is a real number. The slope of a vertical line is undefined.

KEY CONCEPTS
4.1 Linear Functions

• Linear functions can be represented in words, function notation, tabular form, and graphical form. See Example
4.1.

• An increasing linear function results in a graph that slants upward from left to right and has a positive slope. A
decreasing linear function results in a graph that slants downward from left to right and has a negative slope. A
constant linear function results in a graph that is a horizontal line. See Example 4.2.

• Slope is a rate of change. The slope of a linear function can be calculated by dividing the difference between y-
values by the difference in corresponding x-values of any two points on the line. See Example 4.3 and Example
4.4.

• An equation for a linear function can be written from a graph. See Example 4.5.

• The equation for a linear function can be written if the slope  m  and initial value  b  are known. See Example 4.6
and Example 4.7.

• A linear function can be used to solve real-world problems given information in different forms. See Example
4.8, Example 4.9, and Example 4.10.

• Linear functions can be graphed by plotting points or by using the y-intercept and slope. See Example 4.11 and
Example 4.12.

• Graphs of linear functions may be transformed by using shifts up, down, left, or right, as well as through stretches,
compressions, and reflections. See Example 4.13.
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• The equation for a linear function can be written by interpreting the graph. See Example 4.14.

• The x-intercept is the point at which the graph of a linear function crosses the x-axis. See Example 4.15.

• Horizontal lines are written in the form,   f (x) = b.  See Example 4.16.

• Vertical lines are written in the form,  x = b.  See Example 4.17.

• Parallel lines have the same slope. Perpendicular lines have negative reciprocal slopes, assuming neither is vertical.
See Example 4.18.

• A line parallel to another line, passing through a given point, may be found by substituting the slope value of the line
and the x- and y-values of the given point into the equation,   f (x) = mx + b,   and using the  b  that results. Similarly,

the point-slope form of an equation can also be used. See Example 4.19.

• A line perpendicular to another line, passing through a given point, may be found in the same manner, with the
exception of using the negative reciprocal slope. See Example 4.20 and Example 4.21.

4.2 Modeling with Linear Functions

• We can use the same problem strategies that we would use for any type of function.

• When modeling and solving a problem, identify the variables and look for key values, including the slope and y-
intercept. See Example 4.22.

• Draw a diagram, where appropriate. See Example 4.23 and Example 4.24.

• Check for reasonableness of the answer.

• Linear models may be built by identifying or calculating the slope and using the y-intercept.

◦ The x-intercept may be found by setting  y = 0, which is setting the expression  mx + b  equal to 0.

◦ The point of intersection of a system of linear equations is the point where the x- and y-values are the same.
See Example 4.25.

◦ A graph of the system may be used to identify the points where one line falls below (or above) the other
line.

4.3 Fitting Linear Models to Data

• Scatter plots show the relationship between two sets of data. See Example 4.26.

• Scatter plots may represent linear or non-linear models.

• The line of best fit may be estimated or calculated, using a calculator or statistical software. See Example 4.27.

• Interpolation can be used to predict values inside the domain and range of the data, whereas extrapolation can be
used to predict values outside the domain and range of the data. See Example 4.28.

• The correlation coefficient,  r, indicates the degree of linear relationship between data. See Example 4.29.

• A regression line best fits the data. See Example 4.30.

• The least squares regression line is found by minimizing the squares of the distances of points from a line passing
through the data and may be used to make predictions regarding either of the variables. See Example 4.31.

CHAPTER 4 REVIEW EXERCISES
Linear Functions
223. Determine whether the algebraic equation is linear.
 2x + 3y = 7

224. Determine whether the algebraic equation is linear.
 6x2 − y = 5

225. Determine whether the function is increasing or
decreasing.

f (x) = 7x − 2

226. Determine whether the function is increasing or
decreasing.

g(x) = − x + 2
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227. Given each set of information, find a linear equation
that satisfies the given conditions, if possible.

Passes through  (7, 5)  and  (3, 17)

228. Given each set of information, find a linear equation
that satisfies the given conditions, if possible.

x-intercept at  (6, 0)  and y-intercept at  (0, 10)

229. Find the slope of the line shown in the graph.

230. Find the slope of the line graphed.

231. Write an equation in slope-intercept form for the line
shown.

232. Does the following table represent a linear function?
If so, find the linear equation that models the data.

x –4 0 2 10

g(x) 18 –2 –12 –52

233. Does the following table represent a linear function?
If so, find the linear equation that models the data.

x 6 8 12 26

g(x) –8 –12 –18 –46

234. On June 1st, a company has $4,000,000 profit. If the
company then loses 150,000 dollars per day thereafter in
the month of June, what is the company’s profit nth day
after June 1st?

For the following exercises, determine whether the lines
given by the equations below are parallel, perpendicular, or
neither parallel nor perpendicular:

235.
2x − 6y = 12
−x + 3y = 1

236.
y = 1

3x − 2

3x + y = − 9
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For the following exercises, find the x- and y- intercepts of
the given equation

237. 7x + 9y = − 63

238. f (x) = 2x − 1

For the following exercises, use the descriptions of the pairs
of lines to find the slopes of Line 1 and Line 2. Is each pair
of lines parallel, perpendicular, or neither?

239. Line 1: Passes through  (5, 11)  and  (10, 1)

Line 2: Passes through  (−1, 3)  and  (−5, 11)

240. Line 1: Passes through  (8, −10)  and  (0, −26)

Line 2: Passes through  (2, 5)  and  (4, 4)

241. Write an equation for a line perpendicular to
  f (x) = 5x − 1  and passing through the point (5, 20).

242. Find the equation of a line with a y- intercept of
 (0, 2)  and slope  − 1

2.

243. Sketch a graph of the linear function   f (t) = 2t − 5.

244. Find the point of intersection for the 2 linear

functions:   x = y + 6
2x − y = 13

.

245. A car rental company offers two plans for renting a
car.

Plan A: 25 dollars per day and 10 cents per mile

Plan B: 50 dollars per day with free unlimited mileage

How many miles would you need to drive for plan B to save
you money?

Modeling with Linear Functions
246. Find the area of a triangle bounded by the y axis, the
line   f (x) = 10 − 2x, and the line perpendicular to   f   that

passes through the origin.

247. A town’s population increases at a constant rate. In
2010 the population was 55,000. By 2012 the population
had increased to 76,000. If this trend continues, predict the
population in 2016.

248. The number of people afflicted with the common
cold in the winter months dropped steadily by 50 each year
since 2004 until 2010. In 2004, 875 people were inflicted.

Find the linear function that models the number of people
afflicted with the common cold C as a function of the year,
 t. When will no one be afflicted?

For the following exercises, use the graph in Figure 4.52
showing the profit,  y, in thousands of dollars, of a

company in a given year,  x, where  x  represents years
since 1980.

Figure 4.52

249. Find the linear function y, where y depends on  x, the
number of years since 1980.

250. Find and interpret the y-intercept.

For the following exercise, consider this scenario: In 2004,
a school population was 1,700. By 2012 the population had
grown to 2,500.

251. Assume the population is changing linearly.
a. How much did the population grow between
the year 2004 and 2012?
b. What is the average population growth per
year?
c. Find an equation for the population, P, of the
school t years after 2004.

For the following exercises, consider this scenario: In 2000,
the moose population in a park was measured to be 6,500.
By 2010, the population was measured to be 12,500.
Assume the population continues to change linearly.

252. Find a formula for the moose population,  P.

253. What does your model predict the moose population
to be in 2020?

For the following exercises, consider this scenario: The
median home values in subdivisions Pima Central and East
Valley (adjusted for inflation) are shown in Table 4.14.
Assume that the house values are changing linearly.
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Year Pima Central East Valley

1970 32,000 120,250

2010 85,000 150,000

Table 4.14

254. In which subdivision have home values increased at
a higher rate?

255. If these trends were to continue, what would be the
median home value in Pima Central in 2015?

Fitting Linear Models to Data
256. Draw a scatter plot for the data in Table 4.15. Then
determine whether the data appears to be linearly related.

0 2 4 6 8 10

–105 –50 1 55 105 160

Table 4.15

257. Draw a scatter plot for the data in Table 4.16. If we
wanted to know when the population would reach 15,000,
would the answer involve interpolation or extrapolation?

Year Population

1990 5,600

1995 5,950

2000 6,300

2005 6,600

2010 6,900

Table 4.16

258. Eight students were asked to estimate their score on
a 10-point quiz. Their estimated and actual scores are given
in Table 4.17. Plot the points, then sketch a line that fits
the data.

Predicted Actual

6 6

7 7

7 8

8 8

7 9

9 10

10 10

10 9

Table 4.17

259. Draw a best-fit line for the plotted data.

For the following exercises, consider the data in Table
4.18, which shows the percent of unemployed in a city of
people 25 years or older who are college graduates is given
below, by year.

Year 2000 2002 2005 2007 2010

Percent
Graduates 6.5 7.0 7.4 8.2 9.0

Table 4.18

260. Determine whether the trend appears to be linear.
If so, and assuming the trend continues, find a linear
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regression model to predict the percent of unemployed in a
given year to three decimal places.

261. In what year will the percentage exceed 12%?

262. Based on the set of data given in Table 4.19,
calculate the regression line using a calculator or other
technology tool, and determine the correlation coefficient
to three decimal places.

x 17 20 23 26 29

y 15 25 31 37 40

Table 4.19

263. Based on the set of data given in Table 4.20,
calculate the regression line using a calculator or other
technology tool, and determine the correlation coefficient
to three decimal places.

x 10 12 15 18 20

y 36 34 30 28 22

Table 4.20

For the following exercises, consider this scenario: The
population of a city increased steadily over a ten-year span.
The following ordered pairs show the population and the
year over the ten-year span (population, year) for specific
recorded years:

(3,600, 2000); (4,000, 2001); (4,700, 2003); (6,000, 2006)

264. Use linear regression to determine a function  y,
where the year depends on the population, to three decimal
places of accuracy.

265. Predict when the population will hit 12,000.

266. What is the correlation coefficient for this model to
three decimal places of accuracy?

267. According to the model, what is the population in
2014?

CHAPTER 4 PRACTICE TEST
268. Determine whether the following algebraic equation
can be written as a linear function.  2x + 3y = 7

269. Determine whether the following function is
increasing or decreasing.   f (x) = − 2x + 5
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270. Determine whether the following function is
increasing or decreasing. f (x) = 7x + 9

271. Find a linear equation that passes through (5, 1) and
(3, –9), if possible.

272. Find a linear equation, that has an x intercept at (–4,
0) and a y-intercept at (0, –6), if possible.

273. Find the slope of the line in Figure 4.53.

Figure 4.53

274. Write an equation for line in Figure 4.54.

Figure 4.54

275. Does Table 4.21 represent a linear function? If so,
find a linear equation that models the data.

x –6 0 2 4

g(x) 14 32 38 44

Table 4.21

276. Does Table 4.22 represent a linear function? If so,
find a linear equation that models the data.

x 1 3 7 11

g(x) 4 9 19 12

Table 4.22

277. At 6 am, an online company has sold 120 items
that day. If the company sells an average of 30 items per
hour for the remainder of the day, write an expression to
represent the number of items that were sold  n  after 6 am.

For the following exercises, determine whether the lines
given by the equations below are parallel, perpendicular, or
neither parallel nor perpendicular.

278.
y = 3

4x − 9

−4x − 3y = 8

279.
−2x + y = 3

3x + 3
2y = 5

280. Find the x- and y-intercepts of the equation
 2x + 7y = − 14.

281. Given below are descriptions of two lines. Find the
slopes of Line 1 and Line 2. Is the pair of lines parallel,
perpendicular, or neither?

Line 1: Passes through  (−2, −6)  and  (3, 14)

Line 2: Passes through  (2, 6)  and  (4, 14)

282. Write an equation for a line perpendicular to
  f (x) = 4x + 3  and passing through the point  (8, 10).

283. Sketch a line with a y-intercept of  (0, 5)  and slope

 − 5
2.
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284. Graph of the linear function   f (x) = − x + 6.

285. For the two linear functions, find the point of

intersection:
x = y + 2

2x − 3y = − 1
.

286. A car rental company offers two plans for renting a
car.

Plan A: $25 per day and $0.10 per mile

Plan B: $40 per day with free unlimited mileage

How many miles would you need to drive for plan B to save
you money?

287. Find the area of a triangle bounded by the y axis, the
line   f (x) = 12 − 4x, and the line perpendicular to   f   that

passes through the origin.

288. A town’s population increases at a constant rate. In
2010 the population was 65,000. By 2012 the population
had increased to 90,000. Assuming this trend continues,
predict the population in 2018.

289. The number of people afflicted with the common
cold in the winter months dropped steadily by 25 each year
since 2002 until 2012. In 2002, 8,040 people were inflicted.
Find the linear function that models the number of people
afflicted with the common cold  C  as a function of the year,
 t. When will less than 6,000 people be afflicted?

For the following exercises, use the graph in Figure 4.55,
showing the profit, y, in thousands of dollars, of a

company in a given year,  x, where  x  represents years
since 1980.

Figure 4.55

290. Find the linear function  y, where  y  depends on  x,
the number of years since 1980.

291. Find and interpret the y-intercept.

292. In 2004, a school population was 1250. By 2012 the
population had dropped to 875. Assume the population is
changing linearly.

a. How much did the population drop between the
year 2004 and 2012?
b. What is the average population decline per
year?
c. Find an equation for the population, P, of the
school t years after 2004.

293. Draw a scatter plot for the data provided in Table
4.23. Then determine whether the data appears to be
linearly related.

0 2 4 6 8 10

–450 –200 10 265 500 755

Table 4.23

294. Draw a best-fit line for the plotted data.

For the following exercises, use Table 4.24, which shows
the percent of unemployed persons 25 years or older who
are college graduates in a particular city, by year.

Year 2000 2002 2005 2007 2010

Percent
Graduates 8.5 8.0 7.2 6.7 6.4

Table 4.24

295. Determine whether the trend appears linear. If so,
and assuming the trend continues, find a linear regression
model to predict the percent of unemployed in a given year
to three decimal places.

296. In what year will the percentage drop below 4%?
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297. Based on the set of data given in Table 4.25,
calculate the regression line using a calculator or other
technology tool, and determine the correlation coefficient.
Round to three decimal places of accuracy.

x 16 18 20 24 26

y 106 110 115 120 125

Table 4.25

For the following exercises, consider this scenario: The
population of a city increased steadily over a ten-year span.
The following ordered pairs shows the population (in
hundreds) and the year over the ten-year span, (population,
year) for specific recorded years:

(4, 500, 2000); (4, 700, 2001); (5, 200, 2003); (5, 800, 2006)

298. Use linear regression to determine a function y,
where the year depends on the population. Round to three
decimal places of accuracy.

299. Predict when the population will hit 20,000.

300. What is the correlation coefficient for this model?
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5 | POLYNOMIAL AND
RATIONAL FUNCTIONS

Figure 5.1 35-mm film, once the standard for capturing photographic images, has been made largely obsolete by digital
photography. (credit “film”: modification of work by Horia Varlan; credit “memory cards”: modification of work by Paul
Hudson)

Chapter Outline
5.1 Quadratic Functions

5.2 Power Functions and Polynomial Functions

5.3 Graphs of Polynomial Functions

5.4 Dividing Polynomials

5.5 Zeros of Polynomial Functions

5.6 Rational Functions

5.7 Inverses and Radical Functions

5.8 Modeling Using Variation

Introduction
Digital photography has dramatically changed the nature of photography. No longer is an image etched in the emulsion on a
roll of film. Instead, nearly every aspect of recording and manipulating images is now governed by mathematics. An image
becomes a series of numbers, representing the characteristics of light striking an image sensor. When we open an image file,
software on a camera or computer interprets the numbers and converts them to a visual image. Photo editing software uses
complex polynomials to transform images, allowing us to manipulate the image in order to crop details, change the color
palette, and add special effects. Inverse functions make it possible to convert from one file format to another. In this chapter,
we will learn about these concepts and discover how mathematics can be used in such applications.
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5.1 | Quadratic Functions

Learning Objectives

In this section, you will:

5.1.1 Recognize characteristics of parabolas.
5.1.2 Understand how the graph of a parabola is related to its quadratic function.
5.1.3 Determine a quadratic function’s minimum or maximum value.
5.1.4 Solve problems involving a quadratic function’s minimum or maximum value.

Figure 5.2 An array of satellite dishes. (credit: Matthew Colvin de Valle, Flickr)

Curved antennas, such as the ones shown in Figure 5.2, are commonly used to focus microwaves and radio waves to
transmit television and telephone signals, as well as satellite and spacecraft communication. The cross-section of the antenna
is in the shape of a parabola, which can be described by a quadratic function.

In this section, we will investigate quadratic functions, which frequently model problems involving area and projectile
motion. Working with quadratic functions can be less complex than working with higher degree functions, so they provide
a good opportunity for a detailed study of function behavior.

Recognizing Characteristics of Parabolas
The graph of a quadratic function is a U-shaped curve called a parabola. One important feature of the graph is that it has
an extreme point, called the vertex. If the parabola opens up, the vertex represents the lowest point on the graph, or the
minimum value of the quadratic function. If the parabola opens down, the vertex represents the highest point on the graph,
or the maximum value. In either case, the vertex is a turning point on the graph. The graph is also symmetric with a vertical
line drawn through the vertex, called the axis of symmetry. These features are illustrated in Figure 5.3.
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Figure 5.3

The y-intercept is the point at which the parabola crosses the y-axis. The x-intercepts are the points at which the parabola
crosses the x-axis. If they exist, the x-intercepts represent the zeros, or roots, of the quadratic function, the values of  x  at
which  y = 0.
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Example 5.1

Identifying the Characteristics of a Parabola

Determine the vertex, axis of symmetry, zeros, and  y- intercept of the parabola shown in Figure 5.4.

Figure 5.4

Solution
The vertex is the turning point of the graph. We can see that the vertex is at  (3, 1). Because this parabola opens
upward, the axis of symmetry is the vertical line that intersects the parabola at the vertex. So the axis of symmetry
is  x = 3. This parabola does not cross the  x- axis, so it has no zeros. It crosses the  y- axis at  (0, 7)  so this is the

y-intercept.

Understanding How the Graphs of Parabolas are Related to Their
Quadratic Functions
The general form of a quadratic function presents the function in the form

(5.1)f (x) = ax2 + bx + c

where  a, b,   and  c  are real numbers and  a ≠ 0.  If  a > 0,   the parabola opens upward. If  a < 0,   the parabola opens
downward. We can use the general form of a parabola to find the equation for the axis of symmetry.

The axis of symmetry is defined by  x = − b
2a.  If we use the quadratic formula,  x = −b ± b2 − 4ac

2a ,   to solve

 ax2 + bx + c = 0  for the  x- intercepts, or zeros, we find the value of  x  halfway between them is always  x = − b
2a,   the

equation for the axis of symmetry.
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Figure 5.5 represents the graph of the quadratic function written in general form as  y = x2 + 4x + 3.  In this form,

 a = 1, b = 4,   and  c = 3. Because  a > 0,   the parabola opens upward. The axis of symmetry is  x = − 4
2(1) = −2. 

This also makes sense because we can see from the graph that the vertical line  x = −2  divides the graph in half. The vertex
always occurs along the axis of symmetry. For a parabola that opens upward, the vertex occurs at the lowest point on the
graph, in this instance,  (−2, −1). The  x- intercepts, those points where the parabola crosses the  x- axis, occur at  (−3, 0) 
and  (−1, 0).

Figure 5.5

The standard form of a quadratic function presents the function in the form

(5.2)f (x) = a(x − h)2 + k

where  (h,  k)  is the vertex. Because the vertex appears in the standard form of the quadratic function, this form is also
known as the vertex form of a quadratic function.

As with the general form, if  a > 0,   the parabola opens upward and the vertex is a minimum. If  a < 0,   the parabola opens
downward, and the vertex is a maximum. Figure 5.6 represents the graph of the quadratic function written in standard
form as  y = −3(x + 2)2 + 4.  Since  x – h = x + 2  in this example,  h = –2.  In this form,  a = −3, h = −2,   and  k = 4. 
Because  a < 0,   the parabola opens downward. The vertex is at  (−2,  4).
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Figure 5.6

The standard form is useful for determining how the graph is transformed from the graph of  y = x2. Figure 5.7 is the

graph of this basic function.

Figure 5.7

If  k > 0,   the graph shifts upward, whereas if  k < 0,   the graph shifts downward. In Figure 5.6,  k > 0,   so the graph is
shifted 4 units upward. If  h > 0,   the graph shifts toward the right and if  h < 0,   the graph shifts to the left. In Figure
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5.6,  h < 0,   so the graph is shifted 2 units to the left. The magnitude of  a  indicates the stretch of the graph. If |a| > 1,
the point associated with a particular  x- value shifts farther from the x-axis, so the graph appears to become narrower, and
there is a vertical stretch. But if  |a| < 1,   the point associated with a particular  x- value shifts closer to the x-axis, so the
graph appears to become wider, but in fact there is a vertical compression. In Figure 5.6,  |a| > 1,   so the graph becomes
narrower.

The standard form and the general form are equivalent methods of describing the same function. We can see this by
expanding out the general form and setting it equal to the standard form.

a(x − h)2 + k = ax2 + bx + c
ax2 − 2ahx + (ah2 + k) = ax2 + bx + c

For the linear terms to be equal, the coefficients must be equal.

–2ah = b,  so h = − b
2a

This is the axis of symmetry we defined earlier. Setting the constant terms equal:

ah2 + k = c
k = c − ah2

= c − a − ⎛
⎝

b
2a

⎞
⎠

2

= c − b2

4a

In practice, though, it is usually easier to remember that k is the output value of the function when the input is  h,   so
  f (h) = k.

Forms of Quadratic Functions

A quadratic function is a polynomial function of degree two. The graph of a quadratic function is a parabola.

The general form of a quadratic function is   f (x) = ax2 + bx + c where  a, b,   and  c  are real numbers and  a ≠ 0.

The standard form of a quadratic function is   f (x) = a(x − h)2 + k where  a ≠ 0.

The vertex  (h, k)  is located at

h = – b
2a,  k = f (h) = f ⎛

⎝
−b
2a

⎞
⎠

Given a graph of a quadratic function, write the equation of the function in general form.

1. Identify the horizontal shift of the parabola; this value is  h.  Identify the vertical shift of the parabola; this
value is  k.

2. Substitute the values of the horizontal and vertical shift for  h  and  k.  in the function

  f (x) = a(x – h)2 + k.

3. Substitute the values of any point, other than the vertex, on the graph of the parabola for  x  and   f (x).

4. Solve for the stretch factor,  |a|.

5. Expand and simplify to write in general form.
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Example 5.2

Writing the Equation of a Quadratic Function from the Graph

Write an equation for the quadratic function  g  in Figure 5.8 as a transformation of   f (x) = x2,   and then expand

the formula, and simplify terms to write the equation in general form.

Figure 5.8

Solution

We can see the graph of g is the graph of   f (x) = x2   shifted to the left 2 and down 3, giving a formula in the form

 g(x) = a(x − (−2))2 − 3 = a(x + 2)2 – 3.

Substituting the coordinates of a point on the curve, such as  (0, −1),  we can solve for the stretch factor.

−1 = a(0 + 2)2 − 3
2 = 4a
a = 1

2

In standard form, the algebraic model for this graph is  (g)x = 1
2(x + 2)2 – 3.

To write this in general polynomial form, we can expand the formula and simplify terms.

g(x) = 1
2(x + 2)2 − 3

= 1
2(x + 2)(x + 2) − 3

= 1
2(x2 + 4x + 4) − 3

= 1
2x2 + 2x + 2 − 3

= 1
2x2 + 2x − 1
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5.1

Notice that the horizontal and vertical shifts of the basic graph of the quadratic function determine the location of
the vertex of the parabola; the vertex is unaffected by stretches and compressions.

Analysis
We can check our work using the table feature on a graphing utility. First enter  Y1 = 1

2(x + 2)2 − 3. Next, select

 TBLSET,  then use  TblStart = – 6  and  ΔTbl = 2,  and select  TABLE.  See Table 5.0.

x –6 –4 –2 0 2

y 5 –1 –3 –1 5

Table 5.0

The ordered pairs in the table correspond to points on the graph.

A coordinate grid has been superimposed over the quadratic path of a basketball in Figure 5.9. Find an
equation for the path of the ball. Does the shooter make the basket?

Figure 5.9 (credit: modification of work by Dan Meyer)

Given a quadratic function in general form, find the vertex of the parabola.

1. Identify  a,  b,  and  c.

2. Find  h,   the x-coordinate of the vertex, by substituting  a  and  b  into  h = – b
2a.

3. Find  k,   the y-coordinate of the vertex, by evaluating  k = f (h) = f ⎛
⎝−

b
2a

⎞
⎠.
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5.2

Example 5.3

Finding the Vertex of a Quadratic Function

Find the vertex of the quadratic function   f (x) = 2x2 – 6x + 7. Rewrite the quadratic in standard form (vertex

form).

Solution
The horizontal coordinate of the vertex will be at

h = − b
2a

= −6
2(2)

= 6
4

= 3
2

The vertical coordinate of the vertex will be at
k = f (h)

= f ⎛
⎝
3
2

⎞
⎠

= 2⎛
⎝
3
2

⎞
⎠
2

− 6⎛
⎝
3
2

⎞
⎠ + 7

= 5
2

Rewriting into standard form, the stretch factor will be the same as the  a  in the original quadratic. First, find
the horizontal coordinate of the vertex. Then find the vertical coordinate of the vertex. Substitute the values into
standard form, using the “a” from the general form.

f (x) = ax2 + bx + c

f (x) = 2x2 − 6x + 7

The standard form of a quadratic function prior to writing the function then becomes the following:

f (x) = 2⎛
⎝x – 3

2
⎞
⎠
2

+ 5
2

Analysis
One reason we may want to identify the vertex of the parabola is that this point will inform us where the maximum
or minimum value of the output occurs,  k, and where it occurs,  x.

Given the equation  g(x) = 13 + x2 − 6x, write the equation in general form and then in standard form.

Finding the Domain and Range of a Quadratic Function
Any number can be the input value of a quadratic function. Therefore, the domain of any quadratic function is all real
numbers. Because parabolas have a maximum or a minimum point, the range is restricted. Since the vertex of a parabola
will be either a maximum or a minimum, the range will consist of all y-values greater than or equal to the y-coordinate at
the turning point or less than or equal to the y-coordinate at the turning point, depending on whether the parabola opens up
or down.
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Domain and Range of a Quadratic Function

The domain of any quadratic function is all real numbers unless the context of the function presents some restrictions.

The range of a quadratic function written in general form   f (x) = ax2 + bx + c with a positive  a  value is

  f (x) ≥ f ⎛
⎝−

b
2a

⎞
⎠,   or  ⎡⎣ f ⎛

⎝−
b
2a

⎞
⎠, ∞⎞

⎠;   the range of a quadratic function written in general form with a negative  a 

value is   f (x) ≤ f ⎛
⎝−

b
2a

⎞
⎠,   or  ⎛⎝−∞, f ⎛

⎝−
b
2a

⎞
⎠
⎤
⎦.

The range of a quadratic function written in standard form   f (x) = a(x − h)2 + k with a positive  a  value is

  f (x) ≥ k;   the range of a quadratic function written in standard form with a negative  a  value is   f (x) ≤ k.

Given a quadratic function, find the domain and range.

1. Identify the domain of any quadratic function as all real numbers.

2. Determine whether  a  is positive or negative. If  a  is positive, the parabola has a minimum. If  a  is
negative, the parabola has a maximum.

3. Determine the maximum or minimum value of the parabola,  k.

4. If the parabola has a minimum, the range is given by   f (x) ≥ k,   or  ⎡⎣k, ∞).  If the parabola has a

maximum, the range is given by   f (x) ≤ k,   or  (−∞, k⎤
⎦.

Example 5.4

Finding the Domain and Range of a Quadratic Function

Find the domain and range of   f (x) = − 5x2 + 9x − 1.

Solution
As with any quadratic function, the domain is all real numbers.

Because  a  is negative, the parabola opens downward and has a maximum value. We need to determine the
maximum value. We can begin by finding the  x- value of the vertex.

h = − b
2a

= − 9
2(−5)

= 9
10

The maximum value is given by   f (h).

f ⎛
⎝

9
10

⎞
⎠ = 5⎛

⎝
9
10

⎞
⎠

2
+ p⎛

⎝
9
10

⎞
⎠ − 1

= 61
20

The range is   f (x) ≤ 61
20,   or  ⎛⎝−∞, 61

20
⎤
⎦.
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5.3
Find the domain and range of   f (x) = 2⎛

⎝x − 4
7

⎞
⎠
2

+ 8
11.

Determining the Maximum and Minimum Values of Quadratic
Functions
The output of the quadratic function at the vertex is the maximum or minimum value of the function, depending on the
orientation of the parabola. We can see the maximum and minimum values in Figure 5.10.

Figure 5.10

There are many real-world scenarios that involve finding the maximum or minimum value of a quadratic function, such as
applications involving area and revenue.

Example 5.5

Finding the Maximum Value of a Quadratic Function

A backyard farmer wants to enclose a rectangular space for a new garden within her fenced backyard. She has
purchased 80 feet of wire fencing to enclose three sides, and she will use a section of the backyard fence as the
fourth side.

a. Find a formula for the area enclosed by the fence if the sides of fencing perpendicular to the existing fence
have length  L.

b. What dimensions should she make her garden to maximize the enclosed area?

Solution
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Let’s use a diagram such as Figure 5.11 to record the given information. It is also helpful to introduce a
temporary variable,  W,   to represent the width of the garden and the length of the fence section parallel to the
backyard fence.

Figure 5.11

a. We know we have only 80 feet of fence available, and  L + W + L = 80,   or more simply,
 2L + W = 80. This allows us to represent the width,  W,   in terms of  L.

W = 80 − 2L
Now we are ready to write an equation for the area the fence encloses. We know the area of a rectangle is
length multiplied by width, so

A = LW = L(80 − 2L)
A(L) = 80L − 2L2

This formula represents the area of the fence in terms of the variable length  L. The function, written in
general form, is

A(L) = −2L2 + 80L.
b. The quadratic has a negative leading coefficient, so the graph will open downward, and the vertex will

be the maximum value for the area. In finding the vertex, we must be careful because the equation is
not written in standard polynomial form with decreasing powers. This is why we rewrote the function in
general form above. Since  a  is the coefficient of the squared term,  a = −2, b = 80,   and  c = 0.

To find the vertex:

h = − b
2a k = A(20)

= − 80
2(−2) and = 80(20) − 2(20)2

= 20 = 800

The maximum value of the function is an area of 800 square feet, which occurs when  L = 20  feet. When the
shorter sides are 20 feet, there is 40 feet of fencing left for the longer side. To maximize the area, she should
enclose the garden so the two shorter sides have length 20 feet and the longer side parallel to the existing fence
has length 40 feet.

Analysis
This problem also could be solved by graphing the quadratic function. We can see where the maximum area
occurs on a graph of the quadratic function in Figure 5.12.
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Figure 5.12

Given an application involving revenue, use a quadratic equation to find the maximum.

1. Write a quadratic equation for a revenue function.

2. Find the vertex of the quadratic equation.

3. Determine the y-value of the vertex.

Example 5.6

Finding Maximum Revenue

The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for
the item will usually decrease. For example, a local newspaper currently has 84,000 subscribers at a quarterly
charge of $30. Market research has suggested that if the owners raise the price to $32, they would lose 5,000
subscribers. Assuming that subscriptions are linearly related to the price, what price should the newspaper charge
for a quarterly subscription to maximize their revenue?

Solution
Revenue is the amount of money a company brings in. In this case, the revenue can be found by multiplying the
price per subscription times the number of subscribers, or quantity. We can introduce variables,  p  for price per

subscription and  Q  for quantity, giving us the equation  Revenue = pQ.

Because the number of subscribers changes with the price, we need to find a relationship between the variables.
We know that currently  p = 30  and  Q = 84,000. We also know that if the price rises to $32, the newspaper

would lose 5,000 subscribers, giving a second pair of values,  p = 32  and  Q = 79,000.  From this we can find a

linear equation relating the two quantities. The slope will be
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m = 79,000 − 84,000
32 − 30

= −5,000
2

= −2,500

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price. We can then solve for the
y-intercept.

Q = −2500p + b Substitute in the pointQ = 84,000 and p = 30
84,000 = −2500(30) + b Solve forb

b = 159,000

This gives us the linear equation  Q = −2,500p + 159,000  relating cost and subscribers. We now return to our

revenue equation.

Revenue = pQ
Revenue = p(−2,500p + 159,000)
Revenue = −2,500p2 + 159,000p

We now have a quadratic function for revenue as a function of the subscription charge. To find the price that will
maximize revenue for the newspaper, we can find the vertex.

h = − 159,000
2(−2,500)

= 31.8

The model tells us that the maximum revenue will occur if the newspaper charges $31.80 for a subscription. To
find what the maximum revenue is, we evaluate the revenue function.

maximum revenue = −2,500(31.8)2 + 159,000(31.8)
= 2,528,100

Analysis
This could also be solved by graphing the quadratic as in Figure 5.13. We can see the maximum revenue on a
graph of the quadratic function.

Figure 5.13

Finding the x- and y-Intercepts of a Quadratic Function
Much as we did in the application problems above, we also need to find intercepts of quadratic equations for graphing
parabolas. Recall that we find the  y- intercept of a quadratic by evaluating the function at an input of zero, and we find
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the  x- intercepts at locations where the output is zero. Notice in Figure 5.14 that the number of  x- intercepts can vary
depending upon the location of the graph.

Figure 5.14 Number of x-intercepts of a parabola

Given a quadratic function   f(x),   find the  y- and x-intercepts.

1. Evaluate   f (0)  to find the y-intercept.

2. Solve the quadratic equation   f (x) = 0  to find the x-intercepts.

Example 5.7

Finding the y- and x-Intercepts of a Parabola

Find the y- and x-intercepts of the quadratic   f (x) = 3x2 + 5x − 2.

Solution
We find the y-intercept by evaluating   f (0).

f (0) = 3(0)2 + 5(0) − 2
= −2

So the y-intercept is at  (0, −2).

For the x-intercepts, we find all solutions of   f (x) = 0.

0 = 3x2 + 5x − 2

In this case, the quadratic can be factored easily, providing the simplest method for solution.

0 = (3x − 1)(x + 2)

h = − b
2a k = f (−1)

= − 4
2(2) = 2(−1)2 + 4(−1) − 4

= −1 = −6

So the x-intercepts are at  ⎛⎝1
3, 0⎞

⎠  and  (−2, 0).

Analysis
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By graphing the function, we can confirm that the graph crosses the y-axis at  (0, −2). We can also confirm that

the graph crosses the x-axis at  ⎛⎝1
3, 0⎞

⎠  and  (−2, 0). See Figure 5.15

Figure 5.15

Rewriting Quadratics in Standard Form
In Example 5.7, the quadratic was easily solved by factoring. However, there are many quadratics that cannot be factored.
We can solve these quadratics by first rewriting them in standard form.

Given a quadratic function, find the  x- intercepts by rewriting in standard form.

1. Substitute  a  and  b  into  h = − b
2a.

2. Substitute  x = h  into the general form of the quadratic function to find  k.

3. Rewrite the quadratic in standard form using  h  and  k.

4. Solve for when the output of the function will be zero to find the  x- intercepts.

Example 5.8

Finding the x-Intercepts of a Parabola

Find the  x- intercepts of the quadratic function   f (x) = 2x2 + 4x − 4.

Solution
We begin by solving for when the output will be zero.

0 = 2x2 + 4x − 4
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Because the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the
quadratic in standard form.

f (x) = a(x − h)2 + k

We know that  a = 2. Then we solve for  h  and  k.

h = − b
2a k = f (−1)

= − 4
2(2) = 2(−1)2 + 4(−1) − 4

= −1 = −6

So now we can rewrite in standard form.

f (x) = 2(x + 1)2 − 6

We can now solve for when the output will be zero.

0 = 2(x + 1)2 − 6
6 = 2(x + 1)2

3 = (x + 1)2

x + 1 = ± 3
x = − 1 ± 3

The graph has x-intercepts at  (−1 − 3, 0)  and  (−1 + 3, 0).

We can check our work by graphing the given function on a graphing utility and observing the  x- intercepts. See
Figure 5.16.

Figure 5.16

Analysis
We could have achieved the same results using the quadratic formula. Identify  a = 2, b = 4  and  c = −4.
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5.4

x = −b ± b2 − 4ac
2a

= −4 ± 42 − 4(2)(−4)
2(2)

= −4 ± 48
4

= −4 ± 3(16)
4

= −1 ± 3

So the x-intercepts occur at  ⎛⎝−1 − 3, 0⎞
⎠  and  ⎛⎝−1 + 3, 0⎞

⎠.

In a Try It, we found the standard and general form for the function  g(x) = 13 + x2 − 6x. Now find the y-

and x-intercepts (if any).

Example 5.9

Applying the Vertex and x-Intercepts of a Parabola

A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball’s height
above ground can be modeled by the equation  H(t) = − 16t2 + 80t + 40.

a. When does the ball reach the maximum height?

b. What is the maximum height of the ball?

c. When does the ball hit the ground?

Solution
a. The ball reaches the maximum height at the vertex of the parabola.

h = − 80
2(−16)

= 80
32

= 5
2

= 2.5
The ball reaches a maximum height after 2.5 seconds.

b. To find the maximum height, find the  y- coordinate of the vertex of the parabola.

k = H⎛
⎝−

b
2a

⎞
⎠

= H(2.5)
= −16(2.5)2 + 80(2.5) + 40
= 140

The ball reaches a maximum height of 140 feet.

c. To find when the ball hits the ground, we need to determine when the height is zero,  H(t) = 0.
We use the quadratic formula.
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5.5

t = −80 ± 802 − 4(−16)(40)
2(−16)

= −80 ± 8960
−32

Because the square root does not simplify nicely, we can use a calculator to approximate the values of the
solutions.

t = −80 − 8960
−32 ≈ 5.458 or t = −80 + 8960

−32 ≈ − 0.458

The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the
ground after about 5.458 seconds. See Figure 5.17.

Figure 5.17

Note that the graph does not represent the physical path of the ball upward and downward. Keep the
quantities on each axis in mind while interpreting the graph.

A rock is thrown upward from the top of a 112-foot high cliff overlooking the ocean at a speed of 96 feet
per second. The rock’s height above ocean can be modeled by the equation  H(t) = −16t2 + 96t + 112.

a. When does the rock reach the maximum height?

b. What is the maximum height of the rock?

c. When does the rock hit the ocean?

Access these online resources for additional instruction and practice with quadratic equations.

• Graphing Quadratic Functions in General Form (http://openstaxcollege.org/l/
graphquadgen)

• Graphing Quadratic Functions in Standard Form (http://openstaxcollege.org/l/
graphquadstan)

• Quadratic Function Review (http://openstaxcollege.org/l/quadfuncrev)

• Characteristics of a Quadratic Function (http://openstaxcollege.org/l/characterquad)
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5.1 EXERCISES
Verbal

Explain the advantage of writing a quadratic function in
standard form.

How can the vertex of a parabola be used in solving real-
world problems?

Explain why the condition of  a ≠ 0  is imposed in the
definition of the quadratic function.

What is another name for the standard form of a
quadratic function?

What two algebraic methods can be used to find the
horizontal intercepts of a quadratic function?

Algebraic
For the following exercises, rewrite the quadratic functions
in standard form and give the vertex.

f (x) = x2 − 12x + 32

g(x) = x2 + 2x − 3

f (x) = x2 − x

f (x) = x2 + 5x − 2

h(x) = 2x2 + 8x − 10

k(x) = 3x2 − 6x − 9

f (x) = 2x2 − 6x

f (x) = 3x2 − 5x − 1

For the following exercises, determine whether there is a
minimum or maximum value to each quadratic function.
Find the value and the axis of symmetry.

y(x) = 2x2 + 10x + 12

f (x) = 2x2 − 10x + 4

f (x) = − x2 + 4x + 3

f (x) = 4x2 + x − 1

h(t) = −4t2 + 6t − 1

f (x) = 1
2x2 + 3x + 1

f (x) = − 1
3x2 − 2x + 3

For the following exercises, determine the domain and
range of the quadratic function.

f (x) = (x − 3)2 + 2

f (x) = −2(x + 3)2 − 6

f (x) = x2 + 6x + 4

f (x) = 2x2 − 4x + 2

k(x) = 3x2 − 6x − 9

For the following exercises, use the vertex  (h, k)  and a
point on the graph  (x, y)  to find the general form of the

equation of the quadratic function.

(h, k) = (2, 0), (x, y) = (4, 4)

(h, k) = (−2, −1), (x, y) = (−4, 3)

(h, k) = (0, 1), (x, y) = (2, 5)

(h, k) = (2, 3), (x, y) = (5, 12)

(h, k) = ( − 5, 3), (x, y) = (2, 9)

(h, k) = (3, 2), (x, y) = (10, 1)

(h, k) = (0, 1), (x, y) = (1, 0)

(h, k) = (1, 0), (x, y) = (0, 1)

Graphical
For the following exercises, sketch a graph of the quadratic
function and give the vertex, axis of symmetry, and
intercepts.

f (x) = x2 − 2x

f (x) = x2 − 6x − 1

f (x) = x2 − 5x − 6

f (x) = x2 − 7x + 3
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38.

39.

40.

41.

42.

43.

44.

45.

46.

f (x) = −2x2 + 5x − 8

f (x) = 4x2 − 12x − 3

For the following exercises, write the equation for the
graphed quadratic function.

Numeric
For the following exercises, use the table of values that
represent points on the graph of a quadratic function. By
determining the vertex and axis of symmetry, find the
general form of the equation of the quadratic function.
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47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

x –2 –1 0 1 2

y 5 2 1 2 5

x –2 –1 0 1 2

y 1 0 1 4 9

x –2 –1 0 1 2

y –2 1 2 1 –2

x –2 –1 0 1 2

y –8 –3 0 1 0

x –2 –1 0 1 2

y 8 2 0 2 8

Technology
For the following exercises, use a calculator to find the
answer.

Graph on the same set of axes the functions
  f (x) = x2, f (x) = 2x2,  and f (x) = 1

3x2.

What appears to be the effect of changing the coefficient?

Graph on the same set of axes
  f (x) = x2, f (x) = x2 + 2  and

  f (x) = x2, f (x) = x2 + 5  and   f (x) = x2 − 3.  What

appears to be the effect of adding a constant?

Graph on the same set of axes
  f (x) = x2, f (x) = (x − 2)2, f (x − 3)2,  and f (x) = (x + 4)2.

What appears to be the effect of adding or subtracting those
numbers?

The path of an object projected at a 45 degree angle
with initial velocity of 80 feet per second is given by the
function  h(x) = −32

(80)2x2 + x where  x  is the horizontal

distance traveled and  h(x)  is the height in feet. Use the
TRACE feature of your calculator to determine the height
of the object when it has traveled 100 feet away
horizontally.

A suspension bridge can be modeled by the quadratic
function  h(x) = .0001x2  with  −2000 ≤ x ≤ 2000 where
 |x|  is the number of feet from the center and  h(x)  is height
in feet. Use the TRACE feature of your calculator to
estimate how far from the center does the bridge have a
height of 100 feet.

Extensions
For the following exercises, use the vertex of the graph of
the quadratic function and the direction the graph opens to
find the domain and range of the function.

Vertex  (1, −2),   opens up.

Vertex  (−1, 2)  opens down.

Vertex  (−5, 11),   opens down.

Vertex  (−100, 100),   opens up.

For the following exercises, write the equation of the
quadratic function that contains the given point and has the
same shape as the given function.

Contains  (1, 1)  and has shape of   f (x) = 2x2. Vertex

is on the  y- axis.

Contains  (−1, 4)  and has the shape of   f (x) = 2x2. 
Vertex is on the  y- axis.

Contains  (2, 3)  and has the shape of   f (x) = 3x2. 
Vertex is on the  y- axis.

Contains  (1, −3)  and has the shape of   f (x) = − x2. 
Vertex is on the  y- axis.

Contains  (4, 3)  and has the shape of   f (x) = 5x2. 
Vertex is on the  y- axis.

Chapter 5 Polynomial and Rational Functions 497



66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Contains  (1, −6)  has the shape of   f (x) = 3x2. Vertex has

x-coordinate of  −1.

Real-World Applications

Find the dimensions of the rectangular corral
producing the greatest enclosed area given 200 feet of
fencing.

Find the dimensions of the rectangular corral split into
2 pens of the same size producing the greatest possible
enclosed area given 300 feet of fencing.

Find the dimensions of the rectangular corral
producing the greatest enclosed area split into 3 pens of the
same size given 500 feet of fencing.

Among all of the pairs of numbers whose sum is 6, find
the pair with the largest product. What is the product?

Among all of the pairs of numbers whose difference is
12, find the pair with the smallest product. What is the
product?

Suppose that the price per unit in dollars of a cell phone
production is modeled by  p = $45 − 0.0125x,  where  x
is in thousands of phones produced, and the revenue
represented by thousands of dollars is  R = x ⋅ p.  Find the

production level that will maximize revenue.

A rocket is launched in the air. Its height, in meters
above sea level, as a function of time, in seconds, is given
by  h(t) = −4.9t2 + 229t + 234.  Find the maximum
height the rocket attains.

A ball is thrown in the air from the top of a building. Its
height, in meters above ground, as a function of time, in
seconds, is given by  h(t) = − 4.9t2 + 24t + 8. How long
does it take to reach maximum height?

A soccer stadium holds 62,000 spectators. With a ticket
price of $11, the average attendance has been 26,000. When
the price dropped to $9, the average attendance rose to
31,000. Assuming that attendance is linearly related to
ticket price, what ticket price would maximize revenue?

A farmer finds that if she plants 75 trees per acre, each
tree will yield 20 bushels of fruit. She estimates that for
each additional tree planted per acre, the yield of each tree
will decrease by 3 bushels. How many trees should she
plant per acre to maximize her harvest?
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5.2 | Power Functions and Polynomial Functions

Learning Objectives

In this section, you will:

5.2.1 Identify power functions.
5.2.2 Identify end behavior of power functions.
5.2.3 Identify polynomial functions.
5.2.4 Identify the degree and leading coefficient of polynomial functions.

Figure 5.18 (credit: Jason Bay, Flickr)

Suppose a certain species of bird thrives on a small island. Its population over the last few years is shown in Table 5.1.

Year 2009 2010 2011 2012 2013

Bird Population 800 897 992 1, 083 1, 169

Table 5.1

The population can be estimated using the function  P(t) = − 0.3t3 + 97t + 800,  where  P(t)  represents the bird
population on the island  t  years after 2009. We can use this model to estimate the maximum bird population and when it
will occur. We can also use this model to predict when the bird population will disappear from the island. In this section, we
will examine functions that we can use to estimate and predict these types of changes.

Identifying Power Functions
Before we can understand the bird problem, it will be helpful to understand a different type of function. A power function is
a function with a single term that is the product of a real number, a coefficient, and a variable raised to a fixed real number.

As an example, consider functions for area or volume. The function for the area of a circle with radius  r  is

A(r) = πr2

and the function for the volume of a sphere with radius  r  is

V(r) = 4
3πr3
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Both of these are examples of power functions because they consist of a coefficient,  π  or  43π,  multiplied by a variable  r
raised to a power.

Power Function

A power function is a function that can be represented in the form

f (x) = kx p

where  k  and  p  are real numbers, and  k  is known as the coefficient.

Is   f(x) = 2x   a power function?

No. A power function contains a variable base raised to a fixed power. This function has a constant base raised to
a variable power. This is called an exponential function, not a power function.

Example 5.10

Identifying Power Functions

Which of the following functions are power functions?

f (x) = 1 Constant function
f (x) = x Identify function

f (x) = x2 Quadratic function

f (x) = x3 Cubic function

f (x) = 1
x Reciprocal function

f (x) = 1
x2 Reciprocal squared function

f (x) = x Square root function

f (x) = x3 Cube root function

Solution
All of the listed functions are power functions.

The constant and identity functions are power functions because they can be written as   f (x) = x0   and

  f (x) = x1   respectively.

The quadratic and cubic functions are power functions with whole number powers   f (x) = x2   and   f (x) = x3.

The reciprocal and reciprocal squared functions are power functions with negative whole number powers because
they can be written as   f (x) = x−1   and   f (x) = x−2.

The square and cube root functions are power functions with fractional powers because they can be written as

  f (x) = x
1
2   or   f (x) = x

1
3.
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5.6 Which functions are power functions?

f (x) = 2x ⋅ 4x3

g(x) = −x5 + 5x3

h(x) = 2x5 − 1
3x2 + 4

Identifying End Behavior of Power Functions
Figure 5.19 shows the graphs of   f (x) = x2,  g(x) = x4   and  h(x) = x6,  which are all power functions with even, whole-

number powers. Notice that these graphs have similar shapes, very much like that of the quadratic function in the toolkit.
However, as the power increases, the graphs flatten somewhat near the origin and become steeper away from the origin.

Figure 5.19 Even-power functions

To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol  ∞  for positive
infinity and  −∞  for negative infinity. When we say that “ x  approaches infinity,” which can be symbolically written as
 x → ∞,  we are describing a behavior; we are saying that  x  is increasing without bound.

With the positive even-power function, as the input increases or decreases without bound, the output values become very
large, positive numbers. Equivalently, we could describe this behavior by saying that as  x  approaches positive or negative
infinity, the   f (x)  values increase without bound. In symbolic form, we could write

as x → ± ∞,  f (x) → ∞

Figure 5.20 shows the graphs of   f (x) = x3,  g(x) = x5, and  h(x) = x7, which are all power functions with odd, whole-

number powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the power increases, the
graphs flatten near the origin and become steeper away from the origin.
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Figure 5.20 Odd-power functions

These examples illustrate that functions of the form   f (x) = xn   reveal symmetry of one kind or another. First, in Figure

5.19 we see that even functions of the form   f (x) = xn , n  even, are symmetric about the  y- axis. In Figure 5.20 we see

that odd functions of the form   f (x) = xn , n  odd, are symmetric about the origin.

For these odd power functions, as  x  approaches negative infinity,   f (x)  decreases without bound. As  x  approaches

positive infinity,   f (x)  increases without bound. In symbolic form we write

as  x → − ∞,  f (x) → − ∞
as  x → ∞,  f (x) → ∞

The behavior of the graph of a function as the input values get very small (  x → −∞  ) and get very large (  x → ∞  ) is
referred to as the end behavior of the function. We can use words or symbols to describe end behavior.

Figure 5.21 shows the end behavior of power functions in the form   f (x) = kxn  where  n  is a non-negative integer

depending on the power and the constant.
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Figure 5.21

Given a power function   f(x) = kxn  where  n  is a non-negative integer, identify the end behavior.

1. Determine whether the power is even or odd.

2. Determine whether the constant is positive or negative.

3. Use Figure 5.21 to identify the end behavior.

Example 5.11

Identifying the End Behavior of a Power Function

Describe the end behavior of the graph of   f (x) = x8.

Solution
The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As  x  approaches
infinity, the output (value of   f (x)  ) increases without bound. We write as  x → ∞, f (x) → ∞. As  x  approaches

negative infinity, the output increases without bound. In symbolic form, as x → −∞,  f (x) → ∞. We can

graphically represent the function as shown in Figure 5.22.
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Figure 5.22

Example 5.12

Identifying the End Behavior of a Power Function.

Describe the end behavior of the graph of   f (x) = − x9.

Solution
The exponent of the power function is 9 (an odd number). Because the coefficient is  –1  (negative), the graph

is the reflection about the  x- axis of the graph of   f (x) = x9. Figure 5.23 shows that as  x  approaches infinity,

the output decreases without bound. As  x  approaches negative infinity, the output increases without bound. In
symbolic form, we would write

as  x → −∞,  f (x) → ∞
as  x → ∞,  f (x) → −∞
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Figure 5.23

Analysis
We can check our work by using the table feature on a graphing utility.

x f(x)

–10 1,000,000,000

–5 1,953,125

0 0

5 –1,953,125

10 –1,000,000,000

Table 5.1

We can see from Table 5.1 that, when we substitute very small values for  x,   the output is very large, and when
we substitute very large values for  x,   the output is very small (meaning that it is a very large negative value).
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5.7 Describe in words and symbols the end behavior of   f (x) = − 5x4.

Identifying Polynomial Functions
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular shape. The slick is currently 24 miles
in radius, but that radius is increasing by 8 miles each week. We want to write a formula for the area covered by the oil
slick by combining two functions. The radius  r  of the spill depends on the number of weeks  w  that have passed. This
relationship is linear.

r(w) = 24 + 8w

We can combine this with the formula for the area  A  of a circle.

A(r) = πr2

Composing these functions gives a formula for the area in terms of weeks.

A(w) = A(r(w))
= A(24 + 8w)
= π(24 + 8w)2

Multiplying gives the formula.

A(w) = 576π + 384πw + 64πw2

This formula is an example of a polynomial function. A polynomial function consists of either zero or the sum of a finite
number of non-zero terms, each of which is a product of a number, called the coefficient of the term, and a variable raised
to a non-negative integer power.

Polynomial Functions

Let  n  be a non-negative integer. A polynomial function is a function that can be written in the form

(5.3)f (x) = an xn + ...a1 x + a2 x2 + a1 x + a0

This is called the general form of a polynomial function. Each  ai   is a coefficient and can be any real number other

than zero. Each expression  ai x i   is a term of a polynomial function.

Example 5.13

Identifying Polynomial Functions

Which of the following are polynomial functions?

f (x) = 2x3 ⋅ 3x + 4

g(x) = −x(x2 − 4)
h(x) = 5 x + 2

Solution
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The first two functions are examples of polynomial functions because they can be written in the form
  f (x) = an xn + ... + a2 x2 + a1 x + a0,   where the powers are non-negative integers and the coefficients are

real numbers.

• f (x)  can be written as   f (x) = 6x4 + 4.

• g(x)  can be written as  g(x) = − x3 + 4x.

• h(x)  cannot be written in this form and is therefore not a polynomial function.

Identifying the Degree and Leading Coefficient of a Polynomial
Function
Because of the form of a polynomial function, we can see an infinite variety in the number of terms and the power of the
variable. Although the order of the terms in the polynomial function is not important for performing operations, we typically
arrange the terms in descending order of power, or in general form. The degree of the polynomial is the highest power of
the variable that occurs in the polynomial; it is the power of the first variable if the function is in general form. The leading
term is the term containing the highest power of the variable, or the term with the highest degree. The leading coefficient
is the coefficient of the leading term.

Terminology of Polynomial Functions

We often rearrange polynomials so that the powers are descending.

When a polynomial is written in this way, we say that it is in general form.

Given a polynomial function, identify the degree and leading coefficient.

1. Find the highest power of  x  to determine the degree function.

2. Identify the term containing the highest power of  x  to find the leading term.

3. Identify the coefficient of the leading term.

Example 5.14

Identifying the Degree and Leading Coefficient of a Polynomial Function

Identify the degree, leading term, and leading coefficient of the following polynomial functions.

f (x) = 3 + 2x2 − 4x3

g(t) = 5t2 − 2t3 + 7t

h(p) = 6p − p3 − 2
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5.8

Solution
For the function   f (x),   the highest power of  x  is 3, so the degree is 3. The leading term is the term containing

that degree,  −4x3. The leading coefficient is the coefficient of that term,  −4.

For the function  g(t),   the highest power of  t  is  5,   so the degree is  5. The leading term is the term containing

that degree,  5t5. The leading coefficient is the coefficient of that term,  5.

For the function  h(p),   the highest power of  p  is  3,   so the degree is  3. The leading term is the term containing

that degree,  −p3. The leading coefficient is the coefficient of that term,  −1.

Identify the degree, leading term, and leading coefficient of the polynomial   f (x) = 4x2 − x6 + 2x − 6.

Identifying End Behavior of Polynomial Functions
Knowing the degree of a polynomial function is useful in helping us predict its end behavior. To determine its end behavior,
look at the leading term of the polynomial function. Because the power of the leading term is the highest, that term will
grow significantly faster than the other terms as  x  gets very large or very small, so its behavior will dominate the graph.
For any polynomial, the end behavior of the polynomial will match the end behavior of the power function consisting of the
leading term. See Table 5.2.
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Polynomial Function Leading
Term Graph of Polynomial Function

f (x) = 5x4 + 2x3 − x − 4

5x4

f (x) = − 2x6 − x5 + 3x4 + x3

−2x6

Table 5.2
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Polynomial Function Leading
Term Graph of Polynomial Function

f (x) = 3x5 − 4x4 + 2x2 + 1

3x5

f (x) = − 6x3 + 7x2 + 3x + 1

−6x3

Table 5.2

Example 5.15

Identifying End Behavior and Degree of a Polynomial Function
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Describe the end behavior and determine a possible degree of the polynomial function in Figure 5.24.

Figure 5.24

Solution
As the input values  x  get very large, the output values   f (x)  increase without bound. As the input values  x  get

very small, the output values   f (x)  decrease without bound. We can describe the end behavior symbolically by

writing
as  x → −∞,  f (x) → −∞  
as  x → ∞,  f (x) → ∞

In words, we could say that as  x  values approach infinity, the function values approach infinity, and as  x  values
approach negative infinity, the function values approach negative infinity.

We can tell this graph has the shape of an odd degree power function that has not been reflected, so the degree of
the polynomial creating this graph must be odd and the leading coefficient must be positive.

Chapter 5 Polynomial and Rational Functions 511



5.9

5.10

Describe the end behavior, and determine a possible degree of the polynomial function in Figure 5.25.

Figure 5.25

Example 5.16

Identifying End Behavior and Degree of a Polynomial Function

Given the function   f (x) = − 3x2(x − 1)(x + 4),   express the function as a polynomial in general form, and

determine the leading term, degree, and end behavior of the function.

Solution
Obtain the general form by expanding the given expression for   f (x).

f (x) = −3x2(x − 1)(x + 4)

= −3x2 ⎛
⎝x2 + 3x − 4⎞

⎠

= −3x4 − 9x3 + 12x2

The general form is   f (x) = −3x4 − 9x3 + 12x2.  The leading term is  −3x4;   therefore, the degree of the

polynomial is 4. The degree is even (4) and the leading coefficient is negative (–3), so the end behavior is
as  x → − ∞,  f (x) → − ∞
as  x → ∞,  f (x) → − ∞

Given the function   f (x) = 0.2(x − 2)(x + 1)(x − 5),   express the function as a polynomial in general

form and determine the leading term, degree, and end behavior of the function.

Identifying Local Behavior of Polynomial Functions
In addition to the end behavior of polynomial functions, we are also interested in what happens in the “middle” of the
function. In particular, we are interested in locations where graph behavior changes. A turning point is a point at which the
function values change from increasing to decreasing or decreasing to increasing.
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We are also interested in the intercepts. As with all functions, the y-intercept is the point at which the graph intersects
the vertical axis. The point corresponds to the coordinate pair in which the input value is zero. Because a polynomial
is a function, only one output value corresponds to each input value so there can be only one y-intercept  ⎛⎝0, a0

⎞
⎠. The

x-intercepts occur at the input values that correspond to an output value of zero. It is possible to have more than one
x-intercept. See Figure 5.26.

Figure 5.26

Intercepts and Turning Points of Polynomial Functions

A turning point of a graph is a point at which the graph changes direction from increasing to decreasing or decreasing
to increasing. The y-intercept is the point at which the function has an input value of zero. The x-intercepts are the
points at which the output value is zero.

Given a polynomial function, determine the intercepts.

1. Determine the y-intercept by setting  x = 0  and finding the corresponding output value.

2. Determine the x-intercepts by solving for the input values that yield an output value of zero.

Example 5.17

Determining the Intercepts of a Polynomial Function

Given the polynomial function   f (x) = (x − 2)(x + 1)(x − 4),  written in factored form for your convenience,

determine the y- and x-intercepts.
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Solution
The y-intercept occurs when the input is zero so substitute 0 for  x.

f (0) = (0)4 − 4(0)2 − 45
= −45

The y-intercept is (0, 8).

The x-intercepts occur when the output is zero.

0 = (x − 2)(x + 1)(x − 4)
x − 2 = 0 or x + 1 = 0 or x − 4 = 0

x = 2 or x = −1 or x = 4

The x-intercepts are  (2, 0), ( – 1, 0),   and  (4, 0).

We can see these intercepts on the graph of the function shown in Figure 5.27.

Figure 5.27

Example 5.18

Determining the Intercepts of a Polynomial Function with Factoring

Given the polynomial function   f (x) = x4 − 4x2 − 45,   determine the y- and x-intercepts.
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5.11

Solution
The y-intercept occurs when the input is zero.

f (0) = (0)4 − 4(0)2 − 45
= −45

The y-intercept is  (0, −45).

The x-intercepts occur when the output is zero. To determine when the output is zero, we will need to factor the
polynomial.

f (x) = x4 − 4x2 − 45

= ⎛
⎝x2 − 9⎞

⎠
⎛
⎝x2 + 5⎞

⎠

= (x − 3)(x + 3)⎛
⎝x2 + 5⎞

⎠

0 = (x − 3)(x + 3)⎛
⎝x2 + 5⎞

⎠

x − 3 = 0 or x + 3 = 0 or x2 + 5 = 0
x = 3 or x = −3 or (no real solution)

The x-intercepts are  (3, 0)  and  (–3, 0).

We can see these intercepts on the graph of the function shown in Figure 5.28. We can see that the function is
even because   f (x) = f (−x).

Figure 5.28

Given the polynomial function   f (x) = 2x3 − 6x2 − 20x,   determine the y- and x-intercepts.

Comparing Smooth and Continuous Graphs
The degree of a polynomial function helps us to determine the number of x-intercepts and the number of turning points. A
polynomial function of  nth  degree is the product of  n  factors, so it will have at most  n  roots or zeros, or x-intercepts. The
graph of the polynomial function of degree  n must have at most  n – 1  turning points. This means the graph has at most
one fewer turning point than the degree of the polynomial or one fewer than the number of factors.
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5.12

A continuous function has no breaks in its graph: the graph can be drawn without lifting the pen from the paper. A smooth
curve is a graph that has no sharp corners. The turning points of a smooth graph must always occur at rounded curves. The
graphs of polynomial functions are both continuous and smooth.

Intercepts and Turning Points of Polynomials

A polynomial of degree  n will have, at most,  n  x-intercepts and  n − 1  turning points.

Example 5.19

Determining the Number of Intercepts and Turning Points of a Polynomial

Without graphing the function, determine the local behavior of the function by finding the maximum number of
x-intercepts and turning points for   f (x) = − 3x10 + 4x7 − x4 + 2x3.

Solution
The polynomial has a degree of  10,   so there are at most 10 x-intercepts and at most 9 turning points.

Without graphing the function, determine the maximum number of x-intercepts and turning points for
  f (x) = 108 − 13x9 − 8x4 + 14x12 + 2x3.

Example 5.20

Drawing Conclusions about a Polynomial Function from the Graph

What can we conclude about the polynomial represented by the graph shown in Figure 5.29 based on its
intercepts and turning points?

Figure 5.29

Solution
The end behavior of the graph tells us this is the graph of an even-degree polynomial. See Figure 5.30.
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5.13

Figure 5.30

The graph has 2 x-intercepts, suggesting a degree of 2 or greater, and 3 turning points, suggesting a degree of 4 or
greater. Based on this, it would be reasonable to conclude that the degree is even and at least 4.

What can we conclude about the polynomial represented by the graph shown in Figure 5.31 based on its
intercepts and turning points?

Figure 5.31

Example 5.21

Drawing Conclusions about a Polynomial Function from the Factors

Given the function   f (x) = − 4x(x + 3)(x − 4),   determine the local behavior.
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5.14

Solution
The y-intercept is found by evaluating   f (0).

f (0) = −4(0)(0 + 3)(0 − 4
= 0

The y-intercept is  (0, 0).

The x-intercepts are found by determining the zeros of the function.

0 = −4x(x + 3)(x − 4)
x = 0 or x + 3 = 0 or x − 4 = 0
x = 0 or x = −3 or x = 4

The x-intercepts are  (0, 0), (–3, 0),   and  (4, 0).

The degree is 3 so the graph has at most 2 turning points.

Given the function   f (x) = 0.2(x − 2)(x + 1)(x − 5),   determine the local behavior.

Access these online resources for additional instruction and practice with power and polinomial functions.

• Find Key Information about a Given Polynomial Function (http://openstaxcollege.org/l/
keyinfopoly)

• End Behavior of a Polynomial Function (http://openstaxcollege.org/l/endbehavior)

• Turning Points and x-intercepts of Polynomial Functions (http://openstaxcollege.org/l/
turningpoints)

• Least Possible Degree of a Polynomial Function (http://openstaxcollege.org/l/
leastposdegree)
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5.2 EXERCISES
Verbal

Explain the difference between the coefficient of a
power function and its degree.

If a polynomial function is in factored form, what
would be a good first step in order to determine the degree
of the function?

In general, explain the end behavior of a power
function with odd degree if the leading coefficient is
positive.

What is the relationship between the degree of a
polynomial function and the maximum number of turning
points in its graph?

What can we conclude if, in general, the graph of a
polynomial function exhibits the following end behavior?
As  x → − ∞,   f (x) → − ∞  and as

 x → ∞,   f (x) → − ∞. 

Algebraic
For the following exercises, identify the function as a
power function, a polynomial function, or neither.

f (x) = x5

f (x) = ⎛
⎝x2⎞

⎠
3

f (x) = x − x4

f (x) = x2

x2 − 1

f (x) = 2x(x + 2)(x − 1)2

f (x) = 3x + 1

For the following exercises, find the degree and leading
coefficient for the given polynomial.

−3x

7 − 2x2

−2x2 − 3x5 + x − 6  

x⎛
⎝4 − x2⎞

⎠(2x + 1)

x2 (2x − 3)2

For the following exercises, determine the end behavior of
the functions.

f (x) = x4

f (x) = x3

f (x) = − x4

f (x) = − x9

f (x) = − 2x4 − 3x2 + x − 1  

f (x) = 3x2 + x − 2

f (x) = x2 ⎛
⎝2x3 − x + 1⎞

⎠

f (x) = (2 − x)7

For the following exercises, find the intercepts of the
functions.

f (t) = 2(t − 1)(t + 2)(t − 3)

g(n) = −2(3n − 1)(2n + 1)

f (x) = x4 − 16

f (x) = x3 + 27

f (x) = x⎛
⎝x2 − 2x − 8⎞

⎠

f (x) = (x + 3)⎛
⎝4x2 − 1⎞

⎠

Graphical
For the following exercises, determine the least possible
degree of the polynomial function shown.
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109.
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113.

114.

For the following exercises, determine whether the graph of
the function provided is a graph of a polynomial function.
If so, determine the number of turning points and the least
possible degree for the function.
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125.

Numeric
For the following exercises, make a table to confirm the end
behavior of the function.

f (x) = − x3

f (x) = x4 − 5x2

f (x) = x2 (1 − x)2

f (x) = (x − 1)(x − 2)(3 − x)

f (x) = x5

10 − x4
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131.
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140.

141.

142.

143.

144.

145.

Technology
For the following exercises, graph the polynomial functions
using a calculator. Based on the graph, determine the
intercepts and the end behavior.

f (x) = x3(x − 2)

f (x) = x(x − 3)(x + 3)

f (x) = x(14 − 2x)(10 − 2x)

f (x) = x(14 − 2x)(10 − 2x)2

f (x) = x3 − 16x

f (x) = x3 − 27

f (x) = x4 − 81

f (x) = − x3 + x2 + 2x

f (x) = x3 − 2x2 − 15x

f (x) = x3 − 0.01x

Extensions
For the following exercises, use the information about the
graph of a polynomial function to determine the function.
Assume the leading coefficient is 1 or –1. There may be
more than one correct answer.

The  y- intercept is  (0, − 4). The  x- intercepts are

 ( − 2, 0),  (2, 0). Degree is 2.

End behavior:
 as x → − ∞,    f (x) → ∞,  as x → ∞,   f (x) → ∞.

The  y- intercept is  (0, 9). The  x- intercepts are

 ( − 3, 0),  (3, 0). Degree is 2.

End behavior:
 as x → − ∞,    f (x) → − ∞,  as x → ∞,   f (x) → − ∞.

The  y- intercept is  (0, 0). The  x- intercepts are

 (0, 0),  (2, 0). Degree is 3.

End behavior:
 as x → − ∞,    f (x) → − ∞,  as x → ∞,   f (x) → ∞.

The  y- intercept is  (0, 1). The  x- intercept is

 (1, 0). Degree is 3.

End behavior:
 as x → − ∞,    f (x) → ∞,  as x → ∞,   f (x) → − ∞.

The  y- intercept is  (0, 1). There is no  x- intercept.

Degree is 4.

End behavior:
 as x → − ∞,    f (x) → ∞,  as x → ∞,   f (x) → ∞.

Real-World Applications
For the following exercises, use the written statements to
construct a polynomial function that represents the required
information.

An oil slick is expanding as a circle. The radius of the
circle is increasing at the rate of 20 meters per day. Express
the area of the circle as a function of  d,   the number of
days elapsed.

A cube has an edge of 3 feet. The edge is increasing at
the rate of 2 feet per minute. Express the volume of the
cube as a function of  m,   the number of minutes elapsed.

A rectangle has a length of 10 inches and a width of 6
inches. If the length is increased by  x  inches and the width
increased by twice that amount, express the area of the
rectangle as a function of  x.

An open box is to be constructed by cutting out square
corners of  x- inch sides from a piece of cardboard 8 inches
by 8 inches and then folding up the sides. Express the
volume of the box as a function of  x.

A rectangle is twice as long as it is wide. Squares of
side 2 feet are cut out from each corner. Then the sides are
folded up to make an open box. Express the volume of the
box as a function of the width ( x ).
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5.3 | Graphs of Polynomial Functions

Learning Objectives

In this section, you will:

5.3.1 Recognize characteristics of graphs of polynomial functions.
5.3.2 Use factoring to find zeros of polynomial functions.
5.3.3 Identify zeros and their multiplicities.
5.3.4 Determine end behavior.
5.3.5 Understand the relationship between degree and turning points.
5.3.6 Graph polynomial functions.
5.3.7 Use the Intermediate Value Theorem.

The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in Table 5.3.

Year 2006 2007 2008 2009 2010 2011 2012 2013

Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

Table 5.3

The revenue can be modeled by the polynomial function

R(t) = − 0.037t4 + 1.414t3 − 19.777t2 + 118.696t − 205.332

where  R  represents the revenue in millions of dollars and  t  represents the year, with  t = 6  corresponding to 2006. Over
which intervals is the revenue for the company increasing? Over which intervals is the revenue for the company decreasing?
These questions, along with many others, can be answered by examining the graph of the polynomial function. We have
already explored the local behavior of quadratics, a special case of polynomials. In this section we will explore the local
behavior of polynomials in general.

Recognizing Characteristics of Graphs of Polynomial Functions
Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that these types of graphs
are called smooth curves. Polynomial functions also display graphs that have no breaks. Curves with no breaks are called
continuous. Figure 5.32 shows a graph that represents a polynomial function and a graph that represents a function that is
not a polynomial.
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Figure 5.32

Example 5.22

Recognizing Polynomial Functions

Which of the graphs in Figure 5.33 represents a polynomial function?
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Figure 5.33

Solution
The graphs of   f   and  h  are graphs of polynomial functions. They are smooth and continuous.

The graphs of  g  and  k  are graphs of functions that are not polynomials. The graph of function  g  has a sharp

corner. The graph of function  k  is not continuous.

Do all polynomial functions have as their domain all real numbers?

Yes. Any real number is a valid input for a polynomial function.

Using Factoring to Find Zeros of Polynomial Functions
Recall that if   f   is a polynomial function, the values of  x  for which   f (x) = 0  are called zeros of   f .  If the equation of the

polynomial function can be factored, we can set each factor equal to zero and solve for the zeros.

We can use this method to find  x- intercepts because at the  x- intercepts we find the input values when the output value
is zero. For general polynomials, this can be a challenging prospect. While quadratics can be solved using the relatively
simple quadratic formula, the corresponding formulas for cubic and fourth-degree polynomials are not simple enough to
remember, and formulas do not exist for general higher-degree polynomials. Consequently, we will limit ourselves to three
cases:
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1. The polynomial can be factored using known methods: greatest common factor and trinomial factoring.

2. The polynomial is given in factored form.

3. Technology is used to determine the intercepts.

Given a polynomial function   f ,   find the x-intercepts by factoring.

1. Set   f (x) = 0.

2. If the polynomial function is not given in factored form:

a. Factor out any common monomial factors.

b. Factor any factorable binomials or trinomials.

3. Set each factor equal to zero and solve to find the  x- intercepts.

Example 5.23

Finding the x-Intercepts of a Polynomial Function by Factoring

Find the x-intercepts of   f (x) = x6 − 3x4 + 2x2.

Solution
We can attempt to factor this polynomial to find solutions for   f (x) = 0.

x2 − 3x4 + 2x2 = 0 Factor out the greatest
common factor.

x2⎛
⎝x4 − 3x2 + 2⎞

⎠ = 0 Factor the trinomial.

x2⎛
⎝x2 − 1⎞

⎠
⎛
⎝x2 − 2⎞

⎠ = 0 Set each factor equal to zero.
⎛
⎝x2 − 1⎞

⎠ = 0 ⎛
⎝x2 − 2⎞

⎠ = 0

x2 = 0 or x2 = 1 or x2 = 2
x = 0 x = ±1 x = ± 2

This gives us five x-intercepts:  (0, 0), (1, 0), (−1, 0), ( 2, 0),   and  ( − 2, 0).  See Figure 5.34. We can see
that this is an even function because it is symmetric about the y-axis.

Figure 5.34

Example 5.24
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Finding the x-Intercepts of a Polynomial Function by Factoring

Find the x-intercepts of   f (x) = x3 − 5x2 − x + 5.

Solution
Find solutions for   f (x) = 0  by factoring.

x3 − 5x2 − x + 5 = 0 Factor by grouping.

x2(x − 5) − (x − 5) = 0 Factor out the common factor.
⎛
⎝x2 − 1⎞

⎠(x − 5) = 0 Factor the diffe ence of squares.
(x + 1)(x − 1)(x − 5) = 0 Set each factor equal to zero.
x + 1 = 0 or x − 1 = 0 or x − 5 = 0

x = −1 x = 1 x = 5

There are three x-intercepts:  (−1, 0), (1, 0),   and  (5, 0).  See Figure 5.35.

Figure 5.35

Example 5.25

Finding the y- and x-Intercepts of a Polynomial in Factored Form

Find the y- and x-intercepts of  g(x) = (x − 2)2(2x + 3).

Solution
The y-intercept can be found by evaluating  g(0).

g(0) = (0 − 2)2(2(0) + 3)
= 12
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So the y-intercept is  (0, 12).

The x-intercepts can be found by solving  g(x) = 0.

(x − 2)2(2x + 3) = 0

(x − 2)2 = 0 (2x + 3) = 0

x − 2 = 0 or x = −3
2

x = 2

So the x-intercepts are  (2, 0)  and  ⎛⎝−3
2, 0⎞

⎠.

Analysis
We can always check that our answers are reasonable by using a graphing calculator to graph the polynomial as
shown in Figure 5.36.

Figure 5.36

Example 5.26

Finding the x-Intercepts of a Polynomial Function Using a Graph
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5.15

Find the x-intercepts of  h(x) = x3 + 4x2 + x − 6.

Solution
This polynomial is not in factored form, has no common factors, and does not appear to be factorable using
techniques previously discussed. Fortunately, we can use technology to find the intercepts. Keep in mind that
some values make graphing difficult by hand. In these cases, we can take advantage of graphing utilities.

Looking at the graph of this function, as shown in Figure 5.37, it appears that there are x-intercepts at
 x = −3, −2,   and  1.

Figure 5.37

We can check whether these are correct by substituting these values for  x  and verifying that

h( − 3) = h( − 2) = h(1) = 0

Since  h(x) = x3 + 4x2 + x − 6,  we have:

h(−3) = (−3)3 + 4(−3)2 + (−3) − 6 = −27 + 36 − 3 − 6 = 0
h(−2) = (−2)3 + 4(−2)2 + (−2) − 6 = −8 + 16 − 2 − 6 = 0

h(1) = (1)3 + 4(1)2 + (1) − 6 = 1 + 4 + 1 − 6 = 0

Each x-intercept corresponds to a zero of the polynomial function and each zero yields a factor, so we can now
write the polynomial in factored form.

h(x) = x3 + 4x2 + x − 6
= (x + 3)(x + 2)(x − 1)

Find the y- and x-intercepts of the function   f (x) = x4 − 19x2 + 30x.
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Identifying Zeros and Their Multiplicities
Graphs behave differently at various x-intercepts. Sometimes, the graph will cross over the horizontal axis at an intercept.
Other times, the graph will touch the horizontal axis and "bounce" off.

Suppose, for example, we graph the function shown.

f (x) = (x + 3)(x − 2)2 (x + 1)3

Notice in Figure 5.38 that the behavior of the function at each of the x-intercepts is different.

Figure 5.38 Identifying the behavior of the graph at an x-
intercept by examining the multiplicity of the zero.

The x-intercept  x = −3  is the solution of equation  (x + 3) = 0. The graph passes directly through the x-intercept at
 x = −3. The factor is linear (has a degree of 1), so the behavior near the intercept is like that of a line—it passes directly
through the intercept. We call this a single zero because the zero corresponds to a single factor of the function.

The x-intercept  x = 2  is the repeated solution of equation  (x − 2)2 = 0. The graph touches the axis at the intercept and
changes direction. The factor is quadratic (degree 2), so the behavior near the intercept is like that of a quadratic—it bounces
off of the horizontal axis at the intercept.

(x − 2)2 = (x − 2)(x − 2)

The factor is repeated, that is, the factor  (x − 2)  appears twice. The number of times a given factor appears in the factored
form of the equation of a polynomial is called the multiplicity. The zero associated with this factor,  x = 2,   has multiplicity
2 because the factor  (x − 2)  occurs twice.

The x-intercept  x = − 1  is the repeated solution of factor  (x + 1)3 = 0. The graph passes through the axis at the intercept,
but flattens out a bit first. This factor is cubic (degree 3), so the behavior near the intercept is like that of a cubic—with the
same S-shape near the intercept as the toolkit function   f (x) = x3. We call this a triple zero, or a zero with multiplicity 3.

For zeros with even multiplicities, the graphs touch or are tangent to the x-axis. For zeros with odd multiplicities, the graphs
cross or intersect the x-axis. See Figure 5.39 for examples of graphs of polynomial functions with multiplicity 1, 2, and 3.
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Figure 5.39

For higher even powers, such as 4, 6, and 8, the graph will still touch and bounce off of the horizontal axis but, for each
increasing even power, the graph will appear flatter as it approaches and leaves the x-axis.

For higher odd powers, such as 5, 7, and 9, the graph will still cross through the horizontal axis, but for each increasing odd
power, the graph will appear flatter as it approaches and leaves the x-axis.

Graphical Behavior of Polynomials at x-Intercepts

If a polynomial contains a factor of the form  (x − h) p,   the behavior near the  x- intercept  h  is determined by the

power  p. We say that  x = h  is a zero of multiplicity  p.

The graph of a polynomial function will touch the x-axis at zeros with even multiplicities. The graph will cross the
x-axis at zeros with odd multiplicities.

The sum of the multiplicities is the degree of the polynomial function.

Given a graph of a polynomial function of degree  n,   identify the zeros and their multiplicities.

1. If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero.

2. If the graph touches the x-axis and bounces off of the axis, it is a zero with even multiplicity.

3. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity.

4. The sum of the multiplicities is  n.

Example 5.27

Identifying Zeros and Their Multiplicities

Use the graph of the function of degree 6 in Figure 5.40 to identify the zeros of the function and their possible
multiplicities.
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5.16

Figure 5.40

Solution
The polynomial function is of degree 6. The sum of the multiplicities must be 6.

Starting from the left, the first zero occurs at  x = −3. The graph touches the x-axis, so the multiplicity of the zero
must be even. The zero of  −3 most likely has multiplicity  2.

The next zero occurs at  x = −1. The graph looks almost linear at this point. This is a single zero of multiplicity
1.

The last zero occurs at  x = 4. The graph crosses the x-axis, so the multiplicity of the zero must be odd. We know
that the multiplicity is likely 3 and that the sum of the multiplicities is 6.

Use the graph of the function of degree 5 in Figure 5.41 to identify the zeros of the function and their
multiplicities.

Figure 5.41
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Determining End Behavior
As we have already learned, the behavior of a graph of a polynomial function of the form

f (x) = an xn + an − 1 xn − 1 + ... + a1 x + a0

will either ultimately rise or fall as  x  increases without bound and will either rise or fall as  x  decreases without bound.
This is because for very large inputs, say 100 or 1,000, the leading term dominates the size of the output. The same is true
for very small inputs, say –100 or –1,000.

Recall that we call this behavior the end behavior of a function. As we pointed out when discussing quadratic equations,
when the leading term of a polynomial function,  an xn,   is an even power function, as  x  increases or decreases without
bound,   f (x)  increases without bound. When the leading term is an odd power function, as  x  decreases without bound,

  f (x)  also decreases without bound; as  x  increases without bound,   f (x)  also increases without bound. If the leading term

is negative, it will change the direction of the end behavior. Figure 5.42 summarizes all four cases.

Figure 5.42

Understanding the Relationship between Degree and Turning Points
In addition to the end behavior, recall that we can analyze a polynomial function’s local behavior. It may have a turning
point where the graph changes from increasing to decreasing (rising to falling) or decreasing to increasing (falling to rising).
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Look at the graph of the polynomial function   f (x) = x4 − x3 − 4x2 + 4x  in Figure 5.43. The graph has three turning

points.

Figure 5.43

This function   f   is a 4th degree polynomial function and has 3 turning points. The maximum number of turning points of a

polynomial function is always one less than the degree of the function.

Interpreting Turning Points

A turning point is a point of the graph where the graph changes from increasing to decreasing (rising to falling) or
decreasing to increasing (falling to rising).

A polynomial of degree  n will have at most  n − 1  turning points.

Example 5.28

Finding the Maximum Number of Turning Points Using the Degree of a Polynomial
Function

Find the maximum number of turning points of each polynomial function.

a. f (x) = − x3 + 4x5 − 3x2 + 1

b. f (x) = − (x − 1)2 ⎛
⎝1 + 2x2⎞

⎠

Solution

a. First, rewrite the polynomial function in descending order:   f (x) = 4x5 − x3 − 3x2 + 1

Identify the degree of the polynomial function. This polynomial function is of degree 5.

The maximum number of turning points is  5 − 1 = 4.

b. First, identify the leading term of the polynomial function if the function were expanded.
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Then, identify the degree of the polynomial function. This polynomial function is of degree 4.

The maximum number of turning points is  4 − 1 = 3.

Graphing Polynomial Functions
We can use what we have learned about multiplicities, end behavior, and turning points to sketch graphs of polynomial
functions. Let us put this all together and look at the steps required to graph polynomial functions.

Given a polynomial function, sketch the graph.

1. Find the intercepts.

2. Check for symmetry. If the function is an even function, its graph is symmetrical about the  y- axis, that

is,   f (−x) = f (x).  If a function is an odd function, its graph is symmetrical about the origin, that is,

  f (−x) = − f (x).

3. Use the multiplicities of the zeros to determine the behavior of the polynomial at the  x- intercepts.

4. Determine the end behavior by examining the leading term.

5. Use the end behavior and the behavior at the intercepts to sketch a graph.

6. Ensure that the number of turning points does not exceed one less than the degree of the polynomial.

7. Optionally, use technology to check the graph.

Example 5.29

Sketching the Graph of a Polynomial Function

Sketch a graph of   f (x) = −2(x + 3)2(x − 5).

Solution
This graph has two x-intercepts. At  x = −3,   the factor is squared, indicating a multiplicity of 2. The graph
will bounce at this x-intercept. At  x = 5,   the function has a multiplicity of one, indicating the graph will cross
through the axis at this intercept.

The y-intercept is found by evaluating   f (0).

f (0) = −2(0 + 3)2(0 − 5)
= −2 ⋅ 9 ⋅ (−5)
= 90

The y-intercept is  (0, 90).

Additionally, we can see the leading term, if this polynomial were multiplied out, would be  − 2x3,   so the end
behavior is that of a vertically reflected cubic, with the outputs decreasing as the inputs approach infinity, and the
outputs increasing as the inputs approach negative infinity. See Figure 5.44.
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Figure 5.44

To sketch this, we consider that:

• As  x → − ∞  the function   f (x) → ∞,   so we know the graph starts in the second quadrant and is

decreasing toward the  x- axis.

• Since   f (−x) = −2(−x + 3)2 (−x – 5)  is not equal to   f (x),   the graph does not display symmetry.

• At  (−3, 0),   the graph bounces off of the x-axis, so the function must start increasing.
At  (0, 90),   the graph crosses the y-axis at the y-intercept. See Figure 5.45.

Figure 5.45

Somewhere after this point, the graph must turn back down or start decreasing toward the horizontal axis because
the graph passes through the next intercept at  (5, 0).  See Figure 5.46.
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5.17

Figure 5.46

As  x → ∞  the function   f (x) → −∞,   so we know the graph continues to decrease, and we can stop drawing

the graph in the fourth quadrant.

Using technology, we can create the graph for the polynomial function, shown in Figure 5.47, and verify that
the resulting graph looks like our sketch in Figure 5.46.

Figure 5.47 The complete graph of the polynomial function
  f (x) = − 2(x + 3)2(x − 5)

Sketch a graph of   f (x) = 1
4x(x − 1)4 (x + 3)3.

Using the Intermediate Value Theorem
In some situations, we may know two points on a graph but not the zeros. If those two points are on opposite sides of
the x-axis, we can confirm that there is a zero between them. Consider a polynomial function   f  whose graph is smooth

and continuous. The Intermediate Value Theorem states that for two numbers  a  and  b  in the domain of   f , if  a < b 
and f (a) ≠ f (b), then the function   f   takes on every value between   f (a)  and   f (b).  (While the theorem is intuitive, the
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proof is actually quite complicated and requires higher mathematics.) We can apply this theorem to a special case that is
useful in graphing polynomial functions. If a point on the graph of a continuous function   f   at  x = a  lies above the  x- axis

and another point at  x = b  lies below the  x- axis, there must exist a third point between  x = a  and  x = b where the graph
crosses the  x- axis. Call this point  ⎛⎝c,  f (c)⎞

⎠. This means that we are assured there is a solution  c where f (c) = 0.

In other words, the Intermediate Value Theorem tells us that when a polynomial function changes from a negative value to
a positive value, the function must cross the  x- axis. Figure 5.48 shows that there is a zero between  a  and  b.

Figure 5.48 Using the Intermediate Value Theorem to show
there exists a zero.

Intermediate Value Theorem

Let   f   be a polynomial function. The Intermediate Value Theorem states that if   f (a)  and   f (b)  have opposite

signs, then there exists at least one value  c  between  a  and  b  for which   f (c) = 0.

Example 5.30

Using the Intermediate Value Theorem

Show that the function   f (x) = x3 − 5x2 + 3x + 6  has at least two real zeros between  x = 1  and  x = 4.

Solution
As a start, evaluate   f (x)  at the integer values  x = 1, 2, 3, and 4.  See Table 5.4.

x 1 2 3 4

f(x) 5 0 –3 2

Table 5.4

We see that one zero occurs at  x = 2. Also, since   f (3)  is negative and   f (4)  is positive, by the Intermediate

Value Theorem, there must be at least one real zero between 3 and 4.
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5.18

We have shown that there are at least two real zeros between  x = 1  and  x = 4.

Analysis
We can also see on the graph of the function in Figure 5.49 that there are two real zeros between  x = 1  and
 x = 4.

Figure 5.49

Show that the function   f (x) = 7x5 − 9x4 − x2   has at least one real zero between  x = 1  and  x = 2.

Writing Formulas for Polynomial Functions
Now that we know how to find zeros of polynomial functions, we can use them to write formulas based on graphs. Because
a polynomial function written in factored form will have an x-intercept where each factor is equal to zero, we can form a
function that will pass through a set of x-intercepts by introducing a corresponding set of factors.

Factored Form of Polynomials

If a polynomial of lowest degree  p  has horizontal intercepts at  x = x1, x2, … , xn,   then the polynomial can be

written in the factored form:   f (x) = a(x − x1)
p1 (x − x2)

p2 ⋯ (x − xn) pn   where the powers  pi   on each factor can

be determined by the behavior of the graph at the corresponding intercept, and the stretch factor  a  can be determined
given a value of the function other than the x-intercept.
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Given a graph of a polynomial function, write a formula for the function.

1. Identify the x-intercepts of the graph to find the factors of the polynomial.

2. Examine the behavior of the graph at the x-intercepts to determine the multiplicity of each factor.

3. Find the polynomial of least degree containing all the factors found in the previous step.

4. Use any other point on the graph (the y-intercept may be easiest) to determine the stretch factor.

Example 5.31

Writing a Formula for a Polynomial Function from the Graph

Write a formula for the polynomial function shown in Figure 5.50.

Figure 5.50

Solution
This graph has three x-intercepts:  x = −3, 2,   and  5. The y-intercept is located at  (0, 2). At  x = −3  and
 x = 5,   the graph passes through the axis linearly, suggesting the corresponding factors of the polynomial will
be linear. At  x = 2,   the graph bounces at the intercept, suggesting the corresponding factor of the polynomial
will be second degree (quadratic). Together, this gives us

f (x) = a(x + 3)(x − 2)2(x − 5)

To determine the stretch factor, we utilize another point on the graph. We will use the  y- intercept  (0, – 2),   to
solve for  a.

f (0) = a(0 + 3)(0 − 2)2(0 − 5)

−2 = a(0 + 3)(0 − 2)2(0 − 5)
−2 = −60a

a = 1
30

The graphed polynomial appears to represent the function   f (x) = 1
30(x + 3)(x − 2)2(x − 5).

540 Chapter 5 Polynomial and Rational Functions

This content is available for free at https://cnx.org/content/col11758/1.5



5.19 Given the graph shown in Figure 5.51, write a formula for the function shown.

Figure 5.51

Using Local and Global Extrema
With quadratics, we were able to algebraically find the maximum or minimum value of the function by finding the vertex.
For general polynomials, finding these turning points is not possible without more advanced techniques from calculus. Even
then, finding where extrema occur can still be algebraically challenging. For now, we will estimate the locations of turning
points using technology to generate a graph.

Each turning point represents a local minimum or maximum. Sometimes, a turning point is the highest or lowest point on
the entire graph. In these cases, we say that the turning point is a global maximum or a global minimum. These are also
referred to as the absolute maximum and absolute minimum values of the function.

Local and Global Extrema

A local maximum or local minimum at  x = a  (sometimes called the relative maximum or minimum, respectively)
is the output at the highest or lowest point on the graph in an open interval around  x = a.  If a function has a local
maximum at  a,   then   f (a) ≥ f (x)  for all  x  in an open interval around  x = a.  If a function has a local minimum at

 a,   then   f (a) ≤ f (x)  for all  x  in an open interval around  x = a.

A global maximum or global minimum is the output at the highest or lowest point of the function. If a function has a
global maximum at  a,   then   f (a) ≥ f (x)  for all  x.  If a function has a global minimum at  a,   then   f (a) ≤ f (x)  for

all  x.

We can see the difference between local and global extrema in Figure 5.52.
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Figure 5.52

Do all polynomial functions have a global minimum or maximum?

No. Only polynomial functions of even degree have a global minimum or maximum. For example,   f (x) = x  has

neither a global maximum nor a global minimum.

Example 5.32

Using Local Extrema to Solve Applications

An open-top box is to be constructed by cutting out squares from each corner of a 14 cm by 20 cm sheet of plastic
and then folding up the sides. Find the size of squares that should be cut out to maximize the volume enclosed by
the box.

Solution
We will start this problem by drawing a picture like that in Figure 5.53, labeling the width of the cut-out squares
with a variable,  w.

Figure 5.53
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Notice that after a square is cut out from each end, it leaves a  (14 − 2w)  cm by  (20 − 2w)  cm rectangle for the
base of the box, and the box will be  w  cm tall. This gives the volume

V(w) = (20 − 2w)(14 − 2w)w
= 280w − 68w2 + 4w3

Notice, since the factors are  w,    20 – 2w  and  14 – 2w,   the three zeros are 10, 7, and 0, respectively. Because a
height of 0 cm is not reasonable, we consider the only the zeros 10 and 7. The shortest side is 14 and we are cutting
off two squares, so values  w may take on are greater than zero or less than 7. This means we will restrict the
domain of this function to  0 < w < 7. Using technology to sketch the graph of  V(w)  on this reasonable domain,
we get a graph like that in Figure 5.54. We can use this graph to estimate the maximum value for the volume,
restricted to values for  w  that are reasonable for this problem—values from 0 to 7.

Figure 5.54

From this graph, we turn our focus to only the portion on the reasonable domain,  [0,  7]. We can estimate the
maximum value to be around 340 cubic cm, which occurs when the squares are about 2.75 cm on each side.
To improve this estimate, we could use advanced features of our technology, if available, or simply change our
window to zoom in on our graph to produce Figure 5.55.
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5.20

Figure 5.55

From this zoomed-in view, we can refine our estimate for the maximum volume to about 339 cubic cm, when the
squares measure approximately 2.7 cm on each side.

Use technology to find the maximum and minimum values on the interval  [−1, 4]  of the function

  f (x) = − 0.2(x − 2)3 (x + 1)2(x − 4).

Access the following online resource for additional instruction and practice with graphing polynomial functions.

• Intermediate Value Theorem (http://openstaxcollege.org/l/ivt)
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5.3 EXERCISES
Verbal

What is the difference between an  x- intercept and a
zero of a polynomial function   f ?  

If a polynomial function of degree  n  has  n  distinct
zeros, what do you know about the graph of the function?

Explain how the Intermediate Value Theorem can
assist us in finding a zero of a function.

Explain how the factored form of the polynomial
helps us in graphing it.

If the graph of a polynomial just touches the x-axis
and then changes direction, what can we conclude about the
factored form of the polynomial?

Algebraic
For the following exercises, find the  x- or t-intercepts of
the polynomial functions.

 C(t) = 2(t − 4)(t + 1)(t − 6)

 C(t) = 3(t + 2)(t − 3)(t + 5)

 C(t) = 4t(t − 2)2(t + 1)

 C(t) = 2t(t − 3)(t + 1)2

 C(t) = 2t4 − 8t3 + 6t2

 C(t) = 4t4 + 12t3 − 40t2

  f (x) = x4 − x2

  f (x) = x3 + x2 − 20x

f (x) = x3 + 6x2 − 7x

f (x) = x3 + x2 − 4x − 4

f (x) = x3 + 2x2 − 9x − 18

f (x) = 2x3 − x2 − 8x + 4

f (x) = x6 − 7x3 − 8

f (x) = 2x4 + 6x2 − 8

f (x) = x3 − 3x2 − x + 3

f (x) = x6 − 2x4 − 3x2

f (x) = x6 − 3x4 − 4x2

f (x) = x5 − 5x3 + 4x

For the following exercises, use the Intermediate Value
Theorem to confirm that the given polynomial has at least
one zero within the given interval.

f (x) = x3 − 9x,   between  x = −4  and  x = −2.

f (x) = x3 − 9x,   between  x = 2  and  x = 4.

f (x) = x5 − 2x,   between  x = 1  and  x = 2.

f (x) = − x4 + 4,   between  x = 1  and  x = 3 .

f (x) = −2x3 − x,   between  x = –1  and  x = 1.

f (x) = x3 − 100x + 2,   between  x = 0.01  and

 x = 0.1

For the following exercises, find the zeros and give the
multiplicity of each.

f (x) = (x + 2)3 (x − 3)2

f (x) = x2 (2x + 3)5 (x − 4)2

f (x) = x3 (x − 1)3 (x + 2)

f (x) = x2 ⎛
⎝x2 + 4x + 4⎞

⎠

f (x) = (2x + 1)3 ⎛
⎝9x2 − 6x + 1⎞

⎠

f (x) = (3x + 2)5 ⎛
⎝x2 − 10x + 25⎞

⎠

f (x) = x⎛
⎝4x2 − 12x + 9⎞

⎠
⎛
⎝x2 + 8x + 16⎞

⎠

f (x) = x6 − x5 − 2x4

f (x) = 3x4 + 6x3 + 3x2

f (x) = 4x5 − 12x4 + 9x3
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197.

f (x) = 2x4 ⎛
⎝x

3 − 4x2 + 4x⎞
⎠

f (x) = 4x4 ⎛
⎝9x4 − 12x3 + 4x2⎞

⎠

Graphical
For the following exercises, graph the polynomial
functions. Note  x- and  y- intercepts, multiplicity, and end

behavior.

f (x) = (x + 3)2(x − 2)

g(x) = (x + 4)(x − 1)2

h(x) = (x − 1)3 (x + 3)2

k(x) = (x − 3)3 (x − 2)2

m(x) = − 2x(x − 1)(x + 3)

n(x) = − 3x(x + 2)(x − 4)

For the following exercises, use the graphs to write the
formula for a polynomial function of least degree.
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198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

For the following exercises, use the graph to identify zeros
and multiplicity.

For the following exercises, use the given information
about the polynomial graph to write the equation.

Degree 3. Zeros at  x = –2,  x = 1,  and  x = 3.  y-
intercept at  (0, –4).

Degree 3. Zeros at  x = –5,  x = –2, and  x = 1.  y-
intercept at  (0, 6)

Degree 5. Roots of multiplicity 2 at  x = 3  and
 x = 1  , and a root of multiplicity 1 at  x = –3.  y-intercept
at  (0, 9)

Degree 4. Root of multiplicity 2 at  x = 4,  and a roots
of multiplicity 1 at  x = 1  and  x = –2.  y-intercept at
 (0, –3).

Degree 5. Double zero at  x = 1,   and triple zero at
 x = 3.  Passes through the point  (2, 15).

Degree 3. Zeros at  x = 4,  x = 3, and  x = 2.  y-
intercept at  (0, −24).
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209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

Degree 3. Zeros at  x = −3,  x = −2  and  x = 1. 
y-intercept at  (0, 12).

Degree 5. Roots of multiplicity 2 at  x = −3  and
 x = 2  and a root of multiplicity 1 at  x = −2.

y-intercept at  (0,  4).

Degree 4. Roots of multiplicity 2 at  x = 1
2   and roots

of multiplicity 1 at  x = 6  and  x = −2.

y-intercept at  (0,18).

Double zero at  x = −3  and triple zero at  x = 0. 
Passes through the point  (1, 32).

Technology
For the following exercises, use a calculator to approximate
local minima and maxima or the global minimum and
maximum.

f (x) = x3 − x − 1

f (x) = 2x3 − 3x − 1

f (x) = x4 + x

f (x) = − x4 + 3x − 2

f (x) = x4 − x3 + 1

Extensions
For the following exercises, use the graphs to write a
polynomial function of least degree.

Real-World Applications
For the following exercises, write the polynomial function
that models the given situation.

A rectangle has a length of 10 units and a width of 8
units. Squares of  x  by  x  units are cut out of each corner,
and then the sides are folded up to create an open box.
Express the volume of the box as a polynomial function in
terms of  x.

Consider the same rectangle of the preceding
problem. Squares of  2x  by  2x  units are cut out of each
corner. Express the volume of the box as a polynomial in
terms of  x.
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223.

224.

A square has sides of 12 units. Squares  x + 1  by  x + 1 
units are cut out of each corner, and then the sides are
folded up to create an open box. Express the volume of the
box as a function in terms of  x.

A cylinder has a radius of  x + 2  units and a height of
3 units greater. Express the volume of the cylinder as a
polynomial function.

A right circular cone has a radius of  3x + 6  and a
height 3 units less. Express the volume of the cone as a
polynomial function. The volume of a cone is  V = 1

3πr2 h 
for radius  r  and height  h.
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5.4 | Dividing Polynomials

Learning Objectives

In this section, you will:

5.4.1 Use long division to divide polynomials.
5.4.2 Use synthetic division to divide polynomials.

Figure 5.56 Lincoln Memorial, Washington, D.C. (credit:
Ron Cogswell, Flickr)

The exterior of the Lincoln Memorial in Washington, D.C., is a large rectangular solid with length 61.5 meters (m), width
40 m, and height 30 m.[1] We can easily find the volume using elementary geometry.

V = l ⋅ w ⋅ h
= 61.5 ⋅ 40 ⋅ 30
= 73,800

So the volume is 73,800 cubic meters  (m ³ ).  Suppose we knew the volume, length, and width. We could divide to find the
height.

h = V
l ⋅ w

= 73,800
61.5 ⋅ 40

= 30

As we can confirm from the dimensions above, the height is 30 m. We can use similar methods to find any of the missing
dimensions. We can also use the same method if any, or all, of the measurements contain variable expressions. For example,
suppose the volume of a rectangular solid is given by the polynomial  3x4 − 3x3 − 33x2 + 54x.  The length of the solid is
given by  3x;   the width is given by  x − 2.  To find the height of the solid, we can use polynomial division, which is the
focus of this section.

Using Long Division to Divide Polynomials
We are familiar with the long division algorithm for ordinary arithmetic. We begin by dividing into the digits of the dividend
that have the greatest place value. We divide, multiply, subtract, include the digit in the next place value position, and repeat.
For example, let’s divide 178 by 3 using long division.

1. National Park Service. "Lincoln Memorial Building Statistics." http://www.nps.gov/linc/historyculture/lincoln-
memorial-building-statistics.htm. Accessed 4/3/2014
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Another way to look at the solution is as a sum of parts. This should look familiar, since it is the same method used to check
division in elementary arithmetic.

dividend = (divisor ⋅ quotient) + remainder
178 = (3 ⋅ 59) + 1

= 177 + 1
= 178

We call this the Division Algorithm and will discuss it more formally after looking at an example.

Division of polynomials that contain more than one term has similarities to long division of whole numbers. We can write
a polynomial dividend as the product of the divisor and the quotient added to the remainder. The terms of the polynomial
division correspond to the digits (and place values) of the whole number division. This method allows us to divide two
polynomials. For example, if we were to divide  2x3 − 3x2 + 4x + 5  by  x + 2  using the long division algorithm, it would
look like this:

We have found

2x3 − 3x2 + 4x + 5
x + 2 = 2x2 − 7x + 18 − 31

x + 2

or

2x3 − 3x2 + 4x + 5
x + 2 = (x + 2)(2x2 − 7x + 18) − 31

We can identify the dividend, the divisor, the quotient, and the remainder.
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Writing the result in this manner illustrates the Division Algorithm.

The Division Algorithm

The Division Algorithm states that, given a polynomial dividend   f (x)  and a non-zero polynomial divisor  d(x) 
where the degree of  d(x)  is less than or equal to the degree of   f (x) , there exist unique polynomials  q(x)  and  r(x) 
such that

(5.4)f (x) = d(x)q(x) + r(x)

q(x)  is the quotient and  r(x)  is the remainder. The remainder is either equal to zero or has degree strictly less than

 d(x). 

If  r(x) = 0,   then  d(x)  divides evenly into   f (x).  This means that, in this case, both  d(x)  and  q(x)  are factors of

  f (x). 

Given a polynomial and a binomial, use long division to divide the polynomial by the binomial.

1. Set up the division problem.

2. Determine the first term of the quotient by dividing the leading term of the dividend by the leading term
of the divisor.

3. Multiply the answer by the divisor and write it below the like terms of the dividend.

4. Subtract the bottom binomial from the top binomial.

5. Bring down the next term of the dividend.

6. Repeat steps 2–5 until reaching the last term of the dividend.

7. If the remainder is non-zero, express as a fraction using the divisor as the denominator.

Example 5.33

Using Long Division to Divide a Second-Degree Polynomial

Divide  5x2 + 3x − 2  by  x + 1.

Solution
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The quotient is  5x − 2.  The remainder is 0. We write the result as

5x2 + 3x − 2
x + 1 = 5x − 2

or

5x2 + 3x − 2 = (x + 1)(5x − 2)

Analysis
This division problem had a remainder of 0. This tells us that the dividend is divided evenly by the divisor, and
that the divisor is a factor of the dividend.

Example 5.34

Using Long Division to Divide a Third-Degree Polynomial

Divide  6x3 + 11x2 − 31x + 15  by  3x − 2. 

Solution

There is a remainder of 1. We can express the result as:

6x3 + 11x2 − 31x + 15
3x − 2 = 2x2 + 5x − 7 + 1

3x − 2

Analysis
We can check our work by using the Division Algorithm to rewrite the solution. Then multiply.
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(3x − 2)(2x2 + 5x − 7) + 1 = 6x3 + 11x2 − 31x + 15

Notice, as we write our result,

• the dividend is  6x3 + 11x2 − 31x + 15 
• the divisor is  3x − 2

• the quotient is  2x2 + 5x − 7

• the remainder is  1

Divide  16x3 − 12x2 + 20x − 3  by  4x + 5. 

Using Synthetic Division to Divide Polynomials
As we’ve seen, long division of polynomials can involve many steps and be quite cumbersome. Synthetic division is a
shorthand method of dividing polynomials for the special case of dividing by a linear factor whose leading coefficient is 1.

To illustrate the process, recall the example at the beginning of the section.

Divide  2x3 − 3x2 + 4x + 5  by  x + 2  using the long division algorithm.

The final form of the process looked like this:

There is a lot of repetition in the table. If we don’t write the variables but, instead, line up their coefficients in columns
under the division sign and also eliminate the partial products, we already have a simpler version of the entire problem.

Synthetic division carries this simplification even a few more steps. Collapse the table by moving each of the rows up to fill
any vacant spots. Also, instead of dividing by 2, as we would in division of whole numbers, then multiplying and subtracting
the middle product, we change the sign of the “divisor” to –2, multiply and add. The process starts by bringing down the
leading coefficient.

We then multiply it by the “divisor” and add, repeating this process column by column, until there are no entries left. The
bottom row represents the coefficients of the quotient; the last entry of the bottom row is the remainder. In this case, the
quotient is  2x2 – 7x + 18  and the remainder is  –31.  The process will be made more clear in Example 5.35.
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Synthetic Division

Synthetic division is a shortcut that can be used when the divisor is a binomial in the form  x − k where  k  is a real
number. In synthetic division, only the coefficients are used in the division process.

Given two polynomials, use synthetic division to divide.

1. Write  k  for the divisor.

2. Write the coefficients of the dividend.

3. Bring the lead coefficient down.

4. Multiply the lead coefficient by  k.  Write the product in the next column.

5. Add the terms of the second column.

6. Multiply the result by  k.  Write the product in the next column.

7. Repeat steps 5 and 6 for the remaining columns.

8. Use the bottom numbers to write the quotient. The number in the last column is the remainder and has
degree 0, the next number from the right has degree 1, the next number from the right has degree 2, and so
on.

Example 5.35

Using Synthetic Division to Divide a Second-Degree Polynomial

Use synthetic division to divide  5x2 − 3x − 36  by  x − 3. 

Solution
Begin by setting up the synthetic division. Write  k  and the coefficients.

Bring down the lead coefficient. Multiply the lead coefficient by  k. 

Continue by adding the numbers in the second column. Multiply the resulting number by  k.  Write the result in
the next column. Then add the numbers in the third column.

The result is  5x + 12.  The remainder is 0. So  x − 3  is a factor of the original polynomial.

Analysis
Just as with long division, we can check our work by multiplying the quotient by the divisor and adding the
remainder.

(x − 3)(5x + 12) + 0 = 5x2 − 3x − 36
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Example 5.36

Using Synthetic Division to Divide a Third-Degree Polynomial

Use synthetic division to divide  4x3 + 10x2 − 6x − 20  by  x + 2. 

Solution
The binomial divisor is  x + 2  so  k = −2.  Add each column, multiply the result by –2, and repeat until the last
column is reached.

The result is  4x2 + 2x − 10.  The remainder is 0. Thus,  x + 2  is a factor of  4x3 + 10x2 − 6x − 20. 

Analysis
The graph of the polynomial function   f (x) = 4x3 + 10x2 − 6x − 20  in Figure 5.57 shows a zero at

 x = k = −2.  This confirms that  x + 2  is a factor of  4x3 + 10x2 − 6x − 20. 

Figure 5.57

556 Chapter 5 Polynomial and Rational Functions

This content is available for free at https://cnx.org/content/col11758/1.5
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Example 5.37

Using Synthetic Division to Divide a Fourth-Degree Polynomial

Use synthetic division to divide  − 9x4 + 10x3 + 7x2 − 6  by  x − 1. 

Solution
Notice there is no x-term. We will use a zero as the coefficient for that term.

The result is  − 9x3 + x2 + 8x + 8 + 2
x − 1.

Use synthetic division to divide  3x4 + 18x3 − 3x + 40  by  x + 7.

Using Polynomial Division to Solve Application Problems
Polynomial division can be used to solve a variety of application problems involving expressions for area and volume. We
looked at an application at the beginning of this section. Now we will solve that problem in the following example.

Example 5.38

Using Polynomial Division in an Application Problem

The volume of a rectangular solid is given by the polynomial  3x4 − 3x3 − 33x2 + 54x.  The length of the solid
is given by  3x  and the width is given by  x − 2.  Find the height,  t, of the solid.

Solution
There are a few ways to approach this problem. We need to divide the expression for the volume of the solid by
the expressions for the length and width. Let us create a sketch as in Figure 5.58.

Figure 5.58

We can now write an equation by substituting the known values into the formula for the volume of a rectangular
solid.

V = l ⋅ w ⋅ h
3x4 − 3x3 − 33x2 + 54x = 3x ⋅ (x − 2) ⋅ h
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To solve for  h,   first divide both sides by  3x.

3x ⋅ (x − 2) ⋅ h
3x = 3x4 − 3x3 − 33x2 + 54x

3x
(x − 2)h = x3 − x2 − 11x + 18

Now solve for  h  using synthetic division.

h = x3 − x2 − 11x + 18
x − 2

The quotient is  x2 + x − 9  and the remainder is 0. The height of the solid is  x2 + x − 9.

The area of a rectangle is given by  3x3 + 14x2 − 23x + 6.  The width of the rectangle is given by
 x + 6.  Find an expression for the length of the rectangle.

Access these online resources for additional instruction and practice with polynomial division.

• Dividing a Trinomial by a Binomial Using Long Division (http://openstaxcollege.org/l/
dividetribild)

• Dividing a Polynomial by a Binomial Using Long Division (http://openstaxcollege.org/l/
dividepolybild)

• Ex 2: Dividing a Polynomial by a Binomial Using Synthetic Division
(http://openstaxcollege.org/l/dividepolybisd2)

• Ex 4: Dividing a Polynomial by a Binomial Using Synthetic Division
(http://openstaxcollege.org/l/dividepolybisd4)
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5.4 EXERCISES
Verbal

If division of a polynomial by a binomial results in a
remainder of zero, what can be conclude?

If a polynomial of degree  n  is divided by a binomial
of degree 1, what is the degree of the quotient?

Algebraic
For the following exercises, use long division to divide.
Specify the quotient and the remainder.

⎛
⎝x2 + 5x − 1⎞

⎠ ÷ (x − 1)

⎛
⎝2x2 − 9x − 5⎞

⎠ ÷ (x − 5)

⎛
⎝3x2 + 23x + 14⎞

⎠ ÷ (x + 7)

⎛
⎝4x2 − 10x + 6⎞

⎠ ÷ (4x + 2)

⎛
⎝6x2 − 25x − 25⎞

⎠ ÷ (6x + 5)

⎛
⎝−x2 − 1⎞

⎠ ÷ (x + 1)

⎛
⎝2x2 − 3x + 2⎞

⎠ ÷ (x + 2)

⎛
⎝x

3 − 126⎞
⎠ ÷ (x − 5)

⎛
⎝3x2 − 5x + 4⎞

⎠ ÷ (3x + 1)

⎛
⎝x

3 − 3x2 + 5x − 6⎞
⎠ ÷ (x − 2)

⎛
⎝2x3 + 3x2 − 4x + 15⎞

⎠ ÷ (x + 3)

For the following exercises, use synthetic division to find
the quotient.

⎛
⎝3x3 − 2x2 + x − 4⎞

⎠ ÷ (x + 3)

⎛
⎝2x3 − 6x2 − 7x + 6⎞

⎠ ÷ (x − 4)

⎛
⎝6x3 − 10x2 − 7x − 15⎞

⎠ ÷ (x + 1)

⎛
⎝4x3 − 12x2 − 5x − 1⎞

⎠ ÷ (2x + 1)

⎛
⎝9x3 − 9x2 + 18x + 5⎞

⎠ ÷ (3x − 1)

⎛
⎝3x3 − 2x2 + x − 4⎞

⎠ ÷ (x + 3)

⎛
⎝−6x3 + x2 − 4⎞

⎠ ÷ (2x − 3)

⎛
⎝2x3 + 7x2 − 13x − 3⎞

⎠ ÷ (2x − 3)

⎛
⎝3x3 − 5x2 + 2x + 3⎞

⎠ ÷ (x + 2)

⎛
⎝4x3 − 5x2 + 13⎞

⎠ ÷ (x + 4)

⎛
⎝x

3 − 3x + 2⎞
⎠ ÷ (x + 2)

⎛
⎝x

3 − 21x2 + 147x − 343⎞
⎠ ÷ (x − 7)

⎛
⎝x

3 − 15x2 + 75x − 125⎞
⎠ ÷ (x − 5)

⎛
⎝9x3 − x + 2⎞

⎠ ÷ (3x − 1)

⎛
⎝6x3 − x2 + 5x + 2⎞

⎠ ÷ (3x + 1)

⎛
⎝x4 + x3 − 3x2 − 2x + 1⎞

⎠ ÷ (x + 1)

⎛
⎝x4 − 3x2 + 1⎞

⎠ ÷ (x − 1)

⎛
⎝x4 + 2x3 − 3x2 + 2x + 6⎞

⎠ ÷ (x + 3)

⎛
⎝x4 − 10x3 + 37x2 − 60x + 36⎞

⎠ ÷ (x − 2)

⎛
⎝x4 − 8x3 + 24x2 − 32x + 16⎞

⎠ ÷ (x − 2)

⎛
⎝x4 + 5x3 − 3x2 − 13x + 10⎞

⎠ ÷ (x + 5)

⎛
⎝x4 − 12x3 + 54x2 − 108x + 81⎞

⎠ ÷ (x − 3)

⎛
⎝4x4 − 2x3 − 4x + 2⎞

⎠ ÷ (2x − 1)

⎛
⎝4x4 + 2x3 − 4x2 + 2x + 2⎞

⎠ ÷ (2x + 1)

For the following exercises, use synthetic division to
determine whether the first expression is a factor of the
second. If it is, indicate the factorization.

x − 2,  4x3 − 3x2 − 8x + 4
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263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

x − 2,  3x4 − 6x3 − 5x + 10

x + 3,  − 4x3 + 5x2 + 8

x − 2,  4x4 − 15x2 − 4

x − 1
2,  2x4 − x3 + 2x − 1

x + 1
3,  3x4 + x3 − 3x + 1

Graphical
For the following exercises, use the graph of the third-
degree polynomial and one factor to write the factored form
of the polynomial suggested by the graph. The leading
coefficient is one.

Factor is  x2 − x + 3

Factor is  (x2 + 2x + 4)

Factor is  x2 + 2x + 5

Factor is  x2 + x + 1

Factor is x2 + 2x + 2

For the following exercises, use synthetic division to find
the quotient and remainder.

4x3 − 33
x − 2

2x3 + 25
x + 3

3x3 + 2x − 5
x − 1
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276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

−4x3 − x2 − 12
x + 4

x4 − 22
x + 2

Technology
For the following exercises, use a calculator with CAS to
answer the questions.

Consider  xk − 1
x − 1  with  k = 1,  2,  3. What do you

expect the result to be if  k = 4?

Consider  x
k + 1

x + 1   for  k = 1,  3,  5. What do you

expect the result to be if  k = 7?

Consider  x4 − k4

x − k   for  k = 1,  2,  3. What do you

expect the result to be if  k = 4?

Consider   xk

x + 1  with  k = 1,  2,  3. What do you

expect the result to be if  k = 4?

Consider   xk

x − 1  with  k = 1,  2,  3. What do you

expect the result to be if  k = 4?

Extensions
For the following exercises, use synthetic division to
determine the quotient involving a complex number.

x + 1
x − i

x2 + 1
x − i

x + 1
x + i

x2 + 1
x + i

x3 + 1
x − i

Real-World Applications
For the following exercises, use the given length and area
of a rectangle to express the width algebraically.

Length is  x + 5,   area is  2x2 + 9x − 5.

Length is  2x +  5,   area is  4x3 + 10x2 + 6x + 15

Length is  3x – 4,   area is

 6x4 − 8x3 + 9x2 − 9x − 4

For the following exercises, use the given volume of a box
and its length and width to express the height of the box
algebraically.

Volume is  12x3 + 20x2 − 21x − 36,   length is
 2x + 3,  width is  3x − 4.

Volume is  18x3 − 21x2 − 40x + 48,   length is
 3x – 4,   width is  3x – 4.

Volume is  10x3 + 27x2 + 2x − 24,   length is
 5x – 4,   width is  2x + 3.

Volume is  10x3 + 30x2 − 8x − 24,   length is  2,  
width is  x + 3.

For the following exercises, use the given volume and
radius of a cylinder to express the height of the cylinder
algebraically.

Volume is  π⎛
⎝25x3 − 65x2 − 29x − 3⎞

⎠,   radius is

 5x + 1.

Volume is  π⎛
⎝4x3 + 12x2 − 15x − 50⎞

⎠,   radius is

 2x + 5.

Volume is  π⎛
⎝3x4 + 24x3 + 46x2 − 16x − 32⎞

⎠,  
radius is  x + 4.
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5.5 | Zeros of Polynomial Functions

Learning Objectives

In this section, you will:

5.5.1 Evaluate a polynomial using the Remainder Theorem.
5.5.2 Use the Factor Theorem to solve a polynomial equation.
5.5.3 Use the Rational Zero Theorem to find rational zeros.
5.5.4 Find zeros of a polynomial function.
5.5.5 Use the Linear Factorization Theorem to find polynomials with given zeros.
5.5.6 Use Descartes’ Rule of Signs.
5.5.7 Solve real-world applications of polynomial equations

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The bakery wants the
volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want the length of the
cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. What should
the dimensions of the cake pan be?

This problem can be solved by writing a cubic function and solving a cubic equation for the volume of the cake. In this
section, we will discuss a variety of tools for writing polynomial functions and solving polynomial equations.

Evaluating a Polynomial Using the Remainder Theorem
In the last section, we learned how to divide polynomials. We can now use polynomial division to evaluate polynomials
using the Remainder Theorem. If the polynomial is divided by  x – k,   the remainder may be found quickly by evaluating
the polynomial function at  k,   that is,   f (k) Let’s walk through the proof of the theorem.

Recall that the Division Algorithm states that, given a polynomial dividend   f (x)  and a non-zero polynomial divisor  d(x) 
where the degree of   d(x)  is less than or equal to the degree of   f (x) , there exist unique polynomials  q(x)  and  r(x)  such

that

  f (x) = d(x)q(x) + r(x)

If the divisor,  d(x),   is  x − k,   this takes the form

f (x) = (x − k)q(x) + r

Since the divisor  x − k  is linear, the remainder will be a constant,  r. And, if we evaluate this for  x = k,  we have

f (k) = (k − k)q(k) + r
= 0 ⋅ q(k) + r
= r

In other words,   f (k)  is the remainder obtained by dividing   f (x)  by  x − k.

The Remainder Theorem

If a polynomial   f (x)  is divided by  x − k,   then the remainder is the value   f (k). 

Given a polynomial function   f , evaluate   f(x)  at  x = k  using the Remainder Theorem.

1. Use synthetic division to divide the polynomial by  x − k.

2. The remainder is the value   f (k).
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Example 5.39

Using the Remainder Theorem to Evaluate a Polynomial

Use the Remainder Theorem to evaluate   f (x) = 6x4 − x3 − 15x2 + 2x − 7  at  x = 2. 

Solution
To find the remainder using the Remainder Theorem, use synthetic division to divide the polynomial by  x − 2. 

The remainder is 25. Therefore,   f (2) = 25. 

Analysis
We can check our answer by evaluating   f (2). 

f (x) = 6x4 − x3 − 15x2 + 2x − 7

f (2) = 6(2)4 − (2)3 − 15(2)2 + 2(2) − 7
= 25

Use the Remainder Theorem to evaluate   f (x) = 2x5 − 3x4 − 9x3 + 8x2 + 2  at  x = − 3. 

Using the Factor Theorem to Solve a Polynomial Equation
The Factor Theorem is another theorem that helps us analyze polynomial equations. It tells us how the zeros of a
polynomial are related to the factors. Recall that the Division Algorithm.

f (x) = (x − k)q(x) + r

If  k  is a zero, then the remainder  r  is   f (k) = 0  and   f (x) = (x − k)q(x) + 0  or   f (x) = (x − k)q(x). 

Notice, written in this form,  x − k  is a factor of   f (x). We can conclude if  k  is a zero of   f (x),   then  x − k  is a factor of

f (x). 

Similarly, if  x − k  is a factor of   f (x),   then the remainder of the Division Algorithm   f (x) = (x − k)q(x) + r  is 0. This

tells us that  k  is a zero.

This pair of implications is the Factor Theorem. As we will soon see, a polynomial of degree  n  in the complex number
system will have  n  zeros. We can use the Factor Theorem to completely factor a polynomial into the product of  n  factors.
Once the polynomial has been completely factored, we can easily determine the zeros of the polynomial.

The Factor Theorem

According to the Factor Theorem,  k  is a zero of   f (x)  if and only if  (x − k)  is a factor of   f (x). 
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Given a factor and a third-degree polynomial, use the Factor Theorem to factor the polynomial.

1. Use synthetic division to divide the polynomial by  (x − k). 

2. Confirm that the remainder is 0.

3. Write the polynomial as the product of  (x − k)  and the quadratic quotient.

4. If possible, factor the quadratic.

5. Write the polynomial as the product of factors.

Example 5.40

Using the Factor Theorem to Solve a Polynomial Equation

Show that  (x + 2)  is a factor of  x3 − 6x2 − x + 30.  Find the remaining factors. Use the factors to determine the

zeros of the polynomial.

Solution
We can use synthetic division to show that  (x + 2)  is a factor of the polynomial.

The remainder is zero, so  (x + 2)  is a factor of the polynomial. We can use the Division Algorithm to write the
polynomial as the product of the divisor and the quotient:

(x + 2)⎛
⎝x2 − 8x + 15⎞

⎠

We can factor the quadratic factor to write the polynomial as

(x + 2)(x − 3)(x − 5)

By the Factor Theorem, the zeros of  x3 − 6x2 − x + 30  are –2, 3, and 5.

Use the Factor Theorem to find the zeros of   f (x) = x3 + 4x2 − 4x − 16  given that (x − 2) is a factor of

the polynomial.

Using the Rational Zero Theorem to Find Rational Zeros
Another use for the Remainder Theorem is to test whether a rational number is a zero for a given polynomial. But first
we need a pool of rational numbers to test. The Rational Zero Theorem helps us to narrow down the number of possible
rational zeros using the ratio of the factors of the constant term and factors of the leading coefficient of the polynomial

Consider a quadratic function with two zeros,  x = 2
5   and  x = 3

4  .  By the Factor Theorem, these zeros have factors

associated with them. Let us set each factor equal to 0, and then construct the original quadratic function absent its stretching
factor.
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Notice that two of the factors of the constant term, 6, are the two numerators from the original rational roots: 2 and 3.
Similarly, two of the factors from the leading coefficient, 20, are the two denominators from the original rational roots: 5
and 4.

We can infer that the numerators of the rational roots will always be factors of the constant term and the denominators will
be factors of the leading coefficient. This is the essence of the Rational Zero Theorem; it is a means to give us a pool of
possible rational zeros.

The Rational Zero Theorem

The Rational Zero Theorem states that, if the polynomial   f (x) = an xn + an − 1 xn − 1 + ... + a1 x + a0   has integer

coefficients, then every rational zero of   f (x)  has the form  pq  where  p  is a factor of the constant term  a0   and  q  is a

factor of the leading coefficient  an. 

When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.

Given a polynomial function   f(x), use the Rational Zero Theorem to find rational zeros.

1. Determine all factors of the constant term and all factors of the leading coefficient.

2. Determine all possible values of  pq ,  where  p  is a factor of the constant term and  q  is a factor of the

leading coefficient. Be sure to include both positive and negative candidates.

3. Determine which possible zeros are actual zeros by evaluating each case of   f ( p
q). 

Example 5.41

Listing All Possible Rational Zeros

List all possible rational zeros of   f (x) = 2x4 − 5x3 + x2 − 4.

Solution
The only possible rational zeros of   f (x)  are the quotients of the factors of the last term, –4, and the factors of the

leading coefficient, 2.

The constant term is –4; the factors of –4 are  p = ±1, ±2, ±4.

The leading coefficient is 2; the factors of 2 are  q = ±1, ±2.

If any of the four real zeros are rational zeros, then they will be of one of the following factors of –4 divided by
one of the factors of 2.
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p
q = ±  11,   ± 1

2
p
q = ±  21, ± 2

2
p
q =  ±  41, ± 4

2

Note that  22 = 1  and  42 = 2,  which have already been listed. So we can shorten our list.

p
q = Factors of the last

Factors of the fir t = ±1, ±2, ±4, ± 1
2

Example 5.42

Using the Rational Zero Theorem to Find Rational Zeros

Use the Rational Zero Theorem to find the rational zeros of   f (x) = 2x3 + x2 − 4x + 1. 

Solution

The Rational Zero Theorem tells us that if  pq   is a zero of   f (x),   then  p  is a factor of 1 and  q  is a factor of 2.

p
q = factor of constant term

factor of leading coefficie

= factor of 1
factor of 2

The factors of 1 are ±1  and the factors of 2 are ±1  and ±2. The possible values for  pq   are ±1  and  ± 1
2. These

are the possible rational zeros for the function. We can determine which of the possible zeros are actual zeros by
substituting these values for  x  in   f (x). 

f (−1) = 2(−1)3 + (−1)2 − 4(−1) + 1 = 4

f (1) = 1(1)3 + (1)2 − 4(1) + 1 = 0

f ⎛
⎝−

1
2

⎞
⎠ = 2⎛

⎝−
1
2

⎞
⎠
3

+ ⎛
⎝−

1
2

⎞
⎠
2

− 4⎛
⎝−

1
2

⎞
⎠ + 1 = 3

f ⎛
⎝
1
2

⎞
⎠ = 2⎛

⎝
1
2

⎞
⎠
3

+ ⎛
⎝
1
2

⎞
⎠
2

− 4⎛
⎝
1
2

⎞
⎠ + 1 = − 1

2

Of those, −1, − 1
2,  and 12   are not zeros of   f (x).  1 is the only rational zero of   f (x). 

Use the Rational Zero Theorem to find the rational zeros of   f (x) = x3 − 5x2 + 2x + 1. 

Finding the Zeros of Polynomial Functions
The Rational Zero Theorem helps us to narrow down the list of possible rational zeros for a polynomial function. Once we
have done this, we can use synthetic division repeatedly to determine all of the zeros of a polynomial function.
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Given a polynomial function   f , use synthetic division to find its zeros.

1. Use the Rational Zero Theorem to list all possible rational zeros of the function.

2. Use synthetic division to evaluate a given possible zero by synthetically dividing the candidate into the
polynomial. If the remainder is 0, the candidate is a zero. If the remainder is not zero, discard the candidate.

3. Repeat step two using the quotient found with synthetic division. If possible, continue until the quotient is
a quadratic.

4. Find the zeros of the quadratic function. Two possible methods for solving quadratics are factoring and
using the quadratic formula.

Example 5.43

Finding the Zeros of a Polynomial Function with Repeated Real Zeros

Find the zeros of   f (x) = 4x3 − 3x − 1. 

Solution

The Rational Zero Theorem tells us that if  pq   is a zero of   f (x),   then  p  is a factor of –1 and  q  is a factor of 4.

P
Q = factor of constant term

factor of leading coefficie

= factor of –1
factor of 4

The factors of  –1  are ±1  and the factors of  4  are ±1, ±2,   and  ±4. The possible values for  pq   are

±1,  ± 1
2,   and  ± 1

4.  These are the possible rational zeros for the function. We will use synthetic division to

evaluate each possible zero until we find one that gives a remainder of 0. Let’s begin with 1.

Dividing by  (x − 1)  gives a remainder of 0, so 1 is a zero of the function. The polynomial can be written as

(x − 1)(4x2 + 4x + 1)

The quadratic is a perfect square.   f (x)  can be written as

(x − 1)(2x + 1)2

We already know that 1 is a zero. The other zero will have a multiplicity of 2 because the factor is squared. To
find the other zero, we can set the factor equal to 0.

2x + 1 = 0
x = −1

2

The zeros of the function are 1 and  − 1
2  with multiplicity 2.

Analysis
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Look at the graph of the function   f   in Figure 5.59. Notice, at  x = − 0.5,   the graph bounces off the x-axis,

indicating the even multiplicity (2,4,6…) for the zero  − 0.5.  At  x = 1,   the graph crosses the x-axis, indicating
the odd multiplicity (1,3,5…) for the zero  x = 1.

Figure 5.59

Using the Fundamental Theorem of Algebra
Now that we can find rational zeros for a polynomial function, we will look at a theorem that discusses the number of
complex zeros of a polynomial function. The Fundamental Theorem of Algebra tells us that every polynomial function
has at least one complex zero. This theorem forms the foundation for solving polynomial equations.

Suppose   f   is a polynomial function of degree four, and   f (x) = 0. The Fundamental Theorem of Algebra states that

there is at least one complex solution, call it  c1. By the Factor Theorem, we can write   f (x)  as a product of  x − c1

and a polynomial quotient. Since  x − c1   is linear, the polynomial quotient will be of degree three. Now we apply the

Fundamental Theorem of Algebra to the third-degree polynomial quotient. It will have at least one complex zero, call it  c2. 
So we can write the polynomial quotient as a product of  x − c2   and a new polynomial quotient of degree two. Continue to

apply the Fundamental Theorem of Algebra until all of the zeros are found. There will be four of them and each one will
yield a factor of   f (x). 

The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra states that, if   f (x)  is a polynomial of degree n > 0, then   f (x)  has at least

one complex zero.

We can use this theorem to argue that, if   f (x)  is a polynomial of degree  n > 0,   and  a  is a non-zero real number,

then   f (x)  has exactly  n  linear factors

f (x) = a(x − c1)(x − c2)...(x − cn)

where  c1, c2, ..., cn   are complex numbers. Therefore,   f (x)  has  n  roots if we allow for multiplicities.

Does every polynomial have at least one imaginary zero?

No. Real numbers are a subset of complex numbers, but not the other way around. A complex number is not
necessarily imaginary. Real numbers are also complex numbers.
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Example 5.44

Finding the Zeros of a Polynomial Function with Complex Zeros

Find the zeros of   f (x) = 3x3 + 9x2 + x + 3. 

Solution

The Rational Zero Theorem tells us that if  pq   is a zero of   f (x),   then  p  is a factor of 3 and  q  is a factor of 3.

p
q = factor of constant term

factor of leading coefficie

= factor of 3
factor of 3

The factors of 3 are ±1  and ±3. The possible values for  pq ,   and therefore the possible rational zeros for the

function, are ±3, ±1, and ± 1
3. We will use synthetic division to evaluate each possible zero until we find one

that gives a remainder of 0. Let’s begin with –3.

Dividing by  (x + 3)  gives a remainder of 0, so –3 is a zero of the function. The polynomial can be written as

(x + 3)⎛
⎝3x2 + 1⎞

⎠

We can then set the quadratic equal to 0 and solve to find the other zeros of the function.

3x2 + 1 = 0
x2 = −1

3

x = ± −1
3 = ± i 3

3

The zeros of f (x) are –3 and  ± i 3
3 .

Analysis
Look at the graph of the function   f   in Figure 5.60. Notice that, at  x = −3,   the graph crosses the x-axis,

indicating an odd multiplicity (1) for the zero  x = –3. Also note the presence of the two turning points. This

means that, since there is a 3rd degree polynomial, we are looking at the maximum number of turning points. So,
the end behavior of increasing without bound to the right and decreasing without bound to the left will continue.
Thus, all the x-intercepts for the function are shown. So either the multiplicity of  x = −3  is 1 and there are
two complex solutions, which is what we found, or the multiplicity at  x = −3  is three. Either way, our result is
correct.
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Figure 5.60

Find the zeros of   f (x) = 2x3 + 5x2 − 11x + 4.

Using the Linear Factorization Theorem to Find Polynomials with
Given Zeros
A vital implication of the Fundamental Theorem of Algebra, as we stated above, is that a polynomial function of degree
 n  will have  n  zeros in the set of complex numbers, if we allow for multiplicities. This means that we can factor the
polynomial function into  n  factors. The Linear Factorization Theorem tells us that a polynomial function will have the
same number of factors as its degree, and that each factor will be in the form  (x − c),  where  c  is a complex number.

Let   f   be a polynomial function with real coefficients, and suppose  a + bi, b ≠ 0,   is a zero of   f (x).  Then, by the

Factor Theorem,  x − (a + bi)  is a factor of   f (x).  For   f   to have real coefficients,  x − (a − bi)  must also be a factor of

  f (x).  This is true because any factor other than  x − (a − bi),   when multiplied by  x − (a + bi),   will leave imaginary

components in the product. Only multiplication with conjugate pairs will eliminate the imaginary parts and result in real
coefficients. In other words, if a polynomial function   f   with real coefficients has a complex zero  a + bi,   then the

complex conjugate  a − bi  must also be a zero of   f (x). This is called the Complex Conjugate Theorem.

Complex Conjugate Theorem

According to the Linear Factorization Theorem, a polynomial function will have the same number of factors as its
degree, and each factor will be in the form  (x − c) , where  c  is a complex number.

If the polynomial function   f   has real coefficients and a complex zero in the form  a + bi,   then the complex

conjugate of the zero,  a − bi,   is also a zero.

Given the zeros of a polynomial function   f   and a point (c, f(c)) on the graph of   f ,   use the Linear
Factorization Theorem to find the polynomial function.

1. Use the zeros to construct the linear factors of the polynomial.

2. Multiply the linear factors to expand the polynomial.

3. Substitute  ⎛⎝c, f (c)⎞
⎠  into the function to determine the leading coefficient.

4. Simplify.
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Example 5.45

Using the Linear Factorization Theorem to Find a Polynomial with Given Zeros

Find a fourth degree polynomial with real coefficients that has zeros of –3, 2,  i,   such that   f (−2) = 100. 

Solution
Because  x = i  is a zero, by the Complex Conjugate Theorem  x = – i  is also a zero. The polynomial must have
factors of  (x + 3),  (x − 2),  (x − i),   and  (x + i).  Since we are looking for a degree 4 polynomial, and now have
four zeros, we have all four factors. Let’s begin by multiplying these factors.

f (x) = a(x + 3)(x − 2)(x − i)(x + i)

f (x) = a⎛
⎝x2 + x − 6⎞

⎠
⎛
⎝x2 + 1⎞

⎠

f (x) = a⎛
⎝x4 + x3 − 5x2 + x − 6⎞

⎠

We need to find a to ensure   f ( – 2) = 100.  Substitute  x = – 2    and   f (2) = 100  into   f (x). 

100 = a((−2)4 + (−2)3 − 5(−2)2 + (−2) − 6)
100 = a(−20)
−5 = a

So the polynomial function is

f (x) = −5⎛
⎝x4 + x3 − 5x2 + x − 6⎞

⎠

or

f (x) = − 5x4 − 5x3 + 25x2 − 5x + 30

Analysis
We found that both  i  and  − i were zeros, but only one of these zeros needed to be given. If  i  is a zero of a
polynomial with real coefficients, then  − i must also be a zero of the polynomial because  − i  is the complex
conjugate of  i. 

If  2 + 3i  were given as a zero of a polynomial with real coefficients, would  2 − 3i  also need to be a zero?

Yes. When any complex number with an imaginary component is given as a zero of a polynomial with real
coefficients, the conjugate must also be a zero of the polynomial.

Find a third degree polynomial with real coefficients that has zeros of 5 and  − 2i  such that   f (1) = 10. 

Using Descartes’ Rule of Signs
There is a straightforward way to determine the possible numbers of positive and negative real zeros for any polynomial
function. If the polynomial is written in descending order, Descartes’ Rule of Signs tells us of a relationship between the
number of sign changes in   f (x)  and the number of positive real zeros. For example, the polynomial function below has one

sign change.

This tells us that the function must have 1 positive real zero.
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There is a similar relationship between the number of sign changes in   f (−x)  and the number of negative real zeros.

In this case,   f (−x)  has 3 sign changes. This tells us that   f (x)  could have 3 or 1 negative real zeros.

Descartes’ Rule of Signs

According to Descartes’ Rule of Signs, if we let   f (x) = an xn + an − 1 xn − 1 + ... + a1 x + a0   be a polynomial

function with real coefficients:

• The number of positive real zeros is either equal to the number of sign changes of   f (x)  or is less than the

number of sign changes by an even integer.

• The number of negative real zeros is either equal to the number of sign changes of   f (−x)  or is less than the

number of sign changes by an even integer.

Example 5.46

Using Descartes’ Rule of Signs

Use Descartes’ Rule of Signs to determine the possible numbers of positive and negative real zeros for
  f (x) = − x4 − 3x3 + 6x2 − 4x − 12.

Solution
Begin by determining the number of sign changes.

There are two sign changes, so there are either 2 or 0 positive real roots. Next, we examine   f ( − x)  to determine

the number of negative real roots.

f ( − x) = −( − x)4 − 3( − x)3 + 6( − x)2 − 4( − x) − 12

f ( − x) = −x4 + 3x3 + 6x2 + 4x − 12

Again, there are two sign changes, so there are either 2 or 0 negative real roots.

There are four possibilities, as we can see in Table 5.5.
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5.29

Positive Real Zeros Negative Real Zeros Complex Zeros Total Zeros

2 2 0 4

2 0 2 4

0 2 2 4

0 0 4 4

Table 5.5

Analysis
We can confirm the numbers of positive and negative real roots by examining a graph of the function. See Figure
5.61. We can see from the graph that the function has 0 positive real roots and 2 negative real roots.

Figure 5.61

Use Descartes’ Rule of Signs to determine the maximum possible numbers of positive and negative real
zeros for   f (x) = 2x4 − 10x3 + 11x2 − 15x + 12.  Use a graph to verify the numbers of positive and negative

real zeros for the function.

Solving Real-World Applications
We have now introduced a variety of tools for solving polynomial equations. Let’s use these tools to solve the bakery
problem from the beginning of the section.

Example 5.47

Solving Polynomial Equations
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5.30

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The bakery
wants the volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They
want the length of the cake to be four inches longer than the width of the cake and the height of the cake to be
one-third of the width. What should the dimensions of the cake pan be?

Solution
Begin by writing an equation for the volume of the cake. The volume of a rectangular solid is given by  V = lwh. 
We were given that the length must be four inches longer than the width, so we can express the length of the cake
as  l = w + 4. We were given that the height of the cake is one-third of the width, so we can express the height of

the cake as  h = 1
3w. Let’s write the volume of the cake in terms of width of the cake.

V = (w + 4)(w)⎛⎝
1
3w⎞

⎠

V = 1
3w3 + 4

3w2

Substitute the given volume into this equation.

351 = 1
3w3 + 4

3w2 Substitute 351 for V .

1053 = w3 + 4w2 Multiply both sides by 3.

0 = w3 + 7w2 − 1053 Subtract 1053 from both sides.

Descartes' rule of signs tells us there is one positive solution. The Rational Zero Theorem tells us that the
possible rational zeros are  ± 3,  ± 9,  ± 13,  ± 27,  ± 39,  ± 81,  ± 117,  ± 351,   and  ± 1053.  We can
use synthetic division to test these possible zeros. Only positive numbers make sense as dimensions for a cake, so
we need not test any negative values. Let’s begin by testing values that make the most sense as dimensions for a
small sheet cake. Use synthetic division to check  x = 1.

Since 1 is not a solution, we will check  x = 3.

Since 3 is not a solution either, we will test  x = 9.

Synthetic division gives a remainder of 0, so 9 is a solution to the equation. We can use the relationships between
the width and the other dimensions to determine the length and height of the sheet cake pan.

l = w + 4 = 9 + 4 = 13 and h = 1
3w = 1

3(9) = 3

The sheet cake pan should have dimensions 13 inches by 9 inches by 3 inches.

A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters. The
client tells the manufacturer that, because of the contents, the length of the container must be one meter longer
than the width, and the height must be one meter greater than twice the width. What should the dimensions of the
container be?
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Access these online resources for additional instruction and practice with zeros of polynomial functions.

• Real Zeros, Factors, and Graphs of Polynomial Functions (http://openstaxcollege.org/l/
realzeros)

• Complex Factorization Theorem (http://openstaxcollege.org/l/factortheorem)

• Find the Zeros of a Polynomial Function (http://openstaxcollege.org/l/findthezeros)

• Find the Zeros of a Polynomial Function 2 (http://openstaxcollege.org/l/findthezeros2)

• Find the Zeros of a Polynomial Function 3 (http://openstaxcollege.org/l/findthezeros3)
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5.5 EXERCISES
Verbal

Describe a use for the Remainder Theorem.

Explain why the Rational Zero Theorem does not
guarantee finding zeros of a polynomial function.

What is the difference between rational and real
zeros?

If Descartes’ Rule of Signs reveals a no change of
signs or one sign of changes, what specific conclusion can
be drawn?

If synthetic division reveals a zero, why should we try
that value again as a possible solution?

Algebraic
For the following exercises, use the Remainder Theorem to
find the remainder.

⎛
⎝x4 − 9x2 + 14⎞

⎠ ÷ (x − 2)

⎛
⎝3x3 − 2x2 + x − 4⎞

⎠ ÷ (x + 3)

⎛
⎝x4 + 5x3 − 4x − 17⎞

⎠ ÷ (x + 1)

⎛
⎝−3x2 + 6x + 24⎞

⎠ ÷ (x − 4)

⎛
⎝5x5 − 4x4 + 3x3 − 2x2 + x − 1⎞

⎠ ÷ (x + 6)

⎛
⎝x4 − 1⎞

⎠ ÷ (x − 4)

⎛
⎝3x3 + 4x2 − 8x + 2⎞

⎠ ÷ (x − 3)

⎛
⎝4x3 + 5x2 − 2x + 7⎞

⎠ ÷ (x + 2)

For the following exercises, use the Factor Theorem to find
all real zeros for the given polynomial function and one
factor.

f (x) = 2x3 − 9x2 + 13x − 6;  x − 1

f (x) = 2x3 + x2 − 5x + 2;  x + 2

f (x) = 3x3 + x2 − 20x + 12;  x + 3

f (x) = 2x3 + 3x2 + x + 6;     x + 2

f (x) = − 5x3 + 16x2 − 9;     x − 3

x3 + 3x2 + 4x + 12;  x + 3

4x3 − 7x + 3;  x − 1

2x3 + 5x2 − 12x − 30,  2x + 5

For the following exercises, use the Rational Zero Theorem
to find all real zeros.

x3 − 3x2 − 10x + 24 = 0

2x3 + 7x2 − 10x − 24 = 0

x3 + 2x2 − 9x − 18 = 0

x3 + 5x2 − 16x − 80 = 0

x3 − 3x2 − 25x + 75 = 0

2x3 − 3x2 − 32x − 15 = 0

2x3 + x2 − 7x − 6 = 0

2x3 − 3x2 − x + 1 = 0

3x3 − x2 − 11x − 6 = 0

2x3 − 5x2 + 9x − 9 = 0

2x3 − 3x2 + 4x + 3 = 0

x4 − 2x3 − 7x2 + 8x + 12 = 0

x4 + 2x3 − 9x2 − 2x + 8 = 0

4x4 + 4x3 − 25x2 − x + 6 = 0

2x4 − 3x3 − 15x2 + 32x − 12 = 0

x4 + 2x3 − 4x2 − 10x − 5 = 0

4x3 − 3x + 1 = 0

8x 4 + 26x3 + 39x2 + 26x + 6

For the following exercises, find all complex solutions (real
and non-real).

x3 + x2 + x + 1 = 0
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x3 − 8x2 + 25x − 26 = 0

x3 + 13x2 + 57x + 85 = 0

3x3 − 4x2 + 11x + 10 = 0

x4 + 2x3 + 22x2 + 50x − 75 = 0

2x3 − 3x2 + 32x + 17 = 0

Graphical
For the following exercises, use Descartes’ Rule to
determine the possible number of positive and negative
solutions. Confirm with the given graph.

f (x) = x3 − 1

f (x) = x4 − x2 − 1

f (x) = x3 − 2x2 − 5x + 6

f (x) = x3 − 2x2 + x − 1

f (x) = x4 + 2x3 − 12x2 + 14x − 5

f (x) = 2x3 + 37x2 + 200x + 300

f (x) = x3 − 2x2 − 16x + 32

f (x) = 2x4 − 5x3 − 5x2 + 5x + 3

f (x) = 2x4 − 5x3 − 14x2 + 20x + 8

f (x) = 10x4 − 21x2 + 11

Numeric
For the following exercises, list all possible rational zeros
for the functions.

f (x) = x4 + 3x3 − 4x + 4

f (x) = 2x 3 + 3x2 − 8x + 5

f (x) = 3x 3 + 5x2 − 5x + 4

f (x) = 6x4 − 10x2 + 13x + 1

f (x) = 4x5 − 10x4 + 8x3 + x2 − 8

Technology
For the following exercises, use your calculator to graph the
polynomial function. Based on the graph, find the rational
zeros. All real solutions are rational.

f (x) = 6x3 − 7x2 + 1

f (x) = 4x3 − 4x2 − 13x − 5

f (x) = 8x3 − 6x2 − 23x + 6

f (x) = 12x4 + 55x3 + 12x2 − 117x + 54

f (x) = 16x4 − 24x3 + x2 − 15x + 25

Extensions
For the following exercises, construct a polynomial
function of least degree possible using the given
information.

Real roots: –1, 1, 3 and  ⎛⎝2, f (2)⎞
⎠ = (2, 4)

Real roots: –1 (with multiplicity 2 and 1) and
 ⎛⎝2, f (2)⎞

⎠ = (2, 4)

Real roots: –2,  12   (with multiplicity 2) and

 ⎛⎝−3, f (−3)⎞
⎠ = (−3, 5)

Real roots:  − 1
2 , 0,  12   and  ⎛⎝−2, f (−2)⎞

⎠ = (−2, 6)

Real roots: –4, –1, 1, 4 and  ⎛⎝−2, f (−2)⎞
⎠ = (−2, 10)

Real-World Applications
For the following exercises, find the dimensions of the box
described.

The length is twice as long as the width. The height is
2 inches greater than the width. The volume is 192 cubic
inches.

The length, width, and height are consecutive whole
numbers. The volume is 120 cubic inches.

The length is one inch more than the width, which is
one inch more than the height. The volume is 86.625 cubic
inches.

The length is three times the height and the height is
one inch less than the width. The volume is 108 cubic
inches.

The length is 3 inches more than the width. The width
is 2 inches more than the height. The volume is 120 cubic
inches.
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377.

For the following exercises, find the dimensions of the right
circular cylinder described.

The radius is 3 inches more than the height. The
volume is  16π  cubic meters.

The height is one less than one half the radius. The
volume is  72π  cubic meters.

The radius and height differ by one meter. The radius
is larger and the volume is  48π  cubic meters.

The radius and height differ by two meters. The
height is greater and the volume is  28.125π  cubic meters.

The radius is  13  meter greater than the height. The

volume is  98
9 π  cubic meters.
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5.6 | Rational Functions

Learning Objectives

In this section, you will:

5.6.1 Use arrow notation.
5.6.2 Solve applied problems involving rational functions.
5.6.3 Find the domains of rational functions.
5.6.4 Identify vertical asymptotes.
5.6.5 Identify horizontal asymptotes.
5.6.6 Graph rational functions.

Suppose we know that the cost of making a product is dependent on the number of items,  x,   produced. This is given by the

equation  C(x) = 15,000x − 0.1x2 + 1000.  If we want to know the average cost for producing  x  items, we would divide
the cost function by the number of items,  x.

The average cost function, which yields the average cost per item for  x  items produced, is

f (x) = 15,000x − 0.1x2 + 1000
x

Many other application problems require finding an average value in a similar way, giving us variables in the denominator.
Written without a variable in the denominator, this function will contain a negative integer power.

In the last few sections, we have worked with polynomial functions, which are functions with non-negative integers for
exponents. In this section, we explore rational functions, which have variables in the denominator.

Using Arrow Notation
We have seen the graphs of the basic reciprocal function and the squared reciprocal function from our study of toolkit
functions. Examine these graphs, as shown in Figure 5.62, and notice some of their features.

Figure 5.62

Several things are apparent if we examine the graph of   f (x) = 1
x .

1. On the left branch of the graph, the curve approaches the x-axis  (y = 0)  as  x → – ∞.
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2. As the graph approaches  x = 0  from the left, the curve drops, but as we approach zero from the right, the curve
rises.

3. Finally, on the right branch of the graph, the curves approaches the x-axis  (y = 0)  as  x → ∞.

To summarize, we use arrow notation to show that  x  or   f (x)  is approaching a particular value. See Table 5.6.

Symbol Meaning

x → a− x  approaches  a  from the left ( x < a  but close to  a )

x → a+ x  approaches  a  from the right ( x > a  but close to  a )

x → ∞ x  approaches infinity ( x  increases without bound)

x → − ∞ x  approaches negative infinity ( x  decreases without bound)

f (x) → ∞ the output approaches infinity (the output increases without bound)

f (x) → − ∞ the output approaches negative infinity (the output decreases without bound)

f (x) → a the output approaches  a

Table 5.6

Local Behavior of   f(x) = 1
x

Let’s begin by looking at the reciprocal function,   f (x) = 1
x . We cannot divide by zero, which means the function is

undefined at  x = 0;   so zero is not in the domain. As the input values approach zero from the left side (becoming very
small, negative values), the function values decrease without bound (in other words, they approach negative infinity). We
can see this behavior in Table 5.7.

x –0.1 –0.01 –0.001 –0.0001

f(x) = 1
x –10 –100 –1000 –10,000

Table 5.7

We write in arrow notation

as x → 0− , f (x) → − ∞

As the input values approach zero from the right side (becoming very small, positive values), the function values increase
without bound (approaching infinity). We can see this behavior in Table 5.8.
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x 0.1 0.01 0.001 0.0001

f(x) = 1
x 10 100 1000 10,000

Table 5.8

We write in arrow notation

As x → 0+ ,  f (x) → ∞.

See Figure 5.63.

Figure 5.63

This behavior creates a vertical asymptote, which is a vertical line that the graph approaches but never crosses. In this case,
the graph is approaching the vertical line  x = 0  as the input becomes close to zero. See Figure 5.64.

Figure 5.64
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Vertical Asymptote

A vertical asymptote of a graph is a vertical line  x = a where the graph tends toward positive or negative infinity as
the inputs approach  a. We write

As x → a, f (x) → ∞,  or as x → a, f (x) → − ∞.

End Behavior of   f(x) = 1
x

As the values of  x  approach infinity, the function values approach 0. As the values of  x  approach negative infinity, the
function values approach 0. See Figure 5.65. Symbolically, using arrow notation

As x → ∞, f (x) → 0, and as x → − ∞, f (x) → 0.

Figure 5.65

Based on this overall behavior and the graph, we can see that the function approaches 0 but never actually reaches 0; it
seems to level off as the inputs become large. This behavior creates a horizontal asymptote, a horizontal line that the graph
approaches as the input increases or decreases without bound. In this case, the graph is approaching the horizontal line
 y = 0.  See Figure 5.66.

Figure 5.66
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5.31

Horizontal Asymptote

A horizontal asymptote of a graph is a horizontal line  y = b where the graph approaches the line as the inputs

increase or decrease without bound. We write

 As x → ∞ or x → − ∞,  f (x) → b.

Example 5.48

Using Arrow Notation

Use arrow notation to describe the end behavior and local behavior of the function graphed in Figure 5.67.

Figure 5.67

Solution
Notice that the graph is showing a vertical asymptote at  x = 2,  which tells us that the function is undefined at
 x = 2.

As x → 2− , f (x) → − ∞,  and as x → 2+ ,  f (x) → ∞.

And as the inputs decrease without bound, the graph appears to be leveling off at output values of 4, indicating a
horizontal asymptote at  y = 4. As the inputs increase without bound, the graph levels off at 4.

As x → ∞,  f (x) → 4 and as x → − ∞,  f (x) → 4.

Use arrow notation to describe the end behavior and local behavior for the reciprocal squared function.

Example 5.49
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Using Transformations to Graph a Rational Function

Sketch a graph of the reciprocal function shifted two units to the left and up three units. Identify the horizontal
and vertical asymptotes of the graph, if any.

Solution
Shifting the graph left 2 and up 3 would result in the function

f (x) = 1
x + 2 + 3

or equivalently, by giving the terms a common denominator,

f (x) = 3x + 7
x + 2

The graph of the shifted function is displayed in Figure 5.68.

Figure 5.68

Notice that this function is undefined at  x = −2,   and the graph also is showing a vertical asymptote at  x = −2.

As x → − 2− ,  f (x) → − ∞, and as  x → − 2+ ,  f (x) → ∞.

As the inputs increase and decrease without bound, the graph appears to be leveling off at output values of 3,
indicating a horizontal asymptote at  y = 3.

As x → ± ∞,  f (x) → 3.

Analysis
Notice that horizontal and vertical asymptotes are shifted left 2 and up 3 along with the function.

Sketch the graph, and find the horizontal and vertical asymptotes of the reciprocal squared function that
has been shifted right 3 units and down 4 units.
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Solving Applied Problems Involving Rational Functions
In Example 5.49, we shifted a toolkit function in a way that resulted in the function   f (x) = 3x + 7

x + 2 . This is an example of

a rational function. A rational function is a function that can be written as the quotient of two polynomial functions. Many
real-world problems require us to find the ratio of two polynomial functions. Problems involving rates and concentrations
often involve rational functions.

Rational Function

A rational function is a function that can be written as the quotient of two polynomial functions  P(x)  and  Q(x).

(5.5)
f (x) = P(x)

Q(x) =
a p x p + a p − 1 x p − 1 + ... + a1 x + a0

bq xq + bq − 1 xq − 1 + ... + b1 x + b0
, Q(x) ≠ 0

Example 5.50

Solving an Applied Problem Involving a Rational Function

A large mixing tank currently contains 100 gallons of water into which 5 pounds of sugar have been mixed. A tap
will open pouring 10 gallons per minute of water into the tank at the same time sugar is poured into the tank at
a rate of 1 pound per minute. Find the concentration (pounds per gallon) of sugar in the tank after 12 minutes. Is
that a greater concentration than at the beginning?

Solution
Let  t  be the number of minutes since the tap opened. Since the water increases at 10 gallons per minute, and the
sugar increases at 1 pound per minute, these are constant rates of change. This tells us the amount of water in the
tank is changing linearly, as is the amount of sugar in the tank. We can write an equation independently for each:

water: W(t) = 100 + 10t in gallons
sugar: S(t) = 5 + 1t in pounds

The concentration,  C,  will be the ratio of pounds of sugar to gallons of water

C(t) = 5 + t
100 + 10t

The concentration after 12 minutes is given by evaluating  C(t)  at  t =  12.

C(12) = 5 + 12
100 + 10(12)

= 17
220

This means the concentration is 17 pounds of sugar to 220 gallons of water.

At the beginning, the concentration is

C(0) = 5 + 0
100 + 10(0)

= 1
20

Since   17
220 ≈ 0.08 > 1

20 = 0.05,   the concentration is greater after 12 minutes than at the beginning.

Chapter 5 Polynomial and Rational Functions 585



5.33 There are 1,200 freshmen and 1,500 sophomores at a prep rally at noon. After 12 p.m., 20 freshmen
arrive at the rally every five minutes while 15 sophomores leave the rally. Find the ratio of freshmen to
sophomores at 1 p.m.

Finding the Domains of Rational Functions
A vertical asymptote represents a value at which a rational function is undefined, so that value is not in the domain of the
function. A reciprocal function cannot have values in its domain that cause the denominator to equal zero. In general, to
find the domain of a rational function, we need to determine which inputs would cause division by zero.

Domain of a Rational Function

The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.

Given a rational function, find the domain.

1. Set the denominator equal to zero.

2. Solve to find the x-values that cause the denominator to equal zero.

3. The domain is all real numbers except those found in Step 2.

Example 5.51

Finding the Domain of a Rational Function

Find the domain of   f (x) = x + 3
x2 − 9

.

Solution
Begin by setting the denominator equal to zero and solving.

x2 − 9 = 0
x2 = 9
x = ±3

The denominator is equal to zero when  x = ± 3. The domain of the function is all real numbers except
 x = ± 3.

Analysis
A graph of this function, as shown in Figure 5.69, confirms that the function is not defined when  x = ± 3.

586 Chapter 5 Polynomial and Rational Functions

This content is available for free at https://cnx.org/content/col11758/1.5



5.34

Figure 5.69

There is a vertical asymptote at  x = 3  and a hole in the graph at  x = −3. We will discuss these types of holes in
greater detail later in this section.

Find the domain of   f (x) = 4x
5(x − 1)(x − 5).

Identifying Vertical Asymptotes of Rational Functions
By looking at the graph of a rational function, we can investigate its local behavior and easily see whether there are
asymptotes. We may even be able to approximate their location. Even without the graph, however, we can still determine
whether a given rational function has any asymptotes, and calculate their location.

Vertical Asymptotes
The vertical asymptotes of a rational function may be found by examining the factors of the denominator that are not
common to the factors in the numerator. Vertical asymptotes occur at the zeros of such factors.

Given a rational function, identify any vertical asymptotes of its graph.

1. Factor the numerator and denominator.

2. Note any restrictions in the domain of the function.

3. Reduce the expression by canceling common factors in the numerator and the denominator.

4. Note any values that cause the denominator to be zero in this simplified version. These are where the
vertical asymptotes occur.

5. Note any restrictions in the domain where asymptotes do not occur. These are removable discontinuities,
or “holes.”

Example 5.52

Identifying Vertical Asymptotes

Find the vertical asymptotes of the graph of  k(x) = 5 + 2x2

2 − x − x2.
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Solution
First, factor the numerator and denominator.

k(x) = 5 + 2x2

2 − x − x2

= 5 + 2x2

(2 + x)(1 − x)

To find the vertical asymptotes, we determine where this function will be undefined by setting the denominator
equal to zero:

(2 + x)(1 − x) = 0
x = −2, 1

Neither  x = –2  nor  x = 1  are zeros of the numerator, so the two values indicate two vertical asymptotes. The
graph in Figure 5.70 confirms the location of the two vertical asymptotes.

Figure 5.70

Removable Discontinuities
Occasionally, a graph will contain a hole: a single point where the graph is not defined, indicated by an open circle. We call
such a hole a removable discontinuity.

For example, the function   f (x) = x2 − 1
x2 − 2x − 3

 may be re-written by factoring the numerator and the denominator.

f (x) = (x + 1)(x − 1)
(x + 1)(x − 3)

Notice that  x + 1  is a common factor to the numerator and the denominator. The zero of this factor,  x = −1,   is the
location of the removable discontinuity. Notice also that  x – 3  is not a factor in both the numerator and denominator. The
zero of this factor,  x = 3,   is the vertical asymptote. See Figure 5.71. [Note that removable discontinuities may not be
visible when we use a graphing calculator, depending upon the window selected.]
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Figure 5.71

Removable Discontinuities of Rational Functions

A removable discontinuity occurs in the graph of a rational function at  x = a  if  a  is a zero for a factor in the
denominator that is common with a factor in the numerator. We factor the numerator and denominator and check for
common factors. If we find any, we set the common factor equal to 0 and solve. This is the location of the removable
discontinuity. This is true if the multiplicity of this factor is greater than or equal to that in the denominator. If the
multiplicity of this factor is greater in the denominator, then there is still an asymptote at that value.

Example 5.53

Identifying Vertical Asymptotes and Removable Discontinuities for a Graph

Find the vertical asymptotes and removable discontinuities of the graph of  k(x) = x − 2
x2 − 4

.

Solution
Factor the numerator and the denominator.

k(x) = x − 2
(x − 2)(x + 2)

Notice that there is a common factor in the numerator and the denominator,  x – 2. The zero for this factor is
 x = 2. This is the location of the removable discontinuity.

Notice that there is a factor in the denominator that is not in the numerator,  x + 2. The zero for this factor is
 x = −2. The vertical asymptote is  x = −2.  See Figure 5.72.
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Figure 5.72

The graph of this function will have the vertical asymptote at  x = −2,   but at  x = 2  the graph will have a hole.

Find the vertical asymptotes and removable discontinuities of the graph of   f (x) = x2 − 25
x3 − 6x2 + 5x

.

Identifying Horizontal Asymptotes of Rational Functions
While vertical asymptotes describe the behavior of a graph as the output gets very large or very small, horizontal asymptotes
help describe the behavior of a graph as the input gets very large or very small. Recall that a polynomial’s end behavior will
mirror that of the leading term. Likewise, a rational function’s end behavior will mirror that of the ratio of the function that
is the ratio of the leading terms.

There are three distinct outcomes when checking for horizontal asymptotes:

Case 1: If the degree of the denominator > degree of the numerator, there is a horizontal asymptote at  y = 0.

Example: f (x) = 4x + 2
x2 + 4x − 5

In this case, the end behavior is   f (x) ≈ 4x
x2 = 4

x . This tells us that, as the inputs increase or decrease without bound, this

function will behave similarly to the function  g(x) = 4
x ,   and the outputs will approach zero, resulting in a horizontal

asymptote at  y = 0.  See Figure 5.73. Note that this graph crosses the horizontal asymptote.
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Figure 5.73 Horizontal asymptote  y = 0 when   f (x) = p(x)
q(x) ,  q(x) ≠ 0 where degree of p < degree of q.

Case 2: If the degree of the denominator < degree of the numerator by one, we get a slant asymptote.

Example: f (x) = 3x2 − 2x + 1
x − 1

In this case, the end behavior is   f (x) ≈ 3x2
x = 3x. This tells us that as the inputs increase or decrease without bound, this

function will behave similarly to the function  g(x) = 3x. As the inputs grow large, the outputs will grow and not level off,

so this graph has no horizontal asymptote. However, the graph of  g(x) = 3x  looks like a diagonal line, and since   f  will

behave similarly to  g,   it will approach a line close to  y = 3x. This line is a slant asymptote.

To find the equation of the slant asymptote, divide  3x2 − 2x + 1
x − 1 . The quotient is  3x + 1,   and the remainder is 2. The

slant asymptote is the graph of the line  g(x) = 3x + 1.  See Figure 5.74.

Figure 5.74 Slant asymptote when   f (x) = p(x)
q(x) ,  q(x) ≠ 0 

where degree of  p > degree of q by 1. 
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Case 3: If the degree of the denominator = degree of the numerator, there is a horizontal asymptote at  y = an
bn

,  where  an

and  bn   are the leading coefficients of  p(x)  and  q(x)  for   f (x) = p(x)
q(x) , q(x) ≠ 0.

Example: f (x) = 3x2 + 2
x2 + 4x − 5

In this case, the end behavior is   f (x) ≈ 3x2

x2 = 3. This tells us that as the inputs grow large, this function will behave

like the function  g(x) = 3,  which is a horizontal line. As  x → ± ∞, f (x) → 3,   resulting in a horizontal asymptote at

 y = 3.  See Figure 5.75. Note that this graph crosses the horizontal asymptote.

Figure 5.75 Horizontal asymptote when

f (x) = p(x)
q(x) ,  q(x) ≠ 0 where degree of p = degree of q.

Notice that, while the graph of a rational function will never cross a vertical asymptote, the graph may or may not cross a
horizontal or slant asymptote. Also, although the graph of a rational function may have many vertical asymptotes, the graph
will have at most one horizontal (or slant) asymptote.

It should be noted that, if the degree of the numerator is larger than the degree of the denominator by more than one, the end
behavior of the graph will mimic the behavior of the reduced end behavior fraction. For instance, if we had the function

f (x) = 3x5 − x2

x + 3

with end behavior

f (x) ≈ 3x5
x = 3x4,

the end behavior of the graph would look similar to that of an even polynomial with a positive leading coefficient.

x → ± ∞,  f (x) → ∞

Horizontal Asymptotes of Rational Functions

The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and
denominator.

• Degree of numerator is less than degree of denominator: horizontal asymptote at  y = 0.
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• Degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant asymptote.

• Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading coefficients.

Example 5.54

Identifying Horizontal and Slant Asymptotes

For the functions listed, identify the horizontal or slant asymptote.

a. g(x) = 6x3 − 10x
2x3 + 5x2

b. h(x) = x2 − 4x + 1
x + 2

c. k(x) = x2 + 4x
x3 − 8

Solution

For these solutions, we will use   f (x) = p(x)
q(x) ,  q(x) ≠ 0.

a. g(x) = 6x3 − 10x
2x3 + 5x2 :  The degree of  p = degree of  q = 3,   so we can find the horizontal asymptote by

taking the ratio of the leading terms. There is a horizontal asymptote at  y = 6
2   or  y = 3.

b. h(x) = x2 − 4x + 1
x + 2 :  The degree of  p = 2  and degree of  q = 1.  Since  p > q  by 1, there is a slant

asymptote found at  x
2 − 4x + 1

x + 2 .

The quotient is  x – 2  and the remainder is 13. There is a slant asymptote at  y = –x – 2.

c. k(x) = x2 + 4x
x3 − 8

:  The degree of  p = 2 <   degree of  q = 3,   so there is a horizontal asymptote  y = 0.

Example 5.55

Identifying Horizontal Asymptotes

In the sugar concentration problem earlier, we created the equation  C(t) = 5 + t
100 + 10t .

Find the horizontal asymptote and interpret it in context of the problem.

Solution
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Both the numerator and denominator are linear (degree 1). Because the degrees are equal, there will be a
horizontal asymptote at the ratio of the leading coefficients. In the numerator, the leading term is  t,  with
coefficient 1. In the denominator, the leading term is  10t,  with coefficient 10. The horizontal asymptote will be
at the ratio of these values:

t → ∞,  C(t) → 1
10

This function will have a horizontal asymptote at  y = 1
10.

This tells us that as the values of t increase, the values of  C will approach   1
10.  In context, this means that, as

more time goes by, the concentration of sugar in the tank will approach one-tenth of a pound of sugar per gallon
of water or   1

10   pounds per gallon.

Example 5.56

Identifying Horizontal and Vertical Asymptotes

Find the horizontal and vertical asymptotes of the function

f (x) = (x − 2)(x + 3)
(x − 1)(x + 2)(x − 5)

Solution
First, note that this function has no common factors, so there are no potential removable discontinuities.

The function will have vertical asymptotes when the denominator is zero, causing the function to be undefined.
The denominator will be zero at  x = 1, – 2, and 5,   indicating vertical asymptotes at these values.

The numerator has degree 2, while the denominator has degree 3. Since the degree of the denominator is greater
than the degree of the numerator, the denominator will grow faster than the numerator, causing the outputs to
tend towards zero as the inputs get large, and so as  x → ± ∞,  f (x) → 0. This function will have a horizontal

asymptote at  y = 0.  See Figure 5.76.

594 Chapter 5 Polynomial and Rational Functions

This content is available for free at https://cnx.org/content/col11758/1.5
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Figure 5.76

Find the vertical and horizontal asymptotes of the function:

f (x) = (2x − 1)(2x + 1)
(x − 2)(x + 3)

Intercepts of Rational Functions

A rational function will have a y-intercept at   f (0) , if the function is defined at zero. A rational function will not have

a y-intercept if the function is not defined at zero.

Likewise, a rational function will have x-intercepts at the inputs that cause the output to be zero. Since a fraction is
only equal to zero when the numerator is zero, x-intercepts can only occur when the numerator of the rational function
is equal to zero.

Example 5.57

Finding the Intercepts of a Rational Function

Find the intercepts of   f (x) = (x − 2)(x + 3)
(x − 1)(x + 2)(x − 5).

Solution
We can find the y-intercept by evaluating the function at zero
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f (0) = (0 − 2)(0 + 3)
(0 − 1)(0 + 2)(0 − 5)

= −6
10

= −3
5

= −0.6

The x-intercepts will occur when the function is equal to zero:

0 = (x − 2)(x + 3)
(x − 1)(x + 2)(x − 5) This is zero when the numerator is zero.

0 = (x − 2)(x + 3)
x = 2, −3

The y-intercept is  (0, –0.6),   the x-intercepts are  (2, 0)  and  (–3, 0).  See Figure 5.77.

Figure 5.77

Given the reciprocal squared function that is shifted right 3 units and down 4 units, write this as a rational
function. Then, find the x- and y-intercepts and the horizontal and vertical asymptotes.

Graphing Rational Functions
In Example 5.56, we see that the numerator of a rational function reveals the x-intercepts of the graph, whereas the
denominator reveals the vertical asymptotes of the graph. As with polynomials, factors of the numerator may have integer
powers greater than one. Fortunately, the effect on the shape of the graph at those intercepts is the same as we saw with
polynomials.

The vertical asymptotes associated with the factors of the denominator will mirror one of the two toolkit reciprocal
functions. When the degree of the factor in the denominator is odd, the distinguishing characteristic is that on one side of
the vertical asymptote the graph heads towards positive infinity, and on the other side the graph heads towards negative
infinity. See Figure 5.78.
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Figure 5.78

When the degree of the factor in the denominator is even, the distinguishing characteristic is that the graph either heads
toward positive infinity on both sides of the vertical asymptote or heads toward negative infinity on both sides. See Figure
5.79.

Figure 5.79

For example, the graph of   f (x) = (x + 1)2(x − 3)
(x + 3)2(x − 2)

  is shown in Figure 5.80.
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Figure 5.80

• At the x-intercept  x = −1  corresponding to the  (x + 1)2   factor of the numerator, the graph "bounces", consistent
with the quadratic nature of the factor.

• At the x-intercept  x = 3  corresponding to the  (x − 3)  factor of the numerator, the graph passes through the axis as
we would expect from a linear factor.

• At the vertical asymptote  x = −3  corresponding to the  (x + 3)2   factor of the denominator, the graph heads

towards positive infinity on both sides of the asymptote, consistent with the behavior of the function   f (x) = 1
x2.

• At the vertical asymptote  x = 2,   corresponding to the  (x − 2)  factor of the denominator, the graph heads towards
positive infinity on the left side of the asymptote and towards negative infinity on the right side, consistent with the
behavior of the function   f (x) = 1

x .
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Given a rational function, sketch a graph.

1. Evaluate the function at 0 to find the y-intercept.

2. Factor the numerator and denominator.

3. For factors in the numerator not common to the denominator, determine where each factor of the
numerator is zero to find the x-intercepts.

4. Find the multiplicities of the x-intercepts to determine the behavior of the graph at those points.

5. For factors in the denominator, note the multiplicities of the zeros to determine the local behavior. For
those factors not common to the numerator, find the vertical asymptotes by setting those factors equal to
zero and then solve.

6. For factors in the denominator common to factors in the numerator, find the removable discontinuities by
setting those factors equal to 0 and then solve.

7. Compare the degrees of the numerator and the denominator to determine the horizontal or slant
asymptotes.

8. Sketch the graph.

Example 5.58

Graphing a Rational Function

Sketch a graph of   f (x) = (x + 2)(x − 3)
(x + 1)2(x − 2)

.

Solution
We can start by noting that the function is already factored, saving us a step.

Next, we will find the intercepts. Evaluating the function at zero gives the y-intercept:

f (0) = (0 + 2)(0 − 3)
(0 + 1)2(0 − 2)

= 3

To find the x-intercepts, we determine when the numerator of the function is zero. Setting each factor equal to
zero, we find x-intercepts at  x = –2  and  x = 3. At each, the behavior will be linear (multiplicity 1), with the
graph passing through the intercept.

We have a y-intercept at  (0, 3)  and x-intercepts at  (–2, 0)  and  (3, 0).

To find the vertical asymptotes, we determine when the denominator is equal to zero. This occurs when
 x + 1 = 0  and when  x – 2 = 0,   giving us vertical asymptotes at  x = –1  and  x = 2.

There are no common factors in the numerator and denominator. This means there are no removable
discontinuities.

Finally, the degree of denominator is larger than the degree of the numerator, telling us this graph has a horizontal
asymptote at  y = 0.

To sketch the graph, we might start by plotting the three intercepts. Since the graph has no x-intercepts between
the vertical asymptotes, and the y-intercept is positive, we know the function must remain positive between the
asymptotes, letting us fill in the middle portion of the graph as shown in Figure 5.81.
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Figure 5.81

The factor associated with the vertical asymptote at  x = −1 was squared, so we know the behavior will be
the same on both sides of the asymptote. The graph heads toward positive infinity as the inputs approach the
asymptote on the right, so the graph will head toward positive infinity on the left as well.

For the vertical asymptote at  x = 2,   the factor was not squared, so the graph will have opposite behavior on
either side of the asymptote. See Figure 5.82. After passing through the x-intercepts, the graph will then level
off toward an output of zero, as indicated by the horizontal asymptote.

Figure 5.82

Given the function   f (x) = (x + 2)2(x − 2)
2(x − 1)2(x − 3)

,   use the characteristics of polynomials and rational

functions to describe its behavior and sketch the function.
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Writing Rational Functions
Now that we have analyzed the equations for rational functions and how they relate to a graph of the function, we can use
information given by a graph to write the function. A rational function written in factored form will have an x-intercept
where each factor of the numerator is equal to zero. (An exception occurs in the case of a removable discontinuity.)
As a result, we can form a numerator of a function whose graph will pass through a set of x-intercepts by introducing
a corresponding set of factors. Likewise, because the function will have a vertical asymptote where each factor of the
denominator is equal to zero, we can form a denominator that will produce the vertical asymptotes by introducing a
corresponding set of factors.

Writing Rational Functions from Intercepts and Asymptotes

If a rational function has x-intercepts at  x = x1, x2, ..., xn,   vertical asymptotes at  x = v1, v2, … , vm,   and no

 xi = any v j,   then the function can be written in the form:

f (x) = a(x − x1)
p1 (x − x2)

p2 ⋯ (x − xn) pn

(x − v1)
q1 (x − v2)

q2 ⋯ (x − vm)qn

where the powers  pi   or  qi   on each factor can be determined by the behavior of the graph at the corresponding

intercept or asymptote, and the stretch factor  a  can be determined given a value of the function other than the x-
intercept or by the horizontal asymptote if it is nonzero.

Given a graph of a rational function, write the function.

1. Determine the factors of the numerator. Examine the behavior of the graph at the x-intercepts to determine
the zeroes and their multiplicities. (This is easy to do when finding the “simplest” function with small
multiplicities—such as 1 or 3—but may be difficult for larger multiplicities—such as 5 or 7, for example.)

2. Determine the factors of the denominator. Examine the behavior on both sides of each vertical asymptote
to determine the factors and their powers.

3. Use any clear point on the graph to find the stretch factor.

Example 5.59

Writing a Rational Function from Intercepts and Asymptotes

Write an equation for the rational function shown in Figure 5.83.
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Figure 5.83

Solution
The graph appears to have x-intercepts at  x = –2  and  x = 3. At both, the graph passes through the intercept,
suggesting linear factors. The graph has two vertical asymptotes. The one at  x = –1  seems to exhibit the basic

behavior similar to  1x ,  with the graph heading toward positive infinity on one side and heading toward negative

infinity on the other. The asymptote at  x = 2  is exhibiting a behavior similar to   1
x2,  with the graph heading

toward negative infinity on both sides of the asymptote. See Figure 5.84.

Figure 5.84
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We can use this information to write a function of the form

f (x) = a (x + 2)(x − 3)
(x + 1)(x − 2)2

To find the stretch factor, we can use another clear point on the graph, such as the y-intercept  (0, –2).

−2 = a (0 + 2)(0 − 3)
(0 + 1)(0 − 2)2

−2 = a−6
4

a = −8
−6 = 4

3

This gives us a final function of   f (x) = 4(x + 2)(x − 3)
3(x + 1)(x − 2)2.

Access these online resources for additional instruction and practice with rational functions.

• Graphing Rational Functions (http://openstaxcollege.org/l/graphrational)

• Find the Equation of a Rational Function (http://openstaxcollege.org/l/equatrational)

• Determining Vertical and Horizontal Asymptotes (http://openstaxcollege.org/l/asymptote)

• Find the Intercepts, Asymptotes, and Hole of a Rational Function
(http://openstaxcollege.org/l/interasymptote)
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5.6 EXERCISES
Verbal

What is the fundamental difference in the algebraic
representation of a polynomial function and a rational
function?

What is the fundamental difference in the graphs of
polynomial functions and rational functions?

If the graph of a rational function has a removable
discontinuity, what must be true of the functional rule?

Can a graph of a rational function have no vertical
asymptote? If so, how?

Can a graph of a rational function have no x-
intercepts? If so, how?

Algebraic
For the following exercises, find the domain of the rational
functions.

f (x) = x − 1
x + 2

f (x) = x + 1
x2 − 1

f (x) = x2 + 4
x2 − 2x − 8

f (x) = x2 + 4x − 3
x4 − 5x2 + 4

For the following exercises, find the domain, vertical
asymptotes, and horizontal asymptotes of the functions.

f (x) = 4
x − 1

f (x) = 2
5x + 2

f (x) = x
x2 − 9

f (x) = x
x2 + 5x − 36

f (x) = 3 + x
x3 − 27

f (x) = 3x − 4
x3 − 16x

f (x) = x2 − 1
x3 + 9x2 + 14x

f (x) = x + 5
x2 − 25

f (x) = x − 4
x − 6

f (x) = 4 − 2x
3x − 1

For the following exercises, find the x- and y-intercepts for
the functions.

f (x) = x + 5
x2 + 4

f (x) = x
x2 − x

f (x) = x2 + 8x + 7
x2 + 11x + 30

f (x) = x2 + x + 6
x2 − 10x + 24

f (x) = 94 − 2x2

3x2 − 12

For the following exercises, describe the local and end
behavior of the functions.

f (x) = x
2x + 1

f (x) = 2x
x − 6

f (x) = −2x
x − 6

f (x) = x2 − 4x + 3
x2 − 4x − 5

f (x) = 2x2 − 32
6x2 + 13x − 5

For the following exercises, find the slant asymptote of the
functions.

f (x) = 24x2 + 6x
2x + 1
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f (x) = 4x2 − 10
2x − 4

f (x) = 81x2 − 18
3x − 2

f (x) = 6x3 − 5x
3x2 + 4

f (x) = x2 + 5x + 4
x − 1

Graphical
For the following exercises, use the given transformation
to graph the function. Note the vertical and horizontal
asymptotes.

The reciprocal function shifted up two units.

The reciprocal function shifted down one unit and left
three units.

The reciprocal squared function shifted to the right 2
units.

The reciprocal squared function shifted down 2 units
and right 1 unit.

For the following exercises, find the horizontal intercepts,
the vertical intercept, the vertical asymptotes, and the
horizontal or slant asymptote of the functions. Use that
information to sketch a graph.

p(x) = 2x − 3
x + 4

q(x) = x − 5
3x − 1

s(x) = 4
(x − 2)2

r(x) = 5
(x + 1)2

f (x) = 3x2 − 14x − 5
3x2 + 8x − 16

g(x) = 2x2 + 7x − 15
3x2 − 14 + 15

a(x) = x2 + 2x − 3
x2 − 1

b(x) = x2 − x − 6
x2 − 4

h(x) = 2x2 +  x − 1
x − 4

k(x) = 2x2 − 3x − 20
x − 5

w(x) = (x − 1)(x + 3)(x − 5)
(x + 2)2(x − 4)

z(x) = (x + 2)2 (x − 5)
(x − 3)(x + 1)(x + 4)

For the following exercises, write an equation for a rational
function with the given characteristics.

Vertical asymptotes at  x = 5  and  x = −5,   x-
intercepts at  (2, 0)  and  (−1, 0),   y-intercept at  (0, 4)

Vertical asymptotes at  x = −4  and  x = −1,  
x-intercepts at  (1, 0)  and  (5, 0),   y-intercept at  (0, 7)

Vertical asymptotes at  x = −4  and  x = −5,   x-
intercepts at  (4, 0)  and  (−6, 0),  Horizontal asymptote at
 y = 7

Vertical asymptotes at  x = −3  and  x = 6,   x-
intercepts at  (−2, 0)  and  (1, 0),  Horizontal asymptote at
 y = −2

Vertical asymptote at  x = −1,  Double zero at
 x = 2,   y-intercept at  (0, 2)

Vertical asymptote at  x = 3,  Double zero at
 x = 1,   y-intercept at  (0, 4)

For the following exercises, use the graphs to write an
equation for the function.
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436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

Numeric
For the following exercises, make tables to show the
behavior of the function near the vertical asymptote and
reflecting the horizontal asymptote

f (x) = 1
x − 2

f (x) = x
x − 3

f (x) = 2x
x + 4

f (x) = 2x
(x − 3)2
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446.

447.

448.

449.

450.

451.

452.

453.

454.

455.

456.

457.

458.

459.

460.

461.

462.

463.

464.

465.

f (x) = x2

x2 + 2x + 1

Technology
For the following exercises, use a calculator to graph   f (x). 
Use the graph to solve   f (x) > 0.

f (x) = 2
x + 1

f (x) = 4
2x − 3

f (x) = 2
(x − 1)(x + 2)

f (x) = x + 2
(x − 1)(x − 4)

f (x) = (x + 3)2

(x − 1)2 (x + 1)

Extensions
For the following exercises, identify the removable
discontinuity.

f (x) = x2 − 4
x − 2

f (x) = x3 + 1
x + 1

f (x) = x2 + x − 6
x − 2

f (x) = 2x2 + 5x − 3
x + 3

f (x) = x3 + x2

x + 1

Real-World Applications
For the following exercises, express a rational function that
describes the situation.

A large mixing tank currently contains 200 gallons of
water, into which 10 pounds of sugar have been mixed. A
tap will open, pouring 10 gallons of water per minute into
the tank at the same time sugar is poured into the tank at a
rate of 3 pounds per minute. Find the concentration (pounds
per gallon) of sugar in the tank after  t minutes.

A large mixing tank currently contains 300 gallons of
water, into which 8 pounds of sugar have been mixed. A tap
will open, pouring 20 gallons of water per minute into the
tank at the same time sugar is poured into the tank at a rate

of 2 pounds per minute. Find the concentration (pounds per
gallon) of sugar in the tank after  t minutes.

For the following exercises, use the given rational function
to answer the question.

The concentration  C  of a drug in a patient’s
bloodstream  t  hours after injection in given by

 C(t) = 2t
3 + t2. What happens to the concentration of the

drug as  t  increases?

The concentration  C  of a drug in a patient’s
bloodstream  t  hours after injection is given by

 C(t) = 100t
2t2 + 75

. Use a calculator to approximate the

time when the concentration is highest.

For the following exercises, construct a rational function
that will help solve the problem. Then, use a calculator to
answer the question.

An open box with a square base is to have a volume of
108 cubic inches. Find the dimensions of the box that will
have minimum surface area. Let  x  = length of the side of
the base.

A rectangular box with a square base is to have a
volume of 20 cubic feet. The material for the base costs 30
cents/ square foot. The material for the sides costs 10 cents/
square foot. The material for the top costs 20 cents/square
foot. Determine the dimensions that will yield minimum
cost. Let  x  = length of the side of the base.

A right circular cylinder has volume of 100 cubic
inches. Find the radius and height that will yield minimum
surface area. Let  x  = radius.

A right circular cylinder with no top has a volume of
50 cubic meters. Find the radius that will yield minimum
surface area. Let  x  = radius.

A right circular cylinder is to have a volume of 40
cubic inches. It costs 4 cents/square inch to construct the
top and bottom and 1 cent/square inch to construct the rest
of the cylinder. Find the radius to yield minimum cost. Let
 x  = radius.
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5.7 | Inverses and Radical Functions

Learning Objectives

In this section, you will:

5.7.1 Find the inverse of an invertible polynomial function.
5.7.2 Restrict the domain to find the inverse of a polynomial function.

A mound of gravel is in the shape of a cone with the height equal to twice the radius.

Figure 5.85

The volume is found using a formula from elementary geometry.

V = 1
3πr2 h

= 1
3πr2(2r)

= 2
3πr3

We have written the volume  V   in terms of the radius  r. However, in some cases, we may start out with the volume and
want to find the radius. For example: A customer purchases 100 cubic feet of gravel to construct a cone shape mound with
a height twice the radius. What are the radius and height of the new cone? To answer this question, we use the formula

r = 3V
2π

3

This function is the inverse of the formula for  V   in terms of  r.

In this section, we will explore the inverses of polynomial and rational functions and in particular the radical functions we
encounter in the process.

Finding the Inverse of a Polynomial Function
Two functions   f   and  g  are inverse functions if for every coordinate pair in   f , (a, b),   there exists a corresponding

coordinate pair in the inverse function,  g, (b,  a).  In other words, the coordinate pairs of the inverse functions have the

input and output interchanged. Only one-to-one functions have inverses. Recall that a one-to-one function has a unique
output value for each input value and passes the horizontal line test.

For example, suppose a water runoff collector is built in the shape of a parabolic trough as shown in Figure 5.86. We can
use the information in the figure to find the surface area of the water in the trough as a function of the depth of the water.
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Figure 5.86

Because it will be helpful to have an equation for the parabolic cross-sectional shape, we will impose a coordinate system
at the cross section, with  x measured horizontally and  y measured vertically, with the origin at the vertex of the parabola.

See Figure 5.87.

Figure 5.87

From this we find an equation for the parabolic shape. We placed the origin at the vertex of the parabola, so we know the
equation will have form  y(x) = ax2. Our equation will need to pass through the point (6, 18), from which we can solve for

the stretch factor  a.

18 = a62

a = 18
36

= 1
2

Our parabolic cross section has the equation

y(x) = 1
2x2

We are interested in the surface area of the water, so we must determine the width at the top of the water as a function of the
water depth. For any depth  y,   the width will be given by  2x,   so we need to solve the equation above for  x  and find the

inverse function. However, notice that the original function is not one-to-one, and indeed, given any output there are two
inputs that produce the same output, one positive and one negative.
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To find an inverse, we can restrict our original function to a limited domain on which it is one-to-one. In this case, it makes
sense to restrict ourselves to positive  x  values. On this domain, we can find an inverse by solving for the input variable:

y = 1
2x2

2y = x2

x = ± 2y

This is not a function as written. We are limiting ourselves to positive  x  values, so we eliminate the negative solution,
giving us the inverse function we’re looking for.

y = x2

2 ,  x > 0

Because  x  is the distance from the center of the parabola to either side, the entire width of the water at the top will be  2x. 
The trough is 3 feet (36 inches) long, so the surface area will then be:

Area = l ⋅ w
= 36 ⋅ 2x
= 72x
= 72 2y

This example illustrates two important points:

1. When finding the inverse of a quadratic, we have to limit ourselves to a domain on which the function is one-to-one.

2. The inverse of a quadratic function is a square root function. Both are toolkit functions and different types of power
functions.

Functions involving roots are often called radical functions. While it is not possible to find an inverse of most polynomial
functions, some basic polynomials do have inverses. Such functions are called invertible functions, and we use the notation
  f −1(x).

Warning:   f −1(x)  is not the same as the reciprocal of the function   f (x). This use of “–1” is reserved to denote inverse

functions. To denote the reciprocal of a function   f (x),  we would need to write  ⎛⎝ f (x)⎞
⎠
−1 = 1

f (x).

An important relationship between inverse functions is that they “undo” each other. If   f −1   is the inverse of a function   f ,

then   f   is the inverse of the function   f −1.  In other words, whatever the function   f   does to  x,   f −1   undoes it—and vice-

versa.

f −1 ⎛
⎝ f (x)⎞

⎠ = x,  for all x in the domain of f

and

f ⎛
⎝ f −1 (x)⎞

⎠ = x,  for all x in the domain of f −1

Note that the inverse switches the domain and range of the original function.

Verifying Two Functions Are Inverses of One Another

Two functions,   f   and  g,   are inverses of one another if for all  x  in the domain of   f   and  g.

g⎛
⎝ f (x)⎞

⎠ = f ⎛
⎝g(x)⎞

⎠ = x
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Given a polynomial function, find the inverse of the function by restricting the domain in such a way that
the new function is one-to-one.

1. Replace   f (x) with  y.

2. Interchange  x  and  y.

3. Solve for  y,   and rename the function   f −1(x).

Example 5.60

Verifying Inverse Functions

Show that   f (x) = 1
x + 1   and   f −1 (x) = 1

x − 1  are inverses, for  x ≠ 0, −1 .

Solution

We must show that   f −1 ⎛
⎝ f (x)⎞

⎠ = x  and   f ⎛
⎝ f −1 (x)⎞

⎠ = x.

f −1( f (x)) = f −1 ⎛
⎝

1
x + 1

⎞
⎠

= 1
1

x + 1
− 1

= (x + 1) − 1
= x

f ( f −1(x)) = f ⎛
⎝
1
x − 1⎞

⎠

= 1
⎛
⎝
1
x − 1⎞

⎠ + 1

= 1
1
x

= x

Therefore,   f (x) = 1
x + 1   and   f −1 (x) = 1

x − 1  are inverses.

Show that   f (x) = x + 5
3   and   f −1 (x) = 3x − 5  are inverses.

Example 5.61

Finding the Inverse of a Cubic Function

Find the inverse of the function   f (x) = 5x3 + 1.

Solution
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This is a transformation of the basic cubic toolkit function, and based on our knowledge of that function, we know
it is one-to-one. Solving for the inverse by solving for  x.

y = 5x3 + 1

x = 5y3 + 1

x − 1 = 5y3

x − 1
5 = y3

f −1(x) = x − 1
5

3

Analysis
Look at the graph of   f   and   f –1. Notice that one graph is the reflection of the other about the line  y = x. This is

always the case when graphing a function and its inverse function.

Also, since the method involved interchanging  x  and  y,   notice corresponding points. If  (a, b)  is on the graph of

f , then  (b, a)  is on the graph of   f –1.  Since  (0, 1)  is on the graph of   f ,   then  (1, 0)  is on the graph of   f –1. 
Similarly, since  (1, 6)  is on the graph of   f , then  (6, 1)  is on the graph of   f –1.  See Figure 5.88.

Figure 5.88

Find the inverse function of   f (x) = x + 43 .

Restricting the Domain to Find the Inverse of a Polynomial Function
So far, we have been able to find the inverse functions of cubic functions without having to restrict their domains. However,
as we know, not all cubic polynomials are one-to-one. Some functions that are not one-to-one may have their domain
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restricted so that they are one-to-one, but only over that domain. The function over the restricted domain would then have an
inverse function. Since quadratic functions are not one-to-one, we must restrict their domain in order to find their inverses.

Restricting the Domain

If a function is not one-to-one, it cannot have an inverse. If we restrict the domain of the function so that it becomes
one-to-one, thus creating a new function, this new function will have an inverse.

Given a polynomial function, restrict the domain of a function that is not one-to-one and then find the
inverse.

1. Restrict the domain by determining a domain on which the original function is one-to-one.

2. Replace   f (x) with  y.

3. Interchange  x  and  y.

4. Solve for  y, and rename the function or pair of function   f −1(x).

5. Revise the formula for   f −1(x)  by ensuring that the outputs of the inverse function correspond to the

restricted domain of the original function.

Example 5.62

Restricting the Domain to Find the Inverse of a Polynomial Function

Find the inverse function of   f :

a. f (x) = (x − 4)2,  x ≥ 4

b. f (x) = (x − 4)2,  x ≤ 4

Solution

The original function   f (x) = (x − 4)2   is not one-to-one, but the function is restricted to a domain of  x ≥ 4  or

 x ≤ 4  on which it is one-to-one. See Figure 5.89.

Figure 5.89
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To find the inverse, start by replacing   f (x) with the simple variable  y.

y = (x − 4)2 Interchangexand y.

x = (y − 4)2 Take the square root.
± x = y − 4 Add  4  to both sides.

4 ± x = y

This is not a function as written. We need to examine the restrictions on the domain of the original function to
determine the inverse. Since we reversed the roles of  x  and  y  for the original   f (x),  we looked at the domain:

the values  x  could assume. When we reversed the roles of  x  and  y,   this gave us the values  y  could assume.

For this function,  x ≥ 4,   so for the inverse, we should have  y ≥ 4,  which is what our inverse function gives.

a. The domain of the original function was restricted to  x ≥ 4,   so the outputs of the inverse need to be the
same,   f (x) ≥ 4,   and we must use the + case:

f −1(x) = 4 + x
b. The domain of the original function was restricted to  x ≤ 4,   so the outputs of the inverse need to be the

same,   f (x) ≤ 4,   and we must use the – case:

f −1(x) = 4 − x

Analysis
On the graphs in Figure 5.90, we see the original function graphed on the same set of axes as its inverse function.
Notice that together the graphs show symmetry about the line  y = x. The coordinate pair  (4,  0)  is on the graph

of   f   and the coordinate pair  (0,  4)  is on the graph of   f −1.  For any coordinate pair, if  (a,  b)  is on the graph

of   f ,   then  (b,  a)  is on the graph of   f −1.  Finally, observe that the graph of   f   intersects the graph of   f −1 on

the line  y = x.  Points of intersection for the graphs of   f   and   f −1  will always lie on the line  y = x.

Figure 5.90
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Example 5.63

Finding the Inverse of a Quadratic Function When the Restriction Is Not Specified

Restrict the domain and then find the inverse of

f (x) = (x − 2)2 − 3.

Solution
We can see this is a parabola with vertex at  (2, –3)  that opens upward. Because the graph will be decreasing on
one side of the vertex and increasing on the other side, we can restrict this function to a domain on which it will
be one-to-one by limiting the domain to  x ≥ 2.

To find the inverse, we will use the vertex form of the quadratic. We start by replacing   f (x) with a simple

variable,  y,   then solve for  x.

y = (x − 2)2 − 3   Interchange x and y.

x = (y − 2)2 − 3   Add 3 to both sides.

x + 3 = (y − 2)2   Take the square root.
± x + 3 = y − 2   Add 2 to both sides.

2 ± x + 3 = y   Rename the function.

f −1(x) = 2 ± x + 3

Now we need to determine which case to use. Because we restricted our original function to a domain of  x ≥ 2,  
the outputs of the inverse should be the same, telling us to utilize the + case

f −1(x) = 2 + x + 3

If the quadratic had not been given in vertex form, rewriting it into vertex form would be the first step. This way
we may easily observe the coordinates of the vertex to help us restrict the domain.

Analysis
Notice that we arbitrarily decided to restrict the domain on  x ≥ 2. We could just have easily opted to restrict the

domain on  x ≤ 2,   in which case   f −1(x) = 2 − x + 3. Observe the original function graphed on the same set

of axes as its inverse function in Figure 5.91. Notice that both graphs show symmetry about the line  y = x. The

coordinate pair  (2,  − 3)  is on the graph of   f   and the coordinate pair  (−3,  2)  is on the graph of   f −1. Observe

from the graph of both functions on the same set of axes that

domain of f = range of  f – 1 = [2, ∞)

and

domain of f – 1 = range of  f = [ – 3, ∞).

Finally, observe that the graph of   f   intersects the graph of   f −1   along the line  y = x.
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Figure 5.91

Find the inverse of the function   f (x) = x2 + 1,   on the domain  x ≥ 0.

Solving Applications of Radical Functions
Notice that the functions from previous examples were all polynomials, and their inverses were radical functions. If we
want to find the inverse of a radical function, we will need to restrict the domain of the answer because the range of the
original function is limited.

Given a radical function, find the inverse.

1. Determine the range of the original function.

2. Replace   f (x)  with  y,   then solve for  x.

3. If necessary, restrict the domain of the inverse function to the range of the original function.

Example 5.64

Finding the Inverse of a Radical Function

Restrict the domain of the function   f (x) = x − 4  and then find the inverse.

Solution
Note that the original function has range   f (x) ≥ 0. Replace   f (x) with  y,   then solve for  x.
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y = x − 4 Replace f (x) with y.
x = y − 4 Interchange x and y.
x = y − 4 Square each side.

x2 = y − 4 Add 4.

x2 + 4 = y Rename the function f −1(x).

f −1(x) = x2 + 4

Recall that the domain of this function must be limited to the range of the original function.

f −1(x) = x2 + 4, x ≥ 0

Analysis
Notice in Figure 5.92 that the inverse is a reflection of the original function over the line  y = x. Because the

original function has only positive outputs, the inverse function has only positive inputs.

Figure 5.92

Restrict the domain and then find the inverse of the function   f (x) = 2x + 3.

Solving Applications of Radical Functions
Radical functions are common in physical models, as we saw in the section opener. We now have enough tools to be able to
solve the problem posed at the start of the section.

Example 5.65

Solving an Application with a Cubic Function

A mound of gravel is in the shape of a cone with the height equal to twice the radius. The volume of the cone in
terms of the radius is given by
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V = 2
3πr3

Find the inverse of the function  V = 2
3πr3   that determines the volume  V   of a cone and is a function of the radius

 r. Then use the inverse function to calculate the radius of such a mound of gravel measuring 100 cubic feet. Use
 π = 3.14.

Solution
Start with the given function for  V . Notice that the meaningful domain for the function is  r > 0  since negative
radii would not make sense in this context nor would a radius of 0. Also note the range of the function (hence,
the domain of the inverse function) is  V > 0.  Solve for  r  in terms of  V ,   using the method outlined previously.
Note that in real-world applications, we do not swap the variables when finding inverses. Instead, we change
which variable is considered to be the independent variable.

V = 2
3πr3

r3 = 3V
2π Solve for r3.

r = 3V
2π

3
Solve for r.

This is the result stated in the section opener. Now evaluate this for  V = 100  and  π = 3.14.

r = 3V
2π

3

= 3 ⋅ 100
2 ⋅ 3.14

3

≈ 47.77073

≈ 3.63

Therefore, the radius is about 3.63 ft.

Determining the Domain of a Radical Function Composed with Other Functions
When radical functions are composed with other functions, determining domain can become more complicated.

Example 5.66

Finding the Domain of a Radical Function Composed with a Rational Function

Find the domain of the function   f (x) = (x + 2)(x − 3)
(x − 1) .

Solution
Because a square root is only defined when the quantity under the radical is non-negative, we need to determine

where  (x + 2)(x − 3)
(x − 1) ≥ 0. The output of a rational function can change signs (change from positive to negative

or vice versa) at x-intercepts and at vertical asymptotes. For this equation, the graph could change signs at
 x = – 2,  1,  and  3.
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To determine the intervals on which the rational expression is positive, we could test some values in the
expression or sketch a graph. While both approaches work equally well, for this example we will use a graph as
shown in Figure 5.93.

Figure 5.93

This function has two x-intercepts, both of which exhibit linear behavior near the x-intercepts. There is one
vertical asymptote, corresponding to a linear factor; this behavior is similar to the basic reciprocal toolkit function,
and there is no horizontal asymptote because the degree of the numerator is larger than the degree of the
denominator. There is a y-intercept at  (0, 6).

From the y-intercept and x-intercept at  x = −2,  we can sketch the left side of the graph. From the behavior at
the asymptote, we can sketch the right side of the graph.

From the graph, we can now tell on which intervals the outputs will be non-negative, so that we can be sure
that the original function   f (x) will be defined.   f (x)  has domain  −2 ≤ x < 1 or x ≥ 3,   or in interval notation,

 [−2, 1) ∪ [3, ∞).

Finding Inverses of Rational Functions
As with finding inverses of quadratic functions, it is sometimes desirable to find the inverse of a rational function,
particularly of rational functions that are the ratio of linear functions, such as in concentration applications.

Example 5.67

Finding the Inverse of a Rational Function

The function  C = 20 + 0.4n
100 + n   represents the concentration  C  of an acid solution after  n mL of 40% solution has

been added to 100 mL of a 20% solution. First, find the inverse of the function; that is, find an expression for  n 
in terms of  C. Then use your result to determine how much of the 40% solution should be added so that the final
mixture is a 35% solution.
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Solution
We first want the inverse of the function in order to determine how many mL we need for a given concentration.
We will solve for  n  in terms of  C.

C = 20 + 0.4n
100 + n

C(100 + n) = 20 + 0.4n
100C + Cn = 20 + 0.4n
100C − 20 = 0.4n − Cn
100C − 20 = (0.4n − C)n

n = 100C − 20
0.4 − C

Now evaluate this function at 35%, which is  C = 0.35.

n = 100(0.35) − 20
0.4 − 0.35

= 15
0.05

= 300

We can conclude that 300 mL of the 40% solution should be added.

Find the inverse of the function   f (x) = x + 3
x − 2.

Access these online resources for additional instruction and practice with inverses and radical functions.

• Graphing the Basic Square Root Function (http://openstaxcollege.org/l/graphsquareroot)

• Find the Inverse of a Square Root Function (http://openstaxcollege.org/l/inversesquare)

• Find the Inverse of a Rational Function (http://openstaxcollege.org/l/inverserational)

• Find the Inverse of a Rational Function and an Inverse Function Value
(http://openstaxcollege.org/l/rationalinverse)

• Inverse Functions (http://openstaxcollege.org/l/inversefunction)
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5.7 EXERCISES
Verbal

Explain why we cannot find inverse functions for all
polynomial functions.

Why must we restrict the domain of a quadratic
function when finding its inverse?

When finding the inverse of a radical function, what
restriction will we need to make?

The inverse of a quadratic function will always take
what form?

Algebraic
For the following exercises, find the inverse of the function
on the given domain.

f (x) = (x − 4)2,  [4, ∞)

f (x) = (x + 2)2,  [−2, ∞)

f (x) = (x + 1)2 − 3,  [−1, ∞)

f (x) = 3x2 + 5,   (∞, 0]

f (x) = 12 − x2,  [0, ∞)

f (x) = 9 − x2,  [0, ∞)

f (x) = 2x2 + 4,  [0, ∞)

For the following exercises, find the inverse of the
functions.

f (x) = x3 + 5

f (x) = 3x3 + 1

f (x) = 4 − x3

f (x) = 4 − 2x3

For the following exercises, find the inverse of the
functions.

f (x) = 2x + 1

f (x) = 3 − 4x

f (x) = 9 + 4x − 4

f (x) = 6x − 8 + 5

f (x) = 9 + 2 x3

f (x) = 3 − x3

f (x) = 2
x + 8

f (x) = 3
x − 4

f (x) = x + 3
x + 7

f (x) = x − 2
x + 7

f (x) = 3x + 4
5 − 4x

f (x) = 5x + 1
2 − 5x

f (x) = x2 + 2x,  [−1, ∞)

f (x) = x2 + 4x + 1,  [−2, ∞)

f (x) = x2 − 6x + 3,  [3, ∞)

Graphical
For the following exercises, find the inverse of the function
and graph both the function and its inverse.

f (x) = x2 + 2,  x ≥ 0

f (x) = 4 − x2,  x ≥ 0

f (x) = (x + 3)2,  x ≥ − 3

f (x) = (x − 4)2,  x ≥ 4

f (x) = x3 + 3

f (x) = 1 − x3

f (x) = x2 + 4x,  x ≥ − 2

f (x) = x2 − 6x + 1,  x ≥ 3
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f (x) = 2
x

f (x) = 1
x2,  x ≥ 0

For the following exercises, use a graph to help determine
the domain of the functions.

f (x) = (x + 1)(x − 1)
x

f (x) = (x + 2)(x − 3)
x − 1

f (x) = x(x + 3)
x − 4

f (x) = x2 − x − 20
x − 2

f (x) = 9 − x2

x + 4

Technology
For the following exercises, use a calculator to graph the
function. Then, using the graph, give three points on the
graph of the inverse with y-coordinates given.

f (x) = x3 − x − 2, y = 1, 2, 3

f (x) = x3 + x − 2, y = 0, 1, 2

f (x) = x3 + 3x − 4, y = 0, 1, 2

f (x) = x3 + 8x − 4, y = − 1, 0, 1

f (x) = x4 + 5x + 1, y = − 1, 0, 1

Extensions
For the following exercises, find the inverse of the
functions with  a, b, c  positive real numbers.

f (x) = ax3 + b

f (x) = x2 + bx

f (x) = ax2 + b

f (x) = ax + b3

f (x) = ax + b
x + c

Real-World Applications
For the following exercises, determine the function
described and then use it to answer the question.

An object dropped from a height of 200 meters has a
height,  h(t),   in meters after  t  seconds have lapsed, such

that  h(t) = 200 − 4.9t2. Express  t  as a function of height,
 h,   and find the time to reach a height of 50 meters.

An object dropped from a height of 600 feet has a
height,  h(t),   in feet after  t  seconds have elapsed, such

that  h(t) = 600 − 16t2. Express  t  as a function of height
 h,   and find the time to reach a height of 400 feet.

The volume,  V ,   of a sphere in terms of its radius,

 r,   is given by  V(r) = 4
3πr3. Express  r  as a function of

 V ,   and find the radius of a sphere with volume of 200
cubic feet.

The surface area,  A,   of a sphere in terms of its

radius,  r,   is given by  A(r) = 4πr2. Express  r  as a
function of  V ,   and find the radius of a sphere with a
surface area of 1000 square inches.

A container holds 100 mL of a solution that is 25 mL
acid. If  n mL of a solution that is 60% acid is added, the

function  C(n) = 25 + .6n
100 + n   gives the concentration,  C,   as

a function of the number of mL added,  n. Express  n  as a
function of  C  and determine the number of mL that need to
be added to have a solution that is 50% acid.

The period  T ,   in seconds, of a simple pendulum as a
function of its length  l,   in feet, is given by

 T(l) = 2π l
32.2   . Express  l  as a function of  T   and

determine the length of a pendulum with period of 2
seconds.

The volume of a cylinder ,  V ,   in terms of radius,

 r,   and height,  h,   is given by  V = πr2 h.  If a cylinder
has a height of 6 meters, express the radius as a function of
 V   and find the radius of a cylinder with volume of 300
cubic meters.

The surface area,  A,   of a cylinder in terms of its

radius,  r,   and height,  h,   is given by  A = 2πr2 + 2πrh. 
If the height of the cylinder is 4 feet, express the radius as a
function of  V   and find the radius if the surface area is 200
square feet.
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The volume of a right circular cone,  V ,   in terms of

its radius,  r,   and its height,  h,   is given by  V = 1
3πr2 h. 

Express  r  in terms of  h  if the height of the cone is 12 feet
and find the radius of a cone with volume of 50 cubic
inches.

Consider a cone with height of 30 feet. Express the
radius,  r,   in terms of the volume,  V ,   and find the radius
of a cone with volume of 1000 cubic feet.
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5.8 | Modeling Using Variation

Learning Objectives

In this section, you will:

5.8.1 Solve direct variation problems.
5.8.2 Solve inverse variation problems.
5.8.3 Solve problems involving joint variation.

A used-car company has just offered their best candidate, Nicole, a position in sales. The position offers 16% commission
on her sales. Her earnings depend on the amount of her sales. For instance, if she sells a vehicle for $4,600, she will earn
$736. She wants to evaluate the offer, but she is not sure how. In this section, we will look at relationships, such as this one,
between earnings, sales, and commission rate.

Solving Direct Variation Problems
In the example above, Nicole’s earnings can be found by multiplying her sales by her commission. The formula  e = 0.16s 
tells us her earnings,  e,   come from the product of 0.16, her commission, and the sale price of the vehicle. If we create a
table, we observe that as the sales price increases, the earnings increase as well, which should be intuitive. See Table 5.9.

 s  , sales price e = 0.16s Interpretation

$4,600 e = 0.16(4,600) = 736 A sale of a $4,600 vehicle results in $736 earnings.

$9,200 e = 0.16(9,200) = 1,472 A sale of a $9,200 vehicle results in $1472 earnings.

$18,400 e = 0.16(18,400) = 2,944 A sale of a $18,400 vehicle results in $2944 earnings.

Table 5.9

Notice that earnings are a multiple of sales. As sales increase, earnings increase in a predictable way. Double the sales of the
vehicle from $4,600 to $9,200, and we double the earnings from $736 to $1,472. As the input increases, the output increases
as a multiple of the input. A relationship in which one quantity is a constant multiplied by another quantity is called direct
variation. Each variable in this type of relationship varies directly with the other.

Figure 5.94 represents the data for Nicole’s potential earnings. We say that earnings vary directly with the sales price of
the car. The formula  y = kxn   is used for direct variation. The value  k  is a nonzero constant greater than zero and is called

the constant of variation. In this case,  k = 0.16  and  n = 1. We saw functions like this one when we discussed power
functions.
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Figure 5.94

Direct Variation

If  x and y  are related by an equation of the form

(5.6) y = kxn  

then we say that the relationship is direct variation and  y  varies directly with, or is proportional to, the  nth  power

of  x.  In direct variation relationships, there is a nonzero constant ratio  k = y
xn,  where  k  is called the constant of

variation, which help defines the relationship between the variables.

Given a description of a direct variation problem, solve for an unknown.

1. Identify the input,  x, and the output,  y. 

2. Determine the constant of variation. You may need to divide  y  by the specified power of  x  to determine

the constant of variation.

3. Use the constant of variation to write an equation for the relationship.

4. Substitute known values into the equation to find the unknown.

Example 5.68

Solving a Direct Variation Problem

The quantity  y  varies directly with the cube of  x.  If  y = 25 when  x = 2,   find  y when  x  is 6.

Solution

The general formula for direct variation with a cube is  y = kx3. The constant can be found by dividing  y  by the

cube of  x. 
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k = y
x3

= 25
23

= 25
8

Now use the constant to write an equation that represents this relationship.

y = 25
8 x3

Substitute  x = 6  and solve for  y.

y = 25
8 (6)3

= 675

Analysis
The graph of this equation is a simple cubic, as shown in Figure 5.95.

Figure 5.95

Do the graphs of all direct variation equations look like Example 5.68?

No. Direct variation equations are power functions—they may be linear, quadratic, cubic, quartic, radical, etc.
But all of the graphs pass through  (0,0).

The quantity  y  varies directly with the square of  x.  If  y = 24 when  x = 3,   find  y when  x  is 4.

Solving Inverse Variation Problems
Water temperature in an ocean varies inversely to the water’s depth. The formula  T = 14,000

d gives us the temperature

in degrees Fahrenheit at a depth in feet below Earth’s surface. Consider the Atlantic Ocean, which covers 22% of Earth’s
surface. At a certain location, at the depth of 500 feet, the temperature may be 28°F.

If we create Table 5.10, we observe that, as the depth increases, the water temperature decreases.
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d,  depth T = 14,000
d Interpretation

500 ft
14,000

500 = 28 At a depth of 500 ft, the water temperature is 28° F.

1000 ft
14,000
1000 = 14 At a depth of 1,000 ft, the water temperature is 14° F.

2000 ft
14,000
2000 = 7 At a depth of 2,000 ft, the water temperature is 7° F.

Table 5.10

We notice in the relationship between these variables that, as one quantity increases, the other decreases. The two quantities
are said to be inversely proportional and each term varies inversely with the other. Inversely proportional relationships
are also called inverse variations.

For our example, Figure 5.96 depicts the inverse variation. We say the water temperature varies inversely with the depth
of the water because, as the depth increases, the temperature decreases. The formula  y = k

x   for inverse variation in this case

uses  k = 14,000. 

Figure 5.96

Inverse Variation

If  x  and  y  are related by an equation of the form

(5.7)y = k
xn

where  k  is a nonzero constant, then we say that  y varies inversely with the  nth  power of  x.  In inversely

proportional relationships, or inverse variations, there is a constant multiple  k = xn y. 

Example 5.69

Writing a Formula for an Inversely Proportional Relationship
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A tourist plans to drive 100 miles. Find a formula for the time the trip will take as a function of the speed the
tourist drives.

Solution
Recall that multiplying speed by time gives distance. If we let  t  represent the drive time in hours, and  v  represent
the velocity (speed or rate) at which the tourist drives, then  vt = distance. Because the distance is fixed at 100
miles,  vt = 100  so t = 100/v. Because time is a function of velocity, we can write  t(v).

t(v) = 100
v

= 100v−1

We can see that the constant of variation is 100 and, although we can write the relationship using the negative
exponent, it is more common to see it written as a fraction. We say that time varies inversely with velocity.

Given a description of an indirect variation problem, solve for an unknown.

1. Identify the input,  x,   and the output,  y.

2. Determine the constant of variation. You may need to multiply  y  by the specified power of  x  to determine

the constant of variation.

3. Use the constant of variation to write an equation for the relationship.

4. Substitute known values into the equation to find the unknown.

Example 5.70

Solving an Inverse Variation Problem

A quantity  y  varies inversely with the cube of  x.  If  y = 25 when  x = 2,   find  y when  x  is 6.

Solution

The general formula for inverse variation with a cube is  y = k
x3. The constant can be found by multiplying  y  by

the cube of  x.

k = x3 y

= 23 ⋅ 25
= 200

Now we use the constant to write an equation that represents this relationship.

y = k
x3,   k = 200

y = 200
x3

Substitute  x = 6  and solve for  y.
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y = 200
63

= 25
27

Analysis
The graph of this equation is a rational function, as shown in Figure 5.97.

Figure 5.97

A quantity  y  varies inversely with the square of  x.  If  y = 8 when  x = 3,   find  y when  x  is 4.

Solving Problems Involving Joint Variation
Many situations are more complicated than a basic direct variation or inverse variation model. One variable often depends
on multiple other variables. When a variable is dependent on the product or quotient of two or more variables, this is called
joint variation. For example, the cost of busing students for each school trip varies with the number of students attending
and the distance from the school. The variable  c, cost, varies jointly with the number of students,  n, and the distance,  d. 

Joint Variation

Joint variation occurs when a variable varies directly or inversely with multiple variables.

For instance, if  x  varies directly with both  y  and  z,   we have  x = kyz.  If  x  varies directly with  y  and inversely with

z, we have  x = ky
z . Notice that we only use one constant in a joint variation equation.

Example 5.71

Solving Problems Involving Joint Variation

A quantity  x  varies directly with the square of  y  and inversely with the cube root of  z.  If  x = 6 when  y = 2 
and  z = 8,   find  x when  y = 1  and  z = 27. 

Solution
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Begin by writing an equation to show the relationship between the variables.

x = ky2

z3

Substitute  x = 6,   y = 2,   and  z = 8  to find the value of the constant  k.

6 = k22

83

6 = 4k
2

3 = k

Now we can substitute the value of the constant into the equation for the relationship.

x = 3y2

z3

To find  x when  y = 1  and  z = 27,  we will substitute values for  y  and  z  into our equation.

x = 3(1)2

273

= 1

A quantity  x  varies directly with the square of  y  and inversely with  z.  If  x = 40 when  y = 4  and

 z = 2,   find  x when  y = 10  and  z = 25.

Access these online resources for additional instruction and practice with direct and inverse variation.

• Direct Variation (http://openstaxcollege.org/l/directvariation)

• Inverse Variation (http://openstaxcollege.org/l/inversevariatio)

• Direct and Inverse Variation (http://openstaxcollege.org/l/directinverse)

Visit this website (http://openstaxcollege.org/l/PreCalcLPC03) for additional practice questions from
Learningpod.
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5.8 EXERCISES
Verbal

What is true of the appearance of graphs that reflect a
direct variation between two variables?

If two variables vary inversely, what will an equation
representing their relationship look like?

Is there a limit to the number of variables that can
vary jointly? Explain.

Algebraic
For the following exercises, write an equation describing
the relationship of the given variables.

 y  varies directly as  x  and when  x = 6,  y = 12.

 y  varies directly as the square of  x  and when

 x = 4,    y = 80. 

 y  varies directly as the square root of  x  and when

 x = 36,   y = 24.

 y  varies directly as the cube of  x  and when

 x = 36,  y = 24.

 y  varies directly as the cube root of  x  and when

 x = 27,    y = 15.

 y  varies directly as the fourth power of  x  and when

 x = 1,    y = 6.

 y  varies inversely as  x  and when  x = 4,    y = 2.

 y  varies inversely as the square of  x  and when

 x = 3,    y = 2.

 y  varies inversely as the cube of  x  and when

 x = 2,    y = 5.

 y  varies inversely as the fourth power of  x  and

when  x = 3,    y = 1. 

 y  varies inversely as the square root of  x  and when

 x = 25,   y = 3.

 y  varies inversely as the cube root of  x  and when

 x = 64,   y = 5.

 y  varies jointly with  x  and  z  and when  x = 2  and

 z = 3,    y = 36.

 y  varies jointly as  x,  z,   and  w  and when

 x = 1,    z = 2,    w = 5,   then  y = 100.

 y  varies jointly as the square of  x  and the square of

 z  and when  x = 3  and  z = 4,   then  y = 72.

 y  varies jointly as  x  and the square root of  z  and

when  x = 2  and  z = 25,   then  y = 100.

 y varies jointly as the square of  x the cube of  z and

the square root of  W. When  x = 1, z = 2,   and
 w = 36,   then  y = 48.

 y  varies jointly as  x  and  z  and inversely as  w. 
When  x = 3,   z = 5,   and  w = 6,   then  y = 10.

 y  varies jointly as the square of  x  and the square

root of  z  and inversely as the cube of  w. When
 x = 3, z = 4,   and  w = 3,   then  y = 6.

 y  varies jointly as  x  and  z  and inversely as the

square root of  w  and the square of  t . When
 x = 3, z = 1, w = 25,   and  t = 2,   then  y = 6.

Numeric
For the following exercises, use the given information to
find the unknown value.

 y  varies directly as  x. When  x = 3,   then  y = 12. 
Find  y wneh  x = 20.

 y  varies directly as the square of  x. When  x = 2,  
then  y = 16.  Find  y when x = 8.

 y  varies directly as the cube of  x. When  x = 3,  
then  y = 5.    Find  y when  x = 4.

 y  varies directly as the square root of  x. When

 x = 16,   then  y = 4.  Find  y when  x = 36.

 y  varies directly as the cube root of  x. When

 x = 125,   then  y = 15.  Find  y when  x = 1,000.

 y  varies inversely with  x. When  x = 3,   then

 y = 2.  Find  y when  x = 1.
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 y  varies inversely with the square of  x. When

 x = 4,   then  y = 3.  Find  y when  x = 2.

 y  varies inversely with the cube of  x. When

 x = 3,   then  y = 1.  Find  y when  x = 1.

 y  varies inversely with the square root of  x. When

 x = 64,   then  y = 12.  Find  y when  x = 36.

 y  varies inversely with the cube root of  x. When

 x = 27,   then  y = 5.  Find  y when  x = 125.

 y  varies jointly as  x  and  z. When  x = 4  and

 z = 2,   then  y = 16.  Find  y when  x = 3  and  z = 3.

 y  varies jointly as  x,  z,  and  w. When  x = 2,
z = 1,   and  w = 12,   then  y = 72.  Find  y when

 x = 1,   z = 2,   and  w = 3.

 y  varies jointly as  x  and the square of  z. When

 x = 2  and  z = 4,   then  y = 144.  Find  y when  x = 4
and  z = 5.

 y  varies jointly as the square of  x  and the square

root of  z. When  x = 2  and  z = 9,   then  y = 24.  Find  y 
when  x = 3  and  z = 25.

 y  varies jointly as  x  and  z  and inversely as  w. 
When  x = 5,   z = 2,    and   w = 20,   then y = 4. 
Find  y when  x = 3  and  z = 8,    and    w = 48.

 y  varies jointly as the square of  x  and the cube of  z 
and inversely as the square root of  w. When  x = 2,
z = 2,   and  w = 64,   then  y = 12.  Find  y when

 x = 1,   z = 3,   and   w = 4.

 y  varies jointly as the square of  x  and of  z  and

inversely as the square root of  w  and of  t . When  x = 2,
z = 3,   w = 16,   and  t = 3,   then  y = 1.  Find  y when

 x = 3,   z = 2,    w = 36,   and  t = 5.

Technology
For the following exercises, use a calculator to graph the
equation implied by the given variation.

 y  varies directly with the square of  x  and when

 x = 2,  y = 3.

 y  varies directly as the cube of  x  and when

 x = 2,  y = 4.

 y  varies directly as the square root of  x  and when

 x = 36,  y = 2.

 y  varies inversely with  x  and when

 x = 6,  y = 2.

 y  varies inversely as the square of  x  and when

 x = 1,  y = 4.

Extensions
For the following exercises, use Kepler’s Law, which states
that the square of the time,  T ,   required for a planet to orbit
the Sun varies directly with the cube of the mean distance,
 a,   that the planet is from the Sun.

Using Earth’s time of 1 year and mean distance of 93
million miles, find the equation relating  T   and  a. 

Use the result from the previous exercise to determine
the time required for Mars to orbit the Sun if its mean
distance is 142 million miles.

Using Earth’s distance of 150 million kilometers, find
the equation relating  T   and  a.

Use the result from the previous exercise to determine
the time required for Venus to orbit the Sun if its mean
distance is 108 million kilometers.

Using Earth’s distance of 1 astronomical unit (A.U.),
determine the time for Saturn to orbit the Sun if its mean
distance is 9.54 A.U.

Real-World Applications
For the following exercises, use the given information to
answer the questions.

The distance  s  that an object falls varies directly with
the square of the time,  t,   of the fall. If an object falls 16
feet in one second, how long for it to fall 144 feet?

The velocity  v  of a falling object varies directly to
the time,  t,   of the fall. If after 2 seconds, the velocity of
the object is 64 feet per second, what is the velocity after 5
seconds?

The rate of vibration of a string under constant tension
varies inversely with the length of the string. If a string is
24 inches long and vibrates 128 times per second, what is
the length of a string that vibrates 64 times per second?

The volume of a gas held at constant temperature
varies indirectly as the pressure of the gas. If the volume of
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585.

586.

587.

588.

589.

590.

a gas is 1200 cubic centimeters when the pressure is 200
millimeters of mercury, what is the volume when the
pressure is 300 millimeters of mercury?

The weight of an object above the surface of Earth
varies inversely with the square of the distance from the
center of Earth. If a body weighs 50 pounds when it is 3960
miles from Earth’s center, what would it weigh it were 3970
miles from Earth’s center?

The intensity of light measured in foot-candles varies
inversely with the square of the distance from the light
source. Suppose the intensity of a light bulb is 0.08 foot-
candles at a distance of 3 meters. Find the intensity level at
8 meters.

The current in a circuit varies inversely with its
resistance measured in ohms. When the current in a circuit
is 40 amperes, the resistance is 10 ohms. Find the current if
the resistance is 12 ohms.

The force exerted by the wind on a plane surface
varies jointly with the square of the velocity of the wind and
with the area of the plane surface. If the area of the surface
is 40 square feet surface and the wind velocity is 20 miles
per hour, the resulting force is 15 pounds. Find the force on
a surface of 65 square feet with a velocity of 30 miles per
hour.

The horsepower (hp) that a shaft can safely transmit
varies jointly with its speed (in revolutions per minute
(rpm) and the cube of the diameter. If the shaft of a certain
material 3 inches in diameter can transmit 45 hp at 100 rpm,
what must the diameter be in order to transmit 60 hp at 150
rpm?

The kinetic energy  K  of a moving object varies
jointly with its mass  m  and the square of its velocity  v.  If
an object weighing 40 kilograms with a velocity of 15
meters per second has a kinetic energy of 1000 joules, find
the kinetic energy if the velocity is increased to 20 meters
per second.
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arrow notation

axis of symmetry

coefficient

constant of variation

continuous function

degree

Descartes’ Rule of Signs

direct variation

Division Algorithm

end behavior

Factor Theorem

Fundamental Theorem of Algebra

general form of a quadratic function

global maximum

global minimum

horizontal asymptote

Intermediate Value Theorem

inverse variation

inversely proportional

invertible function

joint variation

leading coefficient

CHAPTER 5 REVIEW

KEY TERMS
a way to represent symbolically the local and end behavior of a function by using arrows to indicate that

an input or output approaches a value

a vertical line drawn through the vertex of a parabola, that opens up or down, around which the
parabola is symmetric; it is defined by  x = − b

2a.

a nonzero real number multiplied by a variable raised to an exponent

the non-zero value  k  that helps define the relationship between variables in direct or inverse
variation

a function whose graph can be drawn without lifting the pen from the paper because there are no
breaks in the graph

the highest power of the variable that occurs in a polynomial

a rule that determines the maximum possible numbers of positive and negative real zeros
based on the number of sign changes of   f (x)  and   f ( − x) 

the relationship between two variables that are a constant multiple of each other; as one quantity
increases, so does the other

given a polynomial dividend   f (x)  and a non-zero polynomial divisor  d(x)  where the degree of

 d(x)  is less than or equal to the degree of   f (x) , there exist unique polynomials  q(x)  and  r(x)  such that

  f (x) = d(x)q(x) + r(x)  where  q(x)  is the quotient and  r(x)  is the remainder. The remainder is either equal to zero

or has degree strictly less than  d(x). 

the behavior of the graph of a function as the input decreases without bound and increases without bound

 k  is a zero of polynomial function   f (x)  if and only if  (x − k)  is a factor of   f (x)

a polynomial function with degree greater than 0 has at least one complex zero

the function that describes a parabola, written in the form   f (x) = ax2 + bx + c
, where  a, b,   and  c  are real numbers and  a ≠ 0.

highest turning point on a graph;   f (a)  where   f (a) ≥ f (x)  for all  x.

lowest turning point on a graph;   f (a)  where   f (a) ≤ f (x)  for all  x.

a horizontal line  y = b where the graph approaches the line as the inputs increase or decrease

without bound.

for two numbers  a  and  b  in the domain of   f ,   if  a < b  and   f (a) ≠ f (b),   then the

function   f   takes on every value between   f (a)  and   f (b) ; specifically, when a polynomial function changes from a

negative value to a positive value, the function must cross the  x- axis

the relationship between two variables in which the product of the variables is a constant

a relationship where one quantity is a constant divided by the other quantity; as one quantity
increases, the other decreases

any function that has an inverse function

a relationship where a variable varies directly or inversely with multiple variables

the coefficient of the leading term
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leading term

Linear Factorization Theorem

multiplicity

polynomial function

power function

rational function

Rational Zero Theorem

Remainder Theorem

removable discontinuity

roots

smooth curve

standard form of a quadratic function

synthetic division

term of a polynomial function

turning point

varies directly

varies inversely

vertex

vertex form of a quadratic function

vertical asymptote

zeros

the term containing the highest power of the variable

allowing for multiplicities, a polynomial function will have the same number of factors
as its degree, and each factor will be in the form  (x − c) , where  c  is a complex number

the number of times a given factor appears in the factored form of the equation of a polynomial; if a
polynomial contains a factor of the form  (x − h) p ,  x = h  is a zero of multiplicity  p.

a function that consists of either zero or the sum of a finite number of non-zero terms, each of
which is a product of a number, called the coefficient of the term, and a variable raised to a non-negative integer
power.

a function that can be represented in the form   f (x) = kx p  where  k  is a constant, the base is a variable,

and the exponent,  p , is a constant

a function that can be written as the ratio of two polynomials

the possible rational zeros of a polynomial function have the form  pq  where  p  is a factor of the

constant term and  q  is a factor of the leading coefficient.

if a polynomial   f (x)  is divided by  x − k , then the remainder is equal to the value   f (k) 

a single point at which a function is undefined that, if filled in, would make the function
continuous; it appears as a hole on the graph of a function

in a given function, the values of  x  at which  y = 0 , also called zeros

a graph with no sharp corners

the function that describes a parabola, written in the form
  f (x) = a(x − h)2 + k , where  (h,  k)  is the vertex

a shortcut method that can be used to divide a polynomial by a binomial of the form  x − k 

any  ai x i   of a polynomial function in the form

  f (x) = an xn + ... + a2 x2 + a1 x + a0

the location at which the graph of a function changes direction

a relationship where one quantity is a constant multiplied by the other quantity

a relationship where one quantity is a constant divided by the other quantity

the point at which a parabola changes direction, corresponding to the minimum or maximum value of the quadratic
function

another name for the standard form of a quadratic function

a vertical line  x = a where the graph tends toward positive or negative infinity as the inputs
approach  a

in a given function, the values of  x  at which  y = 0 , also called roots

KEY EQUATIONS

general form of a quadratic function f (x) = ax2 + bx + c

standard form of a quadratic function f (x) = a(x − h)2 + k
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general form of a polynomial function f (x) = an xn + ... + a2 x2 + a1 x + a0

Division Algorithm f (x) = d(x)q(x) + r(x) where q(x) ≠ 0

Rational Function f (x) = P(x)
Q(x) =

a p x p + a p − 1 x p − 1 + ... + a1 x + a0

bq xq + bq − 1 xq − 1 + ... + b1 x + b0
, Q(x) ≠ 0

Direct variation y = kxn, k is a nonzero constant.

Inverse variation y = k
xn, k is a nonzero constant.

KEY CONCEPTS
5.1 Quadratic Functions

• A polynomial function of degree two is called a quadratic function.

• The graph of a quadratic function is a parabola. A parabola is a U-shaped curve that can open either up or down.

• The axis of symmetry is the vertical line passing through the vertex. The zeros, or  x- intercepts, are the points at
which the parabola crosses the  x- axis. The  y- intercept is the point at which the parabola crosses the  y- axis. See

Example 5.1, Example 5.7, and Example 5.8.

• Quadratic functions are often written in general form. Standard or vertex form is useful to easily identify the vertex
of a parabola. Either form can be written from a graph. See Example 5.2.

• The vertex can be found from an equation representing a quadratic function. See Example 5.3.

• The domain of a quadratic function is all real numbers. The range varies with the function. See Example 5.4.

• A quadratic function’s minimum or maximum value is given by the  y- value of the vertex.

• The minimum or maximum value of a quadratic function can be used to determine the range of the function and to
solve many kinds of real-world problems, including problems involving area and revenue. See Example 5.5 and
Example 5.6.

• The vertex and the intercepts can be identified and interpreted to solve real-world problems. See Example 5.9.

5.2 Power Functions and Polynomial Functions

• A power function is a variable base raised to a number power. See Example 5.10.

• The behavior of a graph as the input decreases beyond bound and increases beyond bound is called the end behavior.

• The end behavior depends on whether the power is even or odd. See Example 5.11 and Example 5.12.

• A polynomial function is the sum of terms, each of which consists of a transformed power function with positive
whole number power. See Example 5.13.

• The degree of a polynomial function is the highest power of the variable that occurs in a polynomial. The term
containing the highest power of the variable is called the leading term. The coefficient of the leading term is called
the leading coefficient. See Example 5.14.

• The end behavior of a polynomial function is the same as the end behavior of the power function represented by the
leading term of the function. See Example 5.15 and Example 5.16.
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• A polynomial of degree  n  will have at most  n  x-intercepts and at most  n − 1  turning points. See Example 5.17,
Example 5.18, Example 5.19, Example 5.20, and Example 5.21.

5.3 Graphs of Polynomial Functions

• Polynomial functions of degree 2 or more are smooth, continuous functions. See Example 5.22.

• To find the zeros of a polynomial function, if it can be factored, factor the function and set each factor equal to zero.
See Example 5.23, Example 5.24, and Example 5.25.

• Another way to find the  x- intercepts of a polynomial function is to graph the function and identify the points at
which the graph crosses the  x- axis. See Example 5.26.

• The multiplicity of a zero determines how the graph behaves at the  x- intercepts. See Example 5.27.

• The graph of a polynomial will cross the horizontal axis at a zero with odd multiplicity.

• The graph of a polynomial will touch the horizontal axis at a zero with even multiplicity.

• The end behavior of a polynomial function depends on the leading term.

• The graph of a polynomial function changes direction at its turning points.

• A polynomial function of degree  n  has at most  n − 1  turning points. See Example 5.28.

• To graph polynomial functions, find the zeros and their multiplicities, determine the end behavior, and ensure that
the final graph has at most  n − 1  turning points. See Example 5.29 and Example 5.31.

• Graphing a polynomial function helps to estimate local and global extremas. See Example 5.32.

• The Intermediate Value Theorem tells us that if   f (a)  and  f (b)  have opposite signs, then there exists at least one

value  c  between  a  and  b  for which   f (c) = 0.  See Example 5.30.

5.4 Dividing Polynomials

• Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower degree. See
Example 5.33 and Example 5.34.

• The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor and the
quotient added to the remainder.

• Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form  x − k.  See
Example 5.35, Example 5.36, and Example 5.37.

• Polynomial division can be used to solve application problems, including area and volume. See Example 5.38.

5.5 Zeros of Polynomial Functions

• To find   f (k),   determine the remainder of the polynomial   f (x) when it is divided by  x − k. This is known as the

Remainder Theorem. See Example 5.39.

• According to the Factor Theorem,  k  is a zero of   f (x)  if and only if  (x − k)  is a factor of   f (x). See Example
5.40.

• According to the Rational Zero Theorem, each rational zero of a polynomial function with integer coefficients will
be equal to a factor of the constant term divided by a factor of the leading coefficient. See Example 5.41 and
Example 5.42.

• When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.

• Synthetic division can be used to find the zeros of a polynomial function. See Example 5.43.

• According to the Fundamental Theorem, every polynomial function has at least one complex zero. See Example
5.44.

• Every polynomial function with degree greater than 0 has at least one complex zero.
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• Allowing for multiplicities, a polynomial function will have the same number of factors as its degree. Each factor
will be in the form  (x − c),  where  c  is a complex number. See Example 5.45.

• The number of positive real zeros of a polynomial function is either the number of sign changes of the function or
less than the number of sign changes by an even integer.

• The number of negative real zeros of a polynomial function is either the number of sign changes of   f ( − x)  or less

than the number of sign changes by an even integer. See Example 5.46.

• Polynomial equations model many real-world scenarios. Solving the equations is easiest done by synthetic division.
See Example 5.47.

5.6 Rational Functions

• We can use arrow notation to describe local behavior and end behavior of the toolkit functions   f (x) = 1
x   and

  f (x) = 1
x2.  See Example 5.48.

• A function that levels off at a horizontal value has a horizontal asymptote. A function can have more than one
vertical asymptote. See Example 5.49.

• Application problems involving rates and concentrations often involve rational functions. See Example 5.50.

• The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.
See Example 5.51.

• The vertical asymptotes of a rational function will occur where the denominator of the function is equal to zero and
the numerator is not zero. See Example 5.52.

• A removable discontinuity might occur in the graph of a rational function if an input causes both numerator and
denominator to be zero. See Example 5.53.

• A rational function’s end behavior will mirror that of the ratio of the leading terms of the numerator and denominator
functions. See Example 5.54, Example 5.55, Example 5.56, and Example 5.57.

• Graph rational functions by finding the intercepts, behavior at the intercepts and asymptotes, and end behavior. See
Example 5.58.

• If a rational function has x-intercepts at  x = x1, x2, … , xn,   vertical asymptotes at  x = v1, v2, … , vm,   and

no  xi = any v j,   then the function can be written in the form

f (x) = a(x − x1)
p1 (x − x2)

p2 ⋯ (x − xn) pn

(x − v1)
q1 (x − v2)

q2 ⋯ (x − vm)qn

See Example 5.59.

5.7 Inverses and Radical Functions

• The inverse of a quadratic function is a square root function.

• If   f −1   is the inverse of a function   f ,   then   f   is the inverse of the function   f −1.  See Example 5.60.

• While it is not possible to find an inverse of most polynomial functions, some basic polynomials are invertible. See
Example 5.61.

• To find the inverse of certain functions, we must restrict the function to a domain on which it will be one-to-one.
See Example 5.62 and Example 5.63.

• When finding the inverse of a radical function, we need a restriction on the domain of the answer. See Example
5.64 and Example 5.66.

• Inverse and radical and functions can be used to solve application problems. See Example 5.65 and Example
5.67.
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5.8 Modeling Using Variation

• A relationship where one quantity is a constant multiplied by another quantity is called direct variation. See
Example 5.68.

• Two variables that are directly proportional to one another will have a constant ratio.

• A relationship where one quantity is a constant divided by another quantity is called inverse variation. See
Example 5.69.

• Two variables that are inversely proportional to one another will have a constant multiple. See Example 5.70.

• In many problems, a variable varies directly or inversely with multiple variables. We call this type of relationship
joint variation. See Example 5.71.

CHAPTER 5 REVIEW EXERCISES
Quadratic Functions

For the following exercises, write the quadratic function in
standard form. Then give the vertex and axes intercepts.
Finally, graph the function.

591. f (x) = x2 − 4x − 5

592. f (x) = − 2x2 − 4x

For the following exercises, find the equation of the
quadratic function using the given information.

593. The vertex is ( – 2, 3) and a point on the graph is
 (3, 6).

594. The vertex is  ( – 3, 6.5)  and a point on the graph is
 (2, 6).

For the following exercises, complete the task.

595. A rectangular plot of land is to be enclosed by
fencing. One side is along a river and so needs no fence.
If the total fencing available is 600 meters, find the
dimensions of the plot to have maximum area.

596. An object projected from the ground at a 45 degree
angle with initial velocity of 120 feet per second has height,
 h,   in terms of horizontal distance traveled,  x,   given by

 h(x) = −32
(120)2x2 + x.  Find the maximum height the

object attains.

Power Functions and Polynomial Functions

For the following exercises, determine if the function is a
polynomial function and, if so, give the degree and leading
coefficient.

597. f (x) = 4x5 − 3x3 + 2x − 1

598. f (x) = 5x + 1 − x2

599. f (x) = x2 ⎛
⎝3 − 6x + x2⎞

⎠

For the following exercises, determine end behavior of the
polynomial function.

600. f (x) = 2x4 + 3x3 − 5x2 + 7

601. f (x) = 4x3 − 6x2 + 2

602. f (x) = 2x2(1 + 3x − x2)

Graphs of Polynomial Functions

For the following exercises, find all zeros of the polynomial
function, noting multiplicities.

603. f (x) = (x + 3)2(2x − 1)(x + 1)3

604. f (x) = x5 + 4x4 + 4x3

605. f (x) = x3 − 4x2 + x − 4

For the following exercises, based on the given graph,
determine the zeros of the function and note multiplicity.

606.
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607.

608. Use the Intermediate Value Theorem to show that
at least one zero lies between 2 and 3 for the function
  f (x) = x3 − 5x + 1

Dividing Polynomials

For the following exercises, use long division to find the
quotient and remainder.

609. x3 − 2x2 + 4x + 4
x − 2

610. 3x4 − 4x2 + 4x + 8
x + 1

For the following exercises, use synthetic division to find
the quotient. If the divisor is a factor, then write the factored
form.

611. x3 − 2x2 + 5x − 1
x + 3

612. x3 + 4x + 10
x − 3

613. 2x3 + 6x2 − 11x − 12
x + 4

614. 3x4 + 3x3 + 2x + 2
x + 1

Zeros of Polynomial Functions

For the following exercises, use the Rational Zero Theorem
to help you solve the polynomial equation.

615. 2x3 − 3x2 − 18x − 8 = 0

616. 3x3 + 11x2 + 8x − 4 = 0

617. 2x4 − 17x3 + 46x2 − 43x + 12 = 0

618. 4x4 + 8x3 + 19x2 + 32x + 12 = 0

For the following exercises, use Descartes’ Rule of Signs to
find the possible number of positive and negative solutions.

619. x3 − 3x2 − 2x + 4 = 0

620. 2x4 − x3 + 4x2 − 5x + 1 = 0

Rational Functions

For the following exercises, find the intercepts and the
vertical and horizontal asymptotes, and then use them to
sketch a graph of the function.

621. f (x) = x + 2
x − 5

622. f (x) = x2 + 1
x2 − 4

623. f (x) = 3x2 − 27
x2 + x − 2

624. f (x) = x + 2
x2 − 9

For the following exercises, find the slant asymptote.

625. f (x) = x2 − 1
x + 2

626. f (x) = 2x3 − x2 + 4
x2 + 1

Inverses and Radical Functions

For the following exercises, find the inverse of the function
with the domain given.

627. f (x) = (x − 2)2,  x ≥ 2

628. f (x) = (x + 4)2 − 3,  x ≥ − 4

629. f (x) = x2 + 6x − 2,  x ≥ − 3

630. f (x) = 2x3 − 3
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631. f (x) = 4x + 5 − 3

632. f (x) = x − 3
2x + 1

Modeling Using Variation

For the following exercises, find the unknown value.

633.  y  varies directly as the square of  x.  If when

 x = 3,  y = 36,   find  y  if  x = 4.

634.  y  varies inversely as the square root of  x  If when

 x = 25,  y = 2,   find  y  if  x = 4.

635.  y  varies jointly as the cube of  x  and as  z.  If when

 x = 1  and  z = 2,   y = 6,   find  y  if  x = 2  and  z = 3.

636.  y  varies jointly as  x  and the square of  z  and

inversely as the cube of  w.  If when  x = 3,   z = 4,   and
 w = 2,   y = 48,   find  y  if  x = 4,   z = 5,   and  w = 3.

For the following exercises, solve the application problem.

637. The weight of an object above the surface of the
earth varies inversely with the distance from the center of
the earth. If a person weighs 150 pounds when he is on
the surface of the earth (3,960 miles from center), find the
weight of the person if he is 20 miles above the surface.

638. The volume  V   of an ideal gas varies directly with
the temperature  T   and inversely with the pressure P. A
cylinder contains oxygen at a temperature of 310 degrees K
and a pressure of 18 atmospheres in a volume of 120 liters.
Find the pressure if the volume is decreased to 100 liters
and the temperature is increased to 320 degrees K.

CHAPTER 5 PRACTICE TEST
Give the degree and leading coefficient of the following
polynomial function.

639. f (x) = x3 ⎛
⎝3 − 6x2 − 2x2⎞

⎠

Determine the end behavior of the polynomial function.

640. f (x) = 8x3 − 3x2 + 2x − 4

641. f (x) = − 2x2(4 − 3x − 5x2)

Write the quadratic function in standard form. Determine
the vertex and axes intercepts and graph the function.

642. f (x) = x2 + 2x − 8

Given information about the graph of a quadratic function,
find its equation.

643. Vertex  (2, 0)  and point on graph  (4, 12).

Solve the following application problem.

644. A rectangular field is to be enclosed by fencing. In
addition to the enclosing fence, another fence is to divide
the field into two parts, running parallel to two sides. If
1,200 feet of fencing is available, find the maximum area
that can be enclosed.

Find all zeros of the following polynomial functions, noting
multiplicities.

645. f (x) = (x − 3)3(3x − 1)(x − 1)2
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646. f (x) = 2x6 − 6x5 + 18x4

Based on the graph, determine the zeros of the function and
multiplicities.

647.

Use long division to find the quotient.

648. 2x3 + 3x − 4
x + 2

Use synthetic division to find the quotient. If the divisor is
a factor, write the factored form.

649. x4 + 3x2 − 4
x − 2

650. 2x3 + 5x2 − 7x − 12
x + 3

Use the Rational Zero Theorem to help you find the zeros
of the polynomial functions.

651. f (x) = 2x3 + 5x2 − 6x − 9

652. f (x) = 4x4 + 8x3 + 21x2 + 17x + 4

653. f (x) = 4x4 + 16x3 + 13x2 − 15x − 18

654. f (x) = x5 + 6x4 + 13x3 + 14x2 + 12x + 8

Given the following information about a polynomial
function, find the function.

655. It has a double zero at  x = 3  and zeros at  x = 1  and
 x = − 2  . Its y-intercept is  (0, 12). 

656. It has a zero of multiplicity 3 at  x = 1
2   and another

zero at  x = − 3  . It contains the point  (1, 8).

Use Descartes’ Rule of Signs to determine the possible
number of positive and negative solutions.

657. 8x3 − 21x2 + 6 = 0

For the following rational functions, find the intercepts and
horizontal and vertical asymptotes, and sketch a graph.

658. f (x) = x + 4
x2 − 2x − 3

659. f (x) = x2 + 2x − 3
x2 − 4

Find the slant asymptote of the rational function.

660. f (x) = x2 + 3x − 3
x − 1

Find the inverse of the function.

661. f (x) = x − 2 + 4

662. f (x) = 3x3 − 4

663. f (x) = 2x + 3
3x − 1

Find the unknown value.

664.  y  varies inversely as the square of  x  and when

 x = 3,   y = 2.  Find  y  if  x = 1.

665.  y  varies jointly with  x  and the cube root of  z.  If
when  x = 2  and  z = 27,   y = 12,   find  y  if  x = 5  and

 z = 8.

Solve the following application problem.

666. The distance a body falls varies directly as the square
of the time it falls. If an object falls 64 feet in 2 seconds,
how long will it take to fall 256 feet?
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6 | EXPONENTIAL AND
LOGARITHMIC FUNCTIONS

Figure 6.1 Electron micrograph of E.Coli bacteria (credit: “Mattosaurus,” Wikimedia Commons)

Chapter Outline
6.1 Exponential Functions

6.2 Graphs of Exponential Functions

6.3 Logarithmic Functions

6.4 Graphs of Logarithmic Functions

6.5 Logarithmic Properties

6.6 Exponential and Logarithmic Equations

6.7 Exponential and Logarithmic Models

6.8 Fitting Exponential Models to Data

Introduction
Focus in on a square centimeter of your skin. Look closer. Closer still. If you could look closely enough, you would see
hundreds of thousands of microscopic organisms. They are bacteria, and they are not only on your skin, but in your mouth,

Chapter 6 Exponential and Logarithmic Functions 643



nose, and even your intestines. In fact, the bacterial cells in your body at any given moment outnumber your own cells. But
that is no reason to feel bad about yourself. While some bacteria can cause illness, many are healthy and even essential to
the body.

Bacteria commonly reproduce through a process called binary fission, during which one bacterial cell splits into two. When
conditions are right, bacteria can reproduce very quickly. Unlike humans and other complex organisms, the time required to
form a new generation of bacteria is often a matter of minutes or hours, as opposed to days or years.[1]

For simplicity’s sake, suppose we begin with a culture of one bacterial cell that can divide every hour. Table 6.1 shows
the number of bacterial cells at the end of each subsequent hour. We see that the single bacterial cell leads to over one
thousand bacterial cells in just ten hours! And if we were to extrapolate the table to twenty-four hours, we would have over
16 million!

Hour 0 1 2 3 4 5 6 7 8 9 10

Bacteria 1 2 4 8 16 32 64 128 256 512 1024

Table 6.1

In this chapter, we will explore exponential functions, which can be used for, among other things, modeling growth patterns
such as those found in bacteria. We will also investigate logarithmic functions, which are closely related to exponential
functions. Both types of functions have numerous real-world applications when it comes to modeling and interpreting data.

6.1 | Exponential Functions

Learning Objectives

In this section, you will:

6.1.1 Evaluate exponential functions.
6.1.2 Find the equation of an exponential function.
6.1.3 Use compound interest formulas.
6.1.4 Evaluate exponential functions with base e.

India is the second most populous country in the world with a population of about  1.25  billion people in 2013. The
population is growing at a rate of about  1.2%  each year[2]. If this rate continues, the population of India will exceed China’s
population by the year  2031. When populations grow rapidly, we often say that the growth is “exponential,” meaning that
something is growing very rapidly. To a mathematician, however, the term exponential growth has a very specific meaning.
In this section, we will take a look at exponential functions, which model this kind of rapid growth.

Identifying Exponential Functions
When exploring linear growth, we observed a constant rate of change—a constant number by which the output increased for
each unit increase in input. For example, in the equation   f (x) = 3x + 4, the slope tells us the output increases by 3 each

time the input increases by 1. The scenario in the India population example is different because we have a percent change
per unit time (rather than a constant change) in the number of people.

Defining an Exponential Function
A study found that the percent of the population who are vegans in the United States doubled from 2009 to 2011. In 2011,
2.5% of the population was vegan, adhering to a diet that does not include any animal products—no meat, poultry, fish,
dairy, or eggs. If this rate continues, vegans will make up 10% of the U.S. population in 2015, 40% in 2019, and 80% in
2050.

1. Todar, PhD, Kenneth. Todar's Online Textbook of Bacteriology. http://textbookofbacteriology.net/growth_3.html.
2. http://www.worldometers.info/world-population/. Accessed February 24, 2014.
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What exactly does it mean to grow exponentially? What does the word double have in common with percent increase?
People toss these words around errantly. Are these words used correctly? The words certainly appear frequently in the
media.

• Percent change refers to a change based on a percent of the original amount.

• Exponential growth refers to an increase based on a constant multiplicative rate of change over equal increments
of time, that is, a percent increase of the original amount over time.

• Exponential decay refers to a decrease based on a constant multiplicative rate of change over equal increments of
time, that is, a percent decrease of the original amount over time.

For us to gain a clear understanding of exponential growth, let us contrast exponential growth with linear growth. We will
construct two functions. The first function is exponential. We will start with an input of 0, and increase each input by 1.
We will double the corresponding consecutive outputs. The second function is linear. We will start with an input of 0, and
increase each input by 1. We will add 2 to the corresponding consecutive outputs. See Table 6.2.

x f(x) = 2x g(x) = 2x

0 1 0

1 2 2

2 4 4

3 8 6

4 16 8

5 32 10

6 64 12

Table 6.2

From Table 6.2 we can infer that for these two functions, exponential growth dwarfs linear growth.

• Exponential growth refers to the original value from the range increases by the same percentage over equal
increments found in the domain.

• Linear growth refers to the original value from the range increases by the same amount over equal increments
found in the domain.

Apparently, the difference between “the same percentage” and “the same amount” is quite significant. For exponential
growth, over equal increments, the constant multiplicative rate of change resulted in doubling the output whenever the input
increased by one. For linear growth, the constant additive rate of change over equal increments resulted in adding 2 to the
output whenever the input was increased by one.

The general form of the exponential function is   f (x) = abx,  where  a  is any nonzero number,  b  is a positive real number

not equal to 1.

• If  b > 1, the function grows at a rate proportional to its size.

• If  0 < b < 1, the function decays at a rate proportional to its size.

Let’s look at the function   f (x) = 2x   from our example. We will create a table (Table 6.3) to determine the corresponding

outputs over an interval in the domain from  −3  to  3.
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x −3 −2 −1 0 1 2 3

f(x) = 2x 2−3 = 1
8 2−2 = 1

4 2−1 = 1
2 20 = 1 21 = 2 22 = 4 23 = 8

Table 6.3

Let us examine the graph of   f   by plotting the ordered pairs we observe on the table in Figure 6.2, and then make a few

observations.

Figure 6.2

Let’s define the behavior of the graph of the exponential function   f (x) = 2x   and highlight some its key characteristics.

• the domain is  (−∞, ∞),

• the range is  (0, ∞),

• as  x → ∞, f (x) → ∞,

• as  x → − ∞, f (x) → 0,

• f (x)  is always increasing,

• the graph of   f (x) will never touch the x-axis because base two raised to any exponent never has the result of zero.

•  y = 0  is the horizontal asymptote.

• the y-intercept is 1.

Exponential Function

For any real number  x, an exponential function is a function with the form

(6.1)f (x) = abx

where
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6.1

•  a  is the a non-zero real number called the initial value and

•  b  is any positive real number such that  b ≠ 1.

• The domain of   f   is all real numbers.

• The range of   f   is all positive real numbers if  a > 0.

• The range of   f   is all negative real numbers if  a < 0.

• The y-intercept is  (0, a), and the horizontal asymptote is  y = 0.

Example 6.1

Identifying Exponential Functions

Which of the following equations are not exponential functions?

• f (x) = 43(x − 2)

• g(x) = x3

• h(x) = ⎛
⎝
1
3

⎞
⎠

x

• j(x) = (−2)x

Solution
By definition, an exponential function has a constant as a base and an independent variable as an exponent.
Thus,  g(x) = x3   does not represent an exponential function because the base is an independent variable. In fact,

 g(x) = x3   is a power function.

Recall that the base b of an exponential function is always a positive constant, and  b ≠ 1. Thus,   j(x) = (−2)x  
does not represent an exponential function because the base,  −2, is less than  0.

Which of the following equations represent exponential functions?

• f (x) = 2x2 − 3x + 1

• g(x) = 0.875x

• h(x) = 1.75x + 2

• j(x) = 1095.6−2x

Evaluating Exponential Functions
Recall that the base of an exponential function must be a positive real number other than  1. Why do we limit the base b  to
positive values? To ensure that the outputs will be real numbers. Observe what happens if the base is not positive:

• Let  b = − 9  and  x = 1
2. Then   f (x) = f ⎛

⎝
1
2

⎞
⎠ = (−9)

1
2 = −9, which is not a real number.
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Why do we limit the base to positive values other than 1? Because base 1  results in the constant function. Observe what
happens if the base is 1 :

• Let  b = 1. Then   f (x) = 1x = 1  for any value of  x.

To evaluate an exponential function with the form   f (x) = bx, we simply substitute x with the given value, and calculate

the resulting power. For example:

Let   f (x) = 2x. What is f (3)?

f (x) = 2x

f (3) = 23  Substitute x = 3.
= 8 Evaluate the power.

To evaluate an exponential function with a form other than the basic form, it is important to follow the order of operations.
For example:

Let   f (x) = 30(2)x. What is   f (3)?

f (x) = 30(2)x

f (3) = 30(2)3 Substitute x = 3.
= 30(8) Simplify the power fir t.
= 240 Multiply.

Note that if the order of operations were not followed, the result would be incorrect:

f (3) = 30(2)3 ≠ 603 = 216,000

Example 6.2

Evaluating Exponential Functions

Let   f (x) = 5(3)x + 1. Evaluate   f (2) without using a calculator.

Solution
Follow the order of operations. Be sure to pay attention to the parentheses.

f (x) = 5(3)x + 1

f (2) = 5(3)2 + 1 Substitute x = 2.

= 5(3)3 Add the exponents.
= 5(27) Simplify the power.
= 135 Multiply.

Let f (x) = 8(1.2)x − 5. Evaluate   f (3)  using a calculator. Round to four decimal places.

Defining Exponential Growth
Because the output of exponential functions increases very rapidly, the term “exponential growth” is often used in everyday
language to describe anything that grows or increases rapidly. However, exponential growth can be defined more precisely
in a mathematical sense. If the growth rate is proportional to the amount present, the function models exponential growth.
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Exponential Growth

A function that models exponential growth grows by a rate proportional to the amount present. For any real number
 x  and any positive real numbers  a    and  b  such that  b ≠ 1, an exponential growth function has the form

 f (x) = abx

where

• a  is the initial or starting value of the function.

• b  is the growth factor or growth multiplier per unit  x .

In more general terms, we have an exponential function, in which a constant base is raised to a variable exponent. To
differentiate between linear and exponential functions, let’s consider two companies, A and B. Company A has 100 stores
and expands by opening 50 new stores a year, so its growth can be represented by the function  A(x) = 100 + 50x. 
Company B has 100 stores and expands by increasing the number of stores by 50% each year, so its growth can be
represented by the function  B(x) = 100(1 + 0.5)x.

A few years of growth for these companies are illustrated in Table 6.4.

Year, x Stores, Company A Stores, Company B

0 100 + 50(0) = 100 100(1 + 0.5)0 = 100

1 100 + 50(1) = 150 100(1 + 0.5)1 = 150

2 100 + 50(2) = 200 100(1 + 0.5)2 = 225

3 100 + 50(3) = 250 100(1 + 0.5)3 = 337.5

x A(x) = 100 + 50x B(x) = 100(1 + 0.5)x

Table 6.4

The graphs comparing the number of stores for each company over a five-year period are shown in Figure 6.3. We can see
that, with exponential growth, the number of stores increases much more rapidly than with linear growth.
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Figure 6.3 The graph shows the numbers of stores Companies
A and B opened over a five-year period.

Notice that the domain for both functions is  [0, ∞), and the range for both functions is  [100, ∞). After year 1, Company
B always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B,  B(x) = 100(1 + 0.5)x. 
In this exponential function, 100 represents the initial number of stores, 0.50 represents the growth rate, and  1 + 0.5 = 1.5
represents the growth factor. Generalizing further, we can write this function as  B(x) = 100(1.5)x, where 100 is the initial
value,  1.5  is called the base, and  x  is called the exponent.

Example 6.3

Evaluating a Real-World Exponential Model

At the beginning of this section, we learned that the population of India was about  1.25  billion in the year
2013, with an annual growth rate of about  1.2%. This situation is represented by the growth function
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 P(t) = 1.25(1.012)t, where  t  is the number of years since  2013. To the nearest thousandth, what will the
population of India be in  2031?

Solution
To estimate the population in 2031, we evaluate the models for  t = 18, because 2031 is  18 years after 2013.
Rounding to the nearest thousandth,

P(18) = 1.25(1.012)18 ≈ 1.549

There will be about 1.549 billion people in India in the year 2031.

The population of China was about 1.39 billion in the year 2013, with an annual growth rate of about
 0.6%. This situation is represented by the growth function  P(t) = 1.39(1.006)t, where  t  is the number of

years since  2013. To the nearest thousandth, what will the population of China be for the year 2031? How does
this compare to the population prediction we made for India in Example 6.3?

Finding Equations of Exponential Functions
In the previous examples, we were given an exponential function, which we then evaluated for a given input. Sometimes we
are given information about an exponential function without knowing the function explicitly. We must use the information
to first write the form of the function, then determine the constants  a  and  b, and evaluate the function.

Given two data points, write an exponential model.

1. If one of the data points has the form  (0, a), then  a  is the initial value. Using  a, substitute the second

point into the equation   f (x) = a(b)x, and solve for  b.

2. If neither of the data points have the form  (0, a), substitute both points into two equations with the form

  f (x) = a(b)x.  Solve the resulting system of two equations in two unknowns to find  a  and  b.

3. Using the  a  and  b  found in the steps above, write the exponential function in the form   f (x) = a(b)x.

Example 6.4

Writing an Exponential Model When the Initial Value Is Known

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The
population was growing exponentially. Write an algebraic function  N(t)  representing the population  (N)  of deer
over time  t.

Solution
We let our independent variable  t  be the number of years after 2006. Thus, the information given in the problem
can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be
measured as years after 2006, we have given ourselves the initial value for the function,  a = 80. We can now
substitute the second point into the equation  N(t) = 80bt   to find  b :
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N(t) = 80bt

  180 = 80b6 Substitute using point (6,  180).
9
4 = b6 Divide and write in lowest terms.

  b = ⎛
⎝
9
4

⎞
⎠

1
6

Isolate b using properties of exponents.

  b ≈ 1.1447 Round to 4 decimal places.

NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four
places for the remainder of this section.

The exponential model for the population of deer is  N(t) = 80(1.1447)t.  (Note that this exponential function
models short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the
model may not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph in
Figure 6.4 passes through the initial points given in the problem,  (0,  80)  and  (6,  180). We can also see that
the domain for the function is  [0, ∞), and the range for the function is  [80, ∞).

Figure 6.4 Graph showing the population of deer over time,
 N(t) = 80(1.1447)t, t  years after 2006
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6.4 A wolf population is growing exponentially. In 2011,  129 wolves were counted. By  2013,  the population
had reached 236 wolves. What two points can be used to derive an exponential equation modeling this situation?
Write the equation representing the population  N   of wolves over time  t.

Example 6.5

Writing an Exponential Model When the Initial Value is Not Known

Find an exponential function that passes through the points  (−2, 6)  and  (2, 1).

Solution
Because we don’t have the initial value, we substitute both points into an equation of the form   f (x) = abx, and

then solve the system for  a  and  b.

• Substituting  (−2, 6)  gives  6 = ab−2  

• Substituting  (2, 1)  gives  1 = ab2  
Use the first equation to solve for  a  in terms of  b :

Substitute  a  in the second equation, and solve for  b :

Use the value of  b  in the first equation to solve for the value of  a :

Thus, the equation is   f (x) = 2.4492(0.6389)x.

We can graph our model to check our work. Notice that the graph in Figure 6.5 passes through the initial points
given in the problem,  (−2,  6)  and  (2,  1). The graph is an example of an exponential decay function.
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Figure 6.5 The graph of   f (x) = 2.4492(0.6389)x  models

exponential decay.

Given the two points  (1, 3)  and  (2, 4.5), find the equation of the exponential function that passes

through these two points.

Do two points always determine a unique exponential function?

Yes, provided the two points are either both above the x-axis or both below the x-axis and have different x-
coordinates. But keep in mind that we also need to know that the graph is, in fact, an exponential function. Not
every graph that looks exponential really is exponential. We need to know the graph is based on a model that
shows the same percent growth with each unit increase in  x, which in many real world cases involves time.

Given the graph of an exponential function, write its equation.

1. First, identify two points on the graph. Choose the y-intercept as one of the two points whenever possible.
Try to choose points that are as far apart as possible to reduce round-off error.

2. If one of the data points is the y-intercept  (0, a) , then  a  is the initial value. Using  a, substitute the

second point into the equation   f (x) = a(b)x, and solve for  b.

3. If neither of the data points have the form  (0, a), substitute both points into two equations with the form

f (x) = a(b)x.  Solve the resulting system of two equations in two unknowns to find  a  and  b.

4. Write the exponential function,   f (x) = a(b)x.

Example 6.6

Writing an Exponential Function Given Its Graph
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6.6

Find an equation for the exponential function graphed in Figure 6.6.

Figure 6.6

Solution
We can choose the y-intercept of the graph,  (0, 3), as our first point. This gives us the initial value,  a = 3. 
Next, choose a point on the curve some distance away from  (0, 3)  that has integer coordinates. One such point
is  (2, 12).

  y = abx Write the general form of an exponential equation.
  y = 3bx Substitute the initial value 3 for a.

12 = 3b2 Substitute in 12 for y and 2 for x.

  4 = b2 Divide by 3.
  b = ± 2 Take the square root.

Because we restrict ourselves to positive values of  b, we will use  b = 2.  Substitute  a  and  b  into the standard

form to yield the equation   f (x) = 3(2)x.

Find an equation for the exponential function graphed in Figure 6.7.

Figure 6.7
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Given two points on the curve of an exponential function, use a graphing calculator to find the equation.

1. Press [STAT].

2. Clear any existing entries in columns L1 or L2.

3. In L1, enter the x-coordinates given.

4. In L2, enter the corresponding y-coordinates.

5. Press [STAT] again. Cursor right to CALC, scroll down to ExpReg (Exponential Regression), and press
[ENTER].

6. The screen displays the values of a and b in the exponential equation  y = a ⋅ bx .

Example 6.7

Using a Graphing Calculator to Find an Exponential Function

Use a graphing calculator to find the exponential equation that includes the points  (2, 24.8)  and  (5, 198.4).

Solution
Follow the guidelines above. First press [STAT], [EDIT], [1: Edit…], and clear the lists L1 and L2. Next, in the
L1 column, enter the x-coordinates, 2 and 5. Do the same in the L2 column for the y-coordinates, 24.8 and 198.4.

Now press [STAT], [CALC], [0: ExpReg] and press [ENTER]. The values  a = 6.2  and  b = 2 will be
displayed. The exponential equation is  y = 6.2 ⋅ 2x.

Use a graphing calculator to find the exponential equation that includes the points (3, 75.98) and (6,
481.07).

Applying the Compound-Interest Formula
Savings instruments in which earnings are continually reinvested, such as mutual funds and retirement accounts, use
compound interest. The term compounding refers to interest earned not only on the original value, but on the accumulated
value of the account.

The annual percentage rate (APR) of an account, also called the nominal rate, is the yearly interest rate earned by an
investment account. The term nominal is used when the compounding occurs a number of times other than once per year. In
fact, when interest is compounded more than once a year, the effective interest rate ends up being greater than the nominal
rate! This is a powerful tool for investing.

We can calculate the compound interest using the compound interest formula, which is an exponential function of the
variables time  t, principal  P, APR  r, and number of compounding periods in a year  n :

A(t) = P⎛
⎝1 + r

n
⎞
⎠
nt

For example, observe Table 6.5, which shows the result of investing $1,000 at 10% for one year. Notice how the value of
the account increases as the compounding frequency increases.
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Frequency Value after 1 year

Annually $1100

Semiannually $1102.50

Quarterly $1103.81

Monthly $1104.71

Daily $1105.16

Table 6.5

The Compound Interest Formula

Compound interest can be calculated using the formula

(6.2)A(t) = P⎛
⎝1 + r

n
⎞
⎠
nt

where

• A(t)  is the account value,

• t  is measured in years,

• P  is the starting amount of the account, often called the principal, or more generally present value,

• r  is the annual percentage rate (APR) expressed as a decimal, and

• n  is the number of compounding periods in one year.

Example 6.8

Calculating Compound Interest

If we invest $3,000 in an investment account paying 3% interest compounded quarterly, how much will the
account be worth in 10 years?

Solution
Because we are starting with $3,000,  P = 3000. Our interest rate is 3%, so  r =  0.03. Because we are
compounding quarterly, we are compounding 4 times per year, so  n = 4. We want to know the value of the
account in 10 years, so we are looking for  A(10), the value when  t =  10.

A(t) = P⎛
⎝1 + r

n
⎞
⎠
nt

Use the compound interest formula.

A(10) = 3000⎛
⎝1 + 0.03

4
⎞
⎠
4⋅10

Substitute using given values.

≈ $4045.05 Round to two decimal places.
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6.9

The account will be worth about $4,045.05 in 10 years.

An initial investment of $100,000 at 12% interest is compounded weekly (use 52 weeks in a year). What
will the investment be worth in 30 years?

Example 6.9

Using the Compound Interest Formula to Solve for the Principal

A 529 Plan is a college-savings plan that allows relatives to invest money to pay for a child’s future college
tuition; the account grows tax-free. Lily wants to set up a 529 account for her new granddaughter and wants the
account to grow to $40,000 over 18 years. She believes the account will earn 6% compounded semi-annually
(twice a year). To the nearest dollar, how much will Lily need to invest in the account now?

Solution
The nominal interest rate is 6%, so  r = 0.06.  Interest is compounded twice a year, so  k = 2.

We want to find the initial investment,  P, needed so that the value of the account will be worth $40,000 in  18 
years. Substitute the given values into the compound interest formula, and solve for  P.

  A(t) = P⎛
⎝1 + r

n
⎞
⎠
nt

Use the compound interest formula.

40,000 = P⎛
⎝1 + 0.06

2
⎞
⎠
2(18)

Substitute using given values A, r,  n, and t.

40,000 = P(1.03)36 Simplify.
40,000

(1.03)36 = P Isolate P.

  P ≈ $13, 801 Divide and round to the nearest dollar.

Lily will need to invest $13,801 to have $40,000 in 18 years.

Refer to Example 6.9. To the nearest dollar, how much would Lily need to invest if the account is
compounded quarterly?

Evaluating Functions with Base e
As we saw earlier, the amount earned on an account increases as the compounding frequency increases. Table 6.6 shows
that the increase from annual to semi-annual compounding is larger than the increase from monthly to daily compounding.
This might lead us to ask whether this pattern will continue.

Examine the value of $1 invested at 100% interest for 1 year, compounded at various frequencies, listed in Table 6.6.

658 Chapter 6 Exponential and Logarithmic Functions

This content is available for free at https://cnx.org/content/col11758/1.5



Frequency A(t) = ⎛
⎝1 + 1

n
⎞
⎠
n

Value

Annually ⎛
⎝1 + 1

1
⎞
⎠
1

$2

Semiannually ⎛
⎝1 + 1

2
⎞
⎠
2

$2.25

Quarterly ⎛
⎝1 + 1

4
⎞
⎠
4

$2.441406

Monthly ⎛
⎝1 + 1

12
⎞
⎠
12

$2.613035

Daily ⎛
⎝1 + 1

365
⎞
⎠

365
$2.714567

Hourly ⎛
⎝1 + 1

8766
⎞
⎠

8766
$2.718127

Once per minute ⎛
⎝1 + 1

525960
⎞
⎠

525960
$2.718279

Once per second ⎛
⎝1 + 1

31557600
⎞
⎠

31557600
$2.718282

Table 6.6

These values appear to be approaching a limit as  n  increases without bound. In fact, as  n  gets larger and larger, the

expression  ⎛⎝1 + 1
n

⎞
⎠
n
  approaches a number used so frequently in mathematics that it has its own name: the letter  e. This

value is an irrational number, which means that its decimal expansion goes on forever without repeating. Its approximation
to six decimal places is shown below.

The Number e

The letter e represents the irrational number

⎛
⎝1 + 1

n
⎞
⎠
n
, as n increases without bound

The letter e is used as a base for many real-world exponential models. To work with base e, we use the approximation,
 e ≈ 2.718282. The constant was named by the Swiss mathematician Leonhard Euler (1707–1783) who first
investigated and discovered many of its properties.
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Example 6.10

Using a Calculator to Find Powers of e

Calculate  e3.14. Round to five decimal places.

Solution
On a calculator, press the button labeled  [ex]. The window shows  ⎡⎣e^( ⎤

⎦. Type  3.14  and then close parenthesis,

 ⎡⎣)⎤
⎦.  Press [ENTER]. Rounding to  5  decimal places,  e3.14 ≈ 23.10387. Caution: Many scientific calculators

have an “Exp” button, which is used to enter numbers in scientific notation. It is not used to find powers of  e.

Use a calculator to find  e−0.5. Round to five decimal places.

Investigating Continuous Growth
So far we have worked with rational bases for exponential functions. For most real-world phenomena, however, e is used
as the base for exponential functions. Exponential models that use  e  as the base are called continuous growth or decay
models. We see these models in finance, computer science, and most of the sciences, such as physics, toxicology, and fluid
dynamics.

The Continuous Growth/Decay Formula

For all real numbers  t, and all positive numbers  a  and  r, continuous growth or decay is represented by the formula

(6.3)A(t) = aert

where

• a  is the initial value,

• r  is the continuous growth rate per unit time,

• and  t  is the elapsed time.

If  r > 0  , then the formula represents continuous growth. If  r < 0  , then the formula represents continuous decay.

For business applications, the continuous growth formula is called the continuous compounding formula and takes the
form

A(t) = Pert

where

• P  is the principal or the initial invested,

• r  is the growth or interest rate per unit time,

• and t  is the period or term of the investment.
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6.11

Given the initial value, rate of growth or decay, and time  t, solve a continuous growth or decay function.

1. Use the information in the problem to determine  a , the initial value of the function.

2. Use the information in the problem to determine the growth rate  r.

a. If the problem refers to continuous growth, then  r > 0.

b. If the problem refers to continuous decay, then  r < 0.

3. Use the information in the problem to determine the time  t.
4. Substitute the given information into the continuous growth formula and solve for  A(t).

Example 6.11

Calculating Continuous Growth

A person invested $1,000 in an account earning a nominal 10% per year compounded continuously. How much
was in the account at the end of one year?

Solution
Since the account is growing in value, this is a continuous compounding problem with growth rate  r = 0.10. The
initial investment was $1,000, so  P = 1000. We use the continuous compounding formula to find the value after
 t = 1  year:

A(t) = Pert Use the continuous compounding formula.

= 1000(e)0.1 Substitute known values for P,  r,  and t.
≈ 1105.17 Use a calculator to approximate.

The account is worth $1,105.17 after one year.

A person invests $100,000 at a nominal 12% interest per year compounded continuously. What will be
the value of the investment in 30 years?

Example 6.12

Calculating Continuous Decay

Radon-222 decays at a continuous rate of 17.3% per day. How much will 100 mg of Radon-222 decay to in 3
days?

Solution
Since the substance is decaying, the rate,  17.3% , is negative. So,  r =  − 0.173. The initial amount of
radon-222 was  100 mg, so  a = 100. We use the continuous decay formula to find the value after  t = 3  days:

A(t) = aert Use the continuous growth formula.

= 100e−0.173(3) Substitute known values for a,  r,  and t.
≈ 59.5115 Use a calculator to approximate.
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So 59.5115 mg of radon-222 will remain.

Using the data in Example 6.12, how much radon-222 will remain after one year?

Access these online resources for additional instruction and practice with exponential functions.

• Exponential Growth Function (http://openstaxcollege.org/l/expgrowth)

• Compound Interest (http://openstaxcollege.org/l/compoundint)
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

6.1 EXERCISES
Verbal

Explain why the values of an increasing exponential
function will eventually overtake the values of an
increasing linear function.

Given a formula for an exponential function, is it
possible to determine whether the function grows or decays
exponentially just by looking at the formula? Explain.

The Oxford Dictionary defines the word nominal as a
value that is “stated or expressed but not necessarily
corresponding exactly to the real value.”[3] Develop a
reasonable argument for why the term nominal rate is used
to describe the annual percentage rate of an investment
account that compounds interest.

Algebraic
For the following exercises, identify whether the statement
represents an exponential function. Explain.

The average annual population increase of a pack of
wolves is 25.

A population of bacteria decreases by a factor of  18  
every  24  hours.

The value of a coin collection has increased by  3.25% 
annually over the last  20  years.

For each training session, a personal trainer charges his
clients  $5  less than the previous training session.

The height of a projectile at time  t  is represented by the

function  h(t) = − 4.9t2 + 18t + 40.

For the following exercises, consider this scenario: For
each year  t, the population of a forest of trees is

represented by the function  A(t) = 115(1.025)t.  In a
neighboring forest, the population of the same type of tree
is represented by the function  B(t) = 82(1.029)t.  (Round
answers to the nearest whole number.)

Which forest’s population is growing at a faster rate?

Which forest had a greater number of trees initially?
By how many?

Assuming the population growth models continue to
represent the growth of the forests, which forest will have a
greater number of trees after  20  years? By how many?

Assuming the population growth models continue to
represent the growth of the forests, which forest will have a
greater number of trees after  100  years? By how many?

Discuss the above results from the previous four
exercises. Assuming the population growth models
continue to represent the growth of the forests, which forest
will have the greater number of trees in the long run? Why?
What are some factors that might influence the long-term
validity of the exponential growth model?

For the following exercises, determine whether the
equation represents exponential growth, exponential decay,
or neither. Explain.

y = 300(1 − t)5

y = 220(1.06)x

y = 16.5(1.025)
1
x

y = 11, 701(0.97)t

For the following exercises, find the formula for an
exponential function that passes through the two points
given.

(0, 6)  and  (3, 750)

(0, 2000)  and  (2, 20)

⎛
⎝−1, 3

2
⎞
⎠  and  (3, 24)

(−2, 6)  and  (3, 1)

(3, 1)  and  (5, 4)

For the following exercises, determine whether the table
could represent a function that is linear, exponential, or
neither. If it appears to be exponential, find a function that
passes through the points.

x 1 2 3 4

f(x) 70 40 10 -20

3. Oxford Dictionary. http://oxforddictionaries.com/us/definition/american_english/nomina.

Chapter 6 Exponential and Logarithmic Functions 663



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

x 1 2 3 4

h(x) 70 49 34.3 24.01

x 1 2 3 4

m(x) 80 61 42.9 25.61

x 1 2 3 4

f(x) 10 20 40 80

x 1 2 3 4

g(x) -3.25 2 7.25 12.5

For the following exercises, use the compound interest

formula,  A(t) = P⎛
⎝1 + r

n
⎞
⎠
nt

.

After a certain number of years, the value of an
investment account is represented by the equation

 10, 250⎛
⎝1 + 0.04

12
⎞
⎠
120

. What is the value of the account?

What was the initial deposit made to the account in the
previous exercise?

How many years had the account from the previous
exercise been accumulating interest?

An account is opened with an initial deposit of $6,500
and earns  3.6%  interest compounded semi-annually. What
will the account be worth in  20  years?

How much more would the account in the previous
exercise have been worth if the interest were compounding
weekly?

Solve the compound interest formula for the principal,
 P .

Use the formula found in the previous exercise to
calculate the initial deposit of an account that is worth
 $14, 472.74  after earning  5.5%  interest compounded
monthly for  5  years. (Round to the nearest dollar.)

How much more would the account in the previous two
exercises be worth if it were earning interest for  5 more
years?

Use properties of rational exponents to solve the
compound interest formula for the interest rate,  r.

Use the formula found in the previous exercise to
calculate the interest rate for an account that was
compounded semi-annually, had an initial deposit of $9,000
and was worth $13,373.53 after 10 years.

Use the formula found in the previous exercise to
calculate the interest rate for an account that was
compounded monthly, had an initial deposit of $5,500, and
was worth $38,455 after 30 years.

For the following exercises, determine whether the
equation represents continuous growth, continuous decay,
or neither. Explain.

y = 3742(e)0.75t

y = 150(e)
3.25

t

y = 2.25(e)−2t

Suppose an investment account is opened with an
initial deposit of  $12, 000  earning  7.2%  interest
compounded continuously. How much will the account be
worth after  30  years?

How much less would the account from Exercise 42 be
worth after  30  years if it were compounded monthly
instead?

Numeric
For the following exercises, evaluate each function. Round
answers to four decimal places, if necessary.

f (x) = 2(5)x, for   f (−3)

f (x) = − 42x + 3, for   f (−1)

f (x) = ex, for   f (3)

f (x) = − 2ex − 1, for   f (−1)

f (x) = 2.7(4)−x + 1 + 1.5, for f (−2)
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49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

f (x) = 1.2e2x − 0.3, for   f (3)

f (x) = − 3
2(3)−x + 3

2, for   f (2)

Technology
For the following exercises, use a graphing calculator to
find the equation of an exponential function given the
points on the curve.

(0, 3)  and  (3, 375)

(3, 222.62)  and  (10, 77.456)

(20, 29.495)  and  (150, 730.89)

(5, 2.909)  and  (13, 0.005)

(11,310.035)  and (25,356.3652)

Extensions

The annual percentage yield (APY) of an investment
account is a representation of the actual interest rate earned
on a compounding account. It is based on a compounding
period of one year. Show that the APY of an account that
compounds monthly can be found with the formula

 APY = ⎛
⎝1 + r

12
⎞
⎠
12

− 1.

Repeat the previous exercise to find the formula for the
APY of an account that compounds daily. Use the results
from this and the previous exercise to develop a function
 I(n)  for the APY of any account that compounds  n  times
per year.

Recall that an exponential function is any equation
written in the form   f (x) = a ⋅ bx   such that  a  and

 b  are positive numbers and  b ≠ 1.  Any positive

number  b  can be written as  b = en  for some value
of  n . Use this fact to rewrite the formula for an
exponential function that uses the number  e  as a base.

In an exponential decay function, the base of the
exponent is a value between 0 and 1. Thus, for some
number  b > 1, the exponential decay function can be

written as   f (x) = a ⋅ ⎛
⎝
1
b

⎞
⎠

x
. Use this formula, along with

the fact that  b = en, to show that an exponential decay

function takes the form   f (x) = a(e)−nx   for some positive

number  n  .

The formula for the amount  A  in an investment
account with a nominal interest rate  r  at any time  t  is

given by  A(t) = a(e)rt, where  a  is the amount of
principal initially deposited into an account that compounds
continuously. Prove that the percentage of interest earned to
principal at any time  t  can be calculated with the formula
 I(t) = ert − 1.

Real-World Applications

The fox population in a certain region has an annual
growth rate of 9% per year. In the year 2012, there were
23,900 fox counted in the area. What is the fox population
predicted to be in the year 2020?

A scientist begins with 100 milligrams of a radioactive
substance that decays exponentially. After 35 hours, 50mg
of the substance remains. How many milligrams will
remain after 54 hours?

In the year 1985, a house was valued at $110,000. By
the year 2005, the value had appreciated to $145,000. What
was the annual growth rate between 1985 and 2005?
Assume that the value continued to grow by the same
percentage. What was the value of the house in the year
2010?

A car was valued at $38,000 in the year 2007. By 2013,
the value had depreciated to $11,000 If the car’s value
continues to drop by the same percentage, what will it be
worth by 2017?

Jamal wants to save $54,000 for a down payment on a
home. How much will he need to invest in an account with
8.2% APR, compounding daily, in order to reach his goal in
5 years?

Kyoko has $10,000 that she wants to invest. Her bank
has several investment accounts to choose from, all
compounding daily. Her goal is to have $15,000 by the time
she finishes graduate school in 6 years. To the nearest
hundredth of a percent, what should her minimum annual
interest rate be in order to reach her goal? (Hint: solve the
compound interest formula for the interest rate.)

Alyssa opened a retirement account with 7.25% APR
in the year 2000. Her initial deposit was $13,500. How
much will the account be worth in 2025 if interest
compounds monthly? How much more would she make if
interest compounded continuously?

An investment account with an annual interest rate of
7% was opened with an initial deposit of $4,000 Compare
the values of the account after 9 years when the interest is
compounded annually, quarterly, monthly, and
continuously.
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6.2 | Graphs of Exponential Functions

Learning Objectives
6.2.1 Graph exponential functions.
6.2.2 Graph exponential functions using transformations.

As we discussed in the previous section, exponential functions are used for many real-world applications such as finance,
forensics, computer science, and most of the life sciences. Working with an equation that describes a real-world situation
gives us a method for making predictions. Most of the time, however, the equation itself is not enough. We learn a lot about
things by seeing their pictorial representations, and that is exactly why graphing exponential equations is a powerful tool. It
gives us another layer of insight for predicting future events.

Graphing Exponential Functions
Before we begin graphing, it is helpful to review the behavior of exponential growth. Recall the table of values for a function
of the form   f (x) = bx  whose base is greater than one. We’ll use the function   f (x) = 2x. Observe how the output values

in Table 6.7 change as the input increases by  1.

x −3 −2 −1 0 1 2 3

f(x) = 2x 1
8

1
4

1
2 1 2 4 8

Table 6.7

Each output value is the product of the previous output and the base,  2. We call the base  2  the constant ratio. In fact, for
any exponential function with the form   f (x) = abx,  b  is the constant ratio of the function. This means that as the input

increases by 1, the output value will be the product of the base and the previous output, regardless of the value of  a.

Notice from the table that

• the output values are positive for all values of x;

• as  x  increases, the output values increase without bound; and

• as  x  decreases, the output values grow smaller, approaching zero.

Figure 6.8 shows the exponential growth function   f (x) = 2x.
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Figure 6.8 Notice that the graph gets close to the x-axis, but
never touches it.

The domain of   f (x) = 2x   is all real numbers, the range is  (0, ∞), and the horizontal asymptote is  y = 0.

To get a sense of the behavior of exponential decay, we can create a table of values for a function of the form   f (x) = bx  

whose base is between zero and one. We’ll use the function  g(x) = ⎛
⎝
1
2

⎞
⎠

x
. Observe how the output values in Table 6.8

change as the input increases by  1.

x -3 -2 -1 0 1 2 3

g(x) = ⎛
⎝
1
2

⎞
⎠

x
8 4 2 1 1

2
1
4

1
8

Table 6.8

Again, because the input is increasing by 1, each output value is the product of the previous output and the base, or constant
ratio  12.

Notice from the table that

• the output values are positive for all values of  x;

• as  x  increases, the output values grow smaller, approaching zero; and

• as  x  decreases, the output values grow without bound.

Figure 6.9 shows the exponential decay function,  g(x) = ⎛
⎝
1
2

⎞
⎠

x
.
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Figure 6.9

The domain of  g(x) = ⎛
⎝
1
2

⎞
⎠

x
  is all real numbers, the range is  (0, ∞), and the horizontal asymptote is  y = 0.

Characteristics of the Graph of the Parent Function f(x) = bx

An exponential function with the form   f (x) = bx,  b > 0,  b ≠ 1, has these characteristics:

• one-to-one function

• horizontal asymptote:  y = 0

• domain:  ( – ∞,  ∞)

• range:  (0, ∞)

• x-intercept: none

• y-intercept:  (0, 1) 
• increasing if  b > 1

• decreasing if  b < 1

Figure 6.10 compares the graphs of exponential growth and decay functions.
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Figure 6.10

Given an exponential function of the form   f(x) = bx, graph the function.

1. Create a table of points.

2. Plot at least  3  point from the table, including the y-intercept  (0, 1).

3. Draw a smooth curve through the points.

4. State the domain,  (−∞, ∞), the range,  (0, ∞), and the horizontal asymptote,  y = 0.

Example 6.13

Sketching the Graph of an Exponential Function of the Form f(x) = bx

Sketch a graph of   f (x) = 0.25x.  State the domain, range, and asymptote.

Solution
Before graphing, identify the behavior and create a table of points for the graph.

• Since  b = 0.25  is between zero and one, we know the function is decreasing. The left tail of the graph
will increase without bound, and the right tail will approach the asymptote  y = 0.

• Create a table of points as in Table 6.9.

x −3 −2 −1 0 1 2 3

f(x) = 0.25x 64 16 4 1 0.25 0.0625 0.015625

Table 6.9

• Plot the y-intercept,  (0, 1), along with two other points. We can use  (−1, 4)  and  (1, 0.25).
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Draw a smooth curve connecting the points as in Figure 6.11.

Figure 6.11

The domain is  (−∞, ∞);   the range is  (0, ∞);   the horizontal asymptote is  y = 0.

Sketch the graph of   f (x) = 4x.  State the domain, range, and asymptote.

Graphing Transformations of Exponential Functions
Transformations of exponential graphs behave similarly to those of other functions. Just as with other parent functions,
we can apply the four types of transformations—shifts, reflections, stretches, and compressions—to the parent function

f (x) = bx  without loss of shape. For instance, just as the quadratic function maintains its parabolic shape when shifted,

reflected, stretched, or compressed, the exponential function also maintains its general shape regardless of the
transformations applied.

Graphing a Vertical Shift

The first transformation occurs when we add a constant  d  to the parent function   f (x) = bx, giving us a vertical shift

 d  units in the same direction as the sign. For example, if we begin by graphing a parent function,   f (x) = 2x, we

can then graph two vertical shifts alongside it, using  d = 3 :   the upward shift,  g(x) = 2x + 3  and the downward shift,

 h(x) = 2x − 3. Both vertical shifts are shown in Figure 6.12.
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Figure 6.12

Observe the results of shifting   f (x) = 2x   vertically:

• The domain,  (−∞, ∞)  remains unchanged.

• When the function is shifted up  3  units to  g(x) = 2x + 3 :

◦ The y-intercept shifts up  3  units to  (0, 4).

◦ The asymptote shifts up  3  units to  y = 3.

◦ The range becomes  (3, ∞).

• When the function is shifted down  3  units to  h(x) = 2x − 3 :

◦ The y-intercept shifts down  3  units to  (0, − 2).

◦ The asymptote also shifts down  3  units to  y = − 3.

◦ The range becomes  (−3, ∞).

Graphing a Horizontal Shift

The next transformation occurs when we add a constant  c  to the input of the parent function   f (x) = bx, giving us a

horizontal shift  c  units in the opposite direction of the sign. For example, if we begin by graphing the parent function

  f (x) = 2x, we can then graph two horizontal shifts alongside it, using  c = 3 :   the shift left,  g(x) = 2x + 3, and the shift

right,  h(x) = 2x − 3. Both horizontal shifts are shown in Figure 6.13.
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Figure 6.13

Observe the results of shifting   f (x) = 2x   horizontally:

• The domain,  (−∞, ∞), remains unchanged.

• The asymptote,  y = 0, remains unchanged.

• The y-intercept shifts such that:

◦ When the function is shifted left  3  units to  g(x) = 2x + 3, the y-intercept becomes  (0, 8). This is because

 2x + 3 = (8)2x, so the initial value of the function is  8.

◦ When the function is shifted right  3  units to  h(x) = 2x − 3, the y-intercept becomes  ⎛⎝0, 1
8

⎞
⎠. Again, see that

 2x − 3 = ⎛
⎝
1
8

⎞
⎠2

x, so the initial value of the function is  18.

Shifts of the Parent Function f(x) = bx

For any constants  c  and  d, the function   f (x) = bx + c + d  shifts the parent function   f (x) = bx

• vertically  d  units, in the same direction of the sign of  d.

• horizontally  c  units, in the opposite direction of the sign of  c.

• The y-intercept becomes  ⎛⎝0, bc + d⎞
⎠.

• The horizontal asymptote becomes  y = d.

• The range becomes  (d, ∞).

• The domain,  (−∞, ∞), remains unchanged.
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Given an exponential function with the form   f(x) = bx + c + d, graph the translation.

1. Draw the horizontal asymptote  y = d.

2. Identify the shift as  (−c, d).  Shift the graph of   f (x) = bx   left  c  units if  c  is positive, and right  c  units

if c  is negative.

3. Shift the graph of   f (x) = bx   up  d  units if  d  is positive, and down  d  units if  d  is negative.

4. State the domain,  (−∞, ∞), the range,  (d, ∞), and the horizontal asymptote  y = d.

Example 6.14

Graphing a Shift of an Exponential Function

Graph   f (x) = 2x + 1 − 3.  State the domain, range, and asymptote.

Solution

We have an exponential equation of the form   f (x) = bx + c + d, with  b = 2,  c = 1, and  d = −3.

Draw the horizontal asymptote  y = d , so draw  y = −3.

Identify the shift as  (−c, d), so the shift is  (−1, −3).

Shift the graph of   f (x) = bx   left 1 units and down 3 units.

Figure 6.14

The domain is  (−∞, ∞);   the range is  (−3, ∞);   the horizontal asymptote is  y = −3.
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6.15

Graph   f (x) = 2x − 1 + 3.  State domain, range, and asymptote.

Given an equation of the form   f(x) = bx + c + d  for  x, use a graphing calculator to approximate the
solution.

• Press [Y=]. Enter the given exponential equation in the line headed “Y1=”.

• Enter the given value for   f (x)  in the line headed “Y2=”.

• Press [WINDOW]. Adjust the y-axis so that it includes the value entered for “Y2=”.

• Press [GRAPH] to observe the graph of the exponential function along with the line for the specified
value of   f (x).

• To find the value of  x, we compute the point of intersection. Press [2ND] then [CALC]. Select “intersect”
and press [ENTER] three times. The point of intersection gives the value of x for the indicated value of
the function.

Example 6.15

Approximating the Solution of an Exponential Equation

Solve  42 = 1.2(5)x + 2.8  graphically. Round to the nearest thousandth.

Solution
Press [Y=] and enter  1.2(5)x + 2.8  next to Y1=. Then enter 42 next to Y2=. For a window, use the values –3 to
3 for  x  and –5 to 55 for  y.  Press [GRAPH]. The graphs should intersect somewhere near  x = 2.

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three times. The
x-coordinate of the point of intersection is displayed as 2.1661943. (Your answer may be different if you use a
different window or use a different value for Guess?) To the nearest thousandth,  x ≈ 2.166.

Solve  4 = 7.85(1.15)x − 2.27  graphically. Round to the nearest thousandth.

Graphing a Stretch or Compression
While horizontal and vertical shifts involve adding constants to the input or to the function itself, a stretch or compression
occurs when we multiply the parent function   f (x) = bx   by a constant  |a| > 0.  For example, if we begin by graphing

the parent function   f (x) = 2x, we can then graph the stretch, using  a = 3, to get  g(x) = 3(2)x   as shown on the left in

Figure 6.15, and the compression, using  a = 1
3, to get  h(x) = 1

3(2)x   as shown on the right in Figure 6.15.
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Figure 6.15 (a)  g(x) = 3(2)x   stretches the graph of   f (x) = 2x   vertically by a factor of  3.  (b)  h(x) = 1
3(2)x   compresses

the graph of   f (x) = 2x   vertically by a factor of  13.

Stretches and Compressions of the Parent Function f(x) = bx

For any factor  a > 0, the function   f (x) = a(b)x

• is stretched vertically by a factor of  a  if  |a| > 1.

• is compressed vertically by a factor of  a  if  |a| < 1.

• has a y-intercept of  (0, a).

• has a horizontal asymptote at  y = 0, a range of  (0, ∞), and a domain of  (−∞, ∞), which are unchanged

from the parent function.

Example 6.16

Graphing the Stretch of an Exponential Function

Sketch a graph of   f (x) = 4⎛
⎝
1
2

⎞
⎠

x
.  State the domain, range, and asymptote.

Solution
Before graphing, identify the behavior and key points on the graph.

• Since  b = 1
2   is between zero and one, the left tail of the graph will increase without bound as  x 

decreases, and the right tail will approach the x-axis as  x  increases.

• Since  a = 4, the graph of   f (x) = ⎛
⎝
1
2

⎞
⎠

x
 will be stretched by a factor of  4.
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• Create a table of points as shown in Table 6.10.

x −3 −2 −1 0 1 2 3

f(x) = 4⎛
⎝
1
2

⎞
⎠

x
32 16 8 4 2 1 0.5

Table 6.10

• Plot the y-intercept,  (0, 4), along with two other points. We can use  (−1, 8)  and  (1, 2).

Draw a smooth curve connecting the points, as shown in Figure 6.16.

Figure 6.16

The domain is  (−∞, ∞);   the range is  (0, ∞);   the horizontal asymptote is  y = 0.

Sketch the graph of   f (x) = 1
2(4)x.  State the domain, range, and asymptote.

Graphing Reflections
In addition to shifting, compressing, and stretching a graph, we can also reflect it about the x-axis or the y-axis. When we
multiply the parent function   f (x) = bx   by  −1, we get a reflection about the x-axis. When we multiply the input by  −1,
we get a reflection about the y-axis. For example, if we begin by graphing the parent function   f (x) = 2x, we can then

graph the two reflections alongside it. The reflection about the x-axis,  g(x) = −2x, is shown on the left side of Figure

6.17, and the reflection about the y-axis  h(x) = 2−x, is shown on the right side of Figure 6.17.
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Figure 6.17 (a)  g(x) = − 2x   reflects the graph of   f (x) = 2x   about the x-axis. (b)  g(x) = 2−x   reflects the graph of

  f (x) = 2x   about the y-axis.

Reflections of the Parent Function f(x) = bx

The function   f (x) = − bx

• reflects the parent function   f (x) = bx   about the x-axis.

• has a y-intercept of  (0, − 1).

• has a range of  (−∞, 0)

• has a horizontal asymptote at  y = 0  and domain of  (−∞, ∞), which are unchanged from the parent function.

The function   f (x) = b−x

• reflects the parent function   f (x) = bx   about the y-axis.

• has a y-intercept of  (0, 1), a horizontal asymptote at  y = 0, a range of  (0, ∞), and a domain of

 (−∞, ∞), which are unchanged from the parent function.

Example 6.17

Writing and Graphing the Reflection of an Exponential Function
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Find and graph the equation for a function,  g(x), that reflects   f (x) = ⎛
⎝
1
4

⎞
⎠

x
about the x-axis. State its domain,

range, and asymptote.

Solution

Since we want to reflect the parent function   f (x) = ⎛
⎝
1
4

⎞
⎠

x
  about the x-axis, we multiply   f (x)  by  − 1  to get,

 g(x) = − ⎛
⎝
1
4

⎞
⎠

x
. Next we create a table of points as in Table 6.11.

x −3 −2 −1 0 1 2 3

g(x) = − ⎛
⎝
1
4

⎞
⎠

x
−64 −16 −4 −1 −0.25 −0.0625 −0.0156

Table 6.11

Plot the y-intercept,  (0, −1), along with two other points. We can use  (−1, −4)  and  (1, −0.25).

Draw a smooth curve connecting the points:

Figure 6.18

The domain is  (−∞, ∞);   the range is  (−∞, 0);   the horizontal asymptote is  y = 0.

Find and graph the equation for a function,  g(x), that reflects   f (x) = 1.25x   about the y-axis. State its

domain, range, and asymptote.

Summarizing Translations of the Exponential Function
Now that we have worked with each type of translation for the exponential function, we can summarize them in Table 6.12
to arrive at the general equation for translating exponential functions.
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Translations of the Parent Function   f(x) = bx

Translation Form

Shift
• Horizontally  c  units to the left

• Vertically  d  units up
f (x) = bx + c + d

Stretch and Compress
• Stretch if  |a| > 1

• Compression if  0 < |a| < 1
f (x) = abx

Reflect about the x-axis f (x) = − bx

Reflect about the y-axis f (x) = b−x = ⎛
⎝
1
b

⎞
⎠

x

General equation for all translations f (x) = abx + c + d

Table 6.12

Translations of Exponential Functions

A translation of an exponential function has the form

(6.4) f (x) = abx + c + d

Where the parent function,  y = bx,  b > 1, is

• shifted horizontally  c  units to the left.

• stretched vertically by a factor of  |a|  if  |a| > 0.

• compressed vertically by a factor of  |a|  if  0 < |a| < 1.

• shifted vertically  d  units.

• reflected about the x-axis when  a < 0.

Note the order of the shifts, transformations, and reflections follow the order of operations.

Example 6.18

Writing a Function from a Description

Write the equation for the function described below. Give the horizontal asymptote, the domain, and the range.

• f (x) = ex   is vertically stretched by a factor of  2  , reflected across the y-axis, and then shifted up  4 
units.
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Solution

We want to find an equation of the general form    f (x) = abx + c + d. We use the description provided to find

 a, b, c, and  d.

• We are given the parent function   f (x) = ex, so  b = e.

• The function is stretched by a factor of  2 , so  a = 2.

• The function is reflected about the y-axis. We replace  x with  − x  to get:  e−x.

• The graph is shifted vertically 4 units, so  d = 4.

Substituting in the general form we get,

f (x) = abx + c + d

= 2e−x + 0 + 4
= 2e−x + 4

The domain is  (−∞, ∞);   the range is  (4, ∞);   the horizontal asymptote is  y = 4.

Write the equation for function described below. Give the horizontal asymptote, the domain, and the
range.

• f (x) = ex   is compressed vertically by a factor of  13, reflected across the x-axis and then shifted

down  2 units.

Access this online resource for additional instruction and practice with graphing exponential functions.

• Graph Exponential Functions (http://openstaxcollege.org/l/graphexpfunc)
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70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

6.2 EXERCISES
Verbal

What role does the horizontal asymptote of an
exponential function play in telling us about the end
behavior of the graph?

What is the advantage of knowing how to recognize
transformations of the graph of a parent function
algebraically?

Algebraic

The graph of   f (x) = 3x   is reflected about the y-axis

and stretched vertically by a factor of  4. What is the
equation of the new function,  g(x)?   State its y-intercept,

domain, and range.

The graph of   f (x) = ⎛
⎝
1
2

⎞
⎠
−x
  is reflected about the y-

axis and compressed vertically by a factor of  15. What is

the equation of the new function,  g(x)?   State its y-

intercept, domain, and range.

The graph of   f (x) = 10x   is reflected about the x-axis

and shifted upward  7  units. What is the equation of the
new function,  g(x)?   State its y-intercept, domain, and

range.

The graph of   f (x) = (1.68)x   is shifted right  3  units,

stretched vertically by a factor of  2, reflected about the x-
axis, and then shifted downward  3  units. What is the
equation of the new function,  g(x)?   State its y-intercept

(to the nearest thousandth), domain, and range.

The graph of   f (x) = − 1
2

⎛
⎝
1
4

⎞
⎠

x − 2
+ 4  is shifted left

 2  units, stretched vertically by a factor of  4, reflected
about the x-axis, and then shifted downward  4  units. What
is the equation of the new function,  g(x)?   State its y-

intercept, domain, and range.

Graphical
For the following exercises, graph the function and its
reflection about the y-axis on the same axes, and give the
y-intercept.

f (x) = 3⎛
⎝
1
2

⎞
⎠

x

g(x) = − 2(0.25)x

h(x) = 6(1.75)−x

For the following exercises, graph each set of functions on
the same axes.

f (x) = 3⎛
⎝
1
4

⎞
⎠

x
, g(x) = 3(2)x, and  h(x) = 3(4)x

f (x) = 1
4(3)x, g(x) = 2(3)x, and  h(x) = 4(3)x

For the following exercises, match each function with one
of the graphs in Figure 6.19.

Figure 6.19

f (x) = 2(0.69)x

f (x) = 2(1.28)x

f (x) = 2(0.81)x

f (x) = 4(1.28)x

f (x) = 2(1.59)x

f (x) = 4(0.69)x

For the following exercises, use the graphs shown in
Figure 6.20. All have the form   f (x) = abx.
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88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Figure 6.20

Which graph has the largest value for  b?

Which graph has the smallest value for  b?

Which graph has the largest value for  a?

Which graph has the smallest value for  a?

For the following exercises, graph the function and its
reflection about the x-axis on the same axes.

f (x) = 1
2(4)x

f (x) = 3(0.75)x − 1

f (x) = − 4(2)x + 2

For the following exercises, graph the transformation of
f (x) = 2x. Give the horizontal asymptote, the domain,

and the range.

f (x) = 2−x

h(x) = 2x + 3

f (x) = 2x − 2

For the following exercises, describe the end behavior of
the graphs of the functions.

f (x) = − 5(4)x − 1

f (x) = 3⎛
⎝
1
2

⎞
⎠

x
− 2

f (x) = 3(4)−x + 2

For the following exercises, start with the graph of
f (x) = 4x. Then write a function that results from the

given transformation.

Shift f (x) 4 units upward

Shift   f (x)  3 units downward

Shift   f (x)  2 units left

Shift   f (x)  5 units right

Reflect   f (x)  about the x-axis

Reflect   f (x)  about the y-axis

For the following exercises, each graph is a transformation
of  y = 2x. Write an equation describing the

transformation.
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108.

109.

110.

111.

112.

113.

114.

For the following exercises, find an exponential equation
for the graph.

Numeric
For the following exercises, evaluate the exponential
functions for the indicated value of  x.

g(x) = 1
3(7)x − 2   for  g(6).

f (x) = 4(2)x − 1 − 2  for   f (5).

h(x) = − 1
2

⎛
⎝
1
2

⎞
⎠

x
+ 6  for  h( − 7).

Technology
For the following exercises, use a graphing calculator to
approximate the solutions of the equation. Round to the
nearest thousandth.   f (x) = abx + d.
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116.

117.

118.

119.

120.

121.

122.

−50 = − ⎛
⎝
1
2

⎞
⎠
−x

116 = 1
4

⎛
⎝
1
8

⎞
⎠

x

12 = 2(3)x + 1

5 = 3⎛
⎝
1
2

⎞
⎠

x − 1
− 2

−30 = − 4(2)x + 2 + 2

Extensions

Explore and discuss the graphs of  F(x) = (b)x   and

 G(x) = ⎛
⎝
1
b

⎞
⎠

x
. Then make a conjecture about the

relationship between the graphs of the functions  bx   and

 ⎛⎝1
b

⎞
⎠

x
  for any real number  b > 0.

Prove the conjecture made in the previous exercise.

Explore and discuss the graphs of   f (x) = 4x,

 g(x) = 4x − 2, and  h(x) = ⎛
⎝

1
16

⎞
⎠4

x. Then make a

conjecture about the relationship between the graphs of the

functions  bx   and  ⎛⎝ 1
bn

⎞
⎠b

x   for any real number n and real

number  b > 0.

Prove the conjecture made in the previous exercise.
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6.3 | Logarithmic Functions

Learning Objectives

In this section, you will:

6.3.1 Convert from logarithmic to exponential form.
6.3.2 Convert from exponential to logarithmic form.
6.3.3 Evaluate logarithms.
6.3.4 Use common logarithms.
6.3.5 Use natural logarithms.

Figure 6.21 Devastation of March 11, 2011 earthquake in
Honshu, Japan. (credit: Daniel Pierce)

In 2010, a major earthquake struck Haiti, destroying or damaging over 285,000 homes[4]. One year later, another, stronger
earthquake devastated Honshu, Japan, destroying or damaging over 332,000 buildings,[5] like those shown in Figure 6.21.
Even though both caused substantial damage, the earthquake in 2011 was 100 times stronger than the earthquake in Haiti.
How do we know? The magnitudes of earthquakes are measured on a scale known as the Richter Scale. The Haitian
earthquake registered a 7.0 on the Richter Scale[6] whereas the Japanese earthquake registered a 9.0.[7]

The Richter Scale is a base-ten logarithmic scale. In other words, an earthquake of magnitude 8 is not twice as great as an
earthquake of magnitude 4. It is 108 − 4 = 104 = 10,000 times as great! In this lesson, we will investigate the nature of
the Richter Scale and the base-ten function upon which it depends.

Converting from Logarithmic to Exponential Form
In order to analyze the magnitude of earthquakes or compare the magnitudes of two different earthquakes, we need to be
able to convert between logarithmic and exponential form. For example, suppose the amount of energy released from one
earthquake were 500 times greater than the amount of energy released from another. We want to calculate the difference in
magnitude. The equation that represents this problem is  10x = 500, where  x  represents the difference in magnitudes on
the Richter Scale. How would we solve for  x?

We have not yet learned a method for solving exponential equations. None of the algebraic tools discussed so far is sufficient
to solve  10x = 500. We know that  102 = 100  and  103 = 1000, so it is clear that  x must be some value between 2 and

3, since  y = 10x   is increasing. We can examine a graph, as in Figure 6.22, to better estimate the solution.

4. http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/#summary. Accessed 3/4/2013.
5. http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#summary. Accessed 3/4/2013.
6. http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/. Accessed 3/4/2013.
7. http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/#details. Accessed 3/4/2013.
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Figure 6.22

Estimating from a graph, however, is imprecise. To find an algebraic solution, we must introduce a new function. Observe
that the graph in Figure 6.22 passes the horizontal line test. The exponential function  y = bx   is one-to-one, so its inverse,

 x = by   is also a function. As is the case with all inverse functions, we simply interchange  x  and  y  and solve for  y  to find

the inverse function. To represent  y  as a function of  x, we use a logarithmic function of the form  y = logb (x). The base

 b  logarithm of a number is the exponent by which we must raise  b  to get that number.

We read a logarithmic expression as, “The logarithm with base  b  of  x  is equal to  y, ” or, simplified, “log base  b  of  x  is
 y. ” We can also say, “ b  raised to the power of  y  is  x, ” because logs are exponents. For example, the base 2 logarithm of

32 is 5, because 5 is the exponent we must apply to 2 to get 32. Since  25 = 32, we can write  log2 32 = 5. We read this

as “log base 2 of 32 is 5.”

We can express the relationship between logarithmic form and its corresponding exponential form as follows:

logb (x) = y ⇔ by = x, b > 0, b ≠ 1

Note that the base  b  is always positive.

Because logarithm is a function, it is most correctly written as  logb(x), using parentheses to denote function evaluation,

just as we would with   f (x). However, when the input is a single variable or number, it is common to see the parentheses

dropped and the expression written without parentheses, as  logb x. Note that many calculators require parentheses around

the  x.

We can illustrate the notation of logarithms as follows:

Notice that, comparing the logarithm function and the exponential function, the input and the output are switched. This
means  y = logb (x)  and  y = bx   are inverse functions.

686 Chapter 6 Exponential and Logarithmic Functions

This content is available for free at https://cnx.org/content/col11758/1.5



Definition of the Logarithmic Function

A logarithm base  b  of a positive number  x  satisfies the following definition.

For  x > 0, b > 0, b ≠ 1,

(6.5)y = logb (x) is equivalent to by = x

where,

• we read  logb (x)  as, “the logarithm with base  b  of  x ” or the “log base  b  of  x. "

• the logarithm  y  is the exponent to which  b must be raised to get  x.

Also, since the logarithmic and exponential functions switch the  x  and  y  values, the domain and range of the

exponential function are interchanged for the logarithmic function. Therefore,

• the domain of the logarithm function with base  b  is  (0, ∞).

• the range of the logarithm function with base  b  is  ( − ∞, ∞).

Can we take the logarithm of a negative number?

No. Because the base of an exponential function is always positive, no power of that base can ever be negative. We
can never take the logarithm of a negative number. Also, we cannot take the logarithm of zero. Calculators may
output a log of a negative number when in complex mode, but the log of a negative number is not a real number.

Given an equation in logarithmic form  logb (x) = y, convert it to exponential form.

1. Examine the equation  y = logb x  and identify  b, y, andx.

2. Rewrite  logb x = y  as  by = x.

Example 6.19

Converting from Logarithmic Form to Exponential Form

Write the following logarithmic equations in exponential form.

a. log6
⎛
⎝ 6⎞

⎠ = 1
2

b. log3 (9) = 2

Solution
First, identify the values of  b, y, andx. Then, write the equation in the form  by = x.

a. log6
⎛
⎝ 6⎞

⎠ = 1
2

Here,  b = 6, y = 1
2, and  x = 6. Therefore, the equation  log6

⎛
⎝ 6⎞

⎠ = 1
2   is equivalent to  6

1
2 = 6.

b. log3 (9) = 2

Here,  b = 3, y = 2, and  x = 9. Therefore, the equation  log3 (9) = 2  is equivalent to  32 = 9. 
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6.20

Write the following logarithmic equations in exponential form.

a. log10 (1,000,000) = 6

b. log5 (25) = 2

Converting from Exponential to Logarithmic Form
To convert from exponents to logarithms, we follow the same steps in reverse. We identify the base  b, exponent  x, and
output  y. Then we write  x = logb (y).

Example 6.20

Converting from Exponential Form to Logarithmic Form

Write the following exponential equations in logarithmic form.

a. 23 = 8

b. 52 = 25

c. 10−4 = 1
10,000

Solution
First, identify the values of  b, y, andx. Then, write the equation in the form  x = logb (y).

a. 23 = 8
Here,  b = 2,  x = 3, and  y = 8. Therefore, the equation  23 = 8  is equivalent to  log2(8) = 3.

b. 52 = 25
Here,  b = 5,  x = 2, and  y = 25. Therefore, the equation  52 = 25  is equivalent to  log5(25) = 2.

c. 10−4 = 1
10,000

Here,  b = 10,  x = − 4, and  y = 1
10,000. Therefore, the equation  10−4 = 1

10,000   is equivalent to

 log10( 1
10,000) = − 4.

Write the following exponential equations in logarithmic form.

a. 32 = 9

b. 53 = 125

c. 2−1 = 1
2
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6.21

Evaluating Logarithms
Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For example, consider
 log2 8. We ask, “To what exponent must  2  be raised in order to get 8?” Because we already know  23 = 8, it follows

that  log2 8 = 3.

Now consider solving  log7 49  and  log3 27 mentally.

• We ask, “To what exponent must 7 be raised in order to get 49?” We know  72 = 49. Therefore,  log7 49 = 2

• We ask, “To what exponent must 3 be raised in order to get 27?” We know  33 = 27. Therefore,  log3 27 = 3

Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s evaluate
 log 2

3
4
9  mentally.

• We ask, “To what exponent must  23   be raised in order to get  49 ?   ” We know  22 = 4  and  32 = 9, so  ⎛⎝2
3

⎞
⎠

2
= 4

9. 

Therefore,  log 2
3

⎛
⎝
4
9

⎞
⎠ = 2.

Given a logarithm of the form  y = logb (x), evaluate it mentally.

1. Rewrite the argument  x  as a power of  b :   by = x. 
2. Use previous knowledge of powers of  b  identify  y  by asking, “To what exponent should  b  be raised in

order to get  x? ”

Example 6.21

Solving Logarithms Mentally

Solve  y = log4 (64) without using a calculator.

Solution
First we rewrite the logarithm in exponential form:  4y = 64. Next, we ask, “To what exponent must 4 be raised
in order to get 64?”

We know

43 = 64

Therefore,

log(64) = 3

Solve  y = log121 (11) without using a calculator.

Example 6.22
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Evaluating the Logarithm of a Reciprocal

Evaluate  y = log3
⎛
⎝

1
27

⎞
⎠ without using a calculator.

Solution

First we rewrite the logarithm in exponential form:  3y = 1
27. Next, we ask, “To what exponent must 3 be raised

in order to get   1
27 ? ”

We know  33 = 27, but what must we do to get the reciprocal,   1
27 ?  Recall from working with exponents that

 b−a = 1
ba. We use this information to write

3−3 = 1
33

= 1
27

Therefore,  log3
⎛
⎝

1
27

⎞
⎠ = − 3.

Evaluate  y = log2
⎛
⎝

1
32

⎞
⎠ without using a calculator.

Using Common Logarithms
Sometimes we may see a logarithm written without a base. In this case, we assume that the base is 10. In other words, the
expression  log(x) means  log10 (x). We call a base-10 logarithm a common logarithm. Common logarithms are used to

measure the Richter Scale mentioned at the beginning of the section. Scales for measuring the brightness of stars and the
pH of acids and bases also use common logarithms.

Definition of the Common Logarithm

A common logarithm is a logarithm with base  10. We write  log10 (x)  simply as  log(x). The common logarithm of

a positive number  x  satisfies the following definition.

For  x > 0,

(6.6)y = log(x) is equivalent to 10y = x

We read  log(x)  as, “the logarithm with base  10  of  x  ” or “log base 10 of  x. ”

The logarithm  y  is the exponent to which  10 must be raised to get  x.

Given a common logarithm of the form  y = log(x), evaluate it mentally.

1. Rewrite the argument  x  as a power of  10 :   10y = x.

2. Use previous knowledge of powers of  10  to identify  y  by asking, “To what exponent must  10  be raised

in order to get  x? ”
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6.24

Example 6.23

Finding the Value of a Common Logarithm Mentally

Evaluate  y = log(1000) without using a calculator.

Solution
First we rewrite the logarithm in exponential form:  10y = 1000. Next, we ask, “To what exponent must  10  be
raised in order to get 1000?” We know

103 = 1000

Therefore,  log(1000) = 3.

Evaluate  y = log(1,000,000).

Given a common logarithm with the form  y = log(x), evaluate it using a calculator.

1. Press [LOG].

2. Enter the value given for  x, followed by [ ) ].

3. Press [ENTER].

Example 6.24

Finding the Value of a Common Logarithm Using a Calculator

Evaluate  y = log(321)  to four decimal places using a calculator.

Solution
• Press [LOG].

• Enter 321, followed by [ ) ].

• Press [ENTER].

Rounding to four decimal places,  log(321) ≈ 2.5065.

Analysis
Note that  102 = 100  and that  103 = 1000.  Since 321 is between 100 and 1000, we know that  log(321) must

be between  log(100)  and  log(1000). This gives us the following:

100 < 321 < 1000
2 < 2.5065 < 3

Evaluate  y = log(123)  to four decimal places using a calculator.
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Example 6.25

Rewriting and Solving a Real-World Exponential Model

The amount of energy released from one earthquake was 500 times greater than the amount of energy released
from another. The equation  10x = 500  represents this situation, where  x  is the difference in magnitudes on the
Richter Scale. To the nearest thousandth, what was the difference in magnitudes?

Solution
We begin by rewriting the exponential equation in logarithmic form.

 10x = 500
log(500) = x Use the definition of he common log.

Next we evaluate the logarithm using a calculator:

• Press [LOG].

• Enter  500, followed by [ ) ].

• Press [ENTER].

• To the nearest thousandth,  log(500) ≈ 2.699.

The difference in magnitudes was about  2.699.

The amount of energy released from one earthquake was  8,500  times greater than the amount of energy

released from another. The equation  10x = 8500  represents this situation, where  x  is the difference in
magnitudes on the Richter Scale. To the nearest thousandth, what was the difference in magnitudes?

Using Natural Logarithms
The most frequently used base for logarithms is  e. Base  e  logarithms are important in calculus and some scientific
applications; they are called natural logarithms. The base  e  logarithm,  loge (x), has its own notation,  ln(x).

Most values of  ln(x)  can be found only using a calculator. The major exception is that, because the logarithm of 1 is always
0 in any base,  ln1 = 0.  For other natural logarithms, we can use the  ln  key that can be found on most scientific calculators.
We can also find the natural logarithm of any power of  e  using the inverse property of logarithms.

Definition of the Natural Logarithm

A natural logarithm is a logarithm with base  e. We write loge (x) simply as ln(x). The natural logarithm of a

positive number x satisfies the following definition.

For  x > 0,

(6.7)y = ln(x) is equivalent to ey = x

We read  ln(x)  as, “the logarithm with base  e  of  x ” or “the natural logarithm of  x. ”

The logarithm  y  is the exponent to which  e must be raised to get  x.

Since the functions  y = e  and  y = ln(x)  are inverse functions,  ln(ex) = x  for all  x  and  e = x  for  x > 0.
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Given a natural logarithm with the form  y = ln(x), evaluate it using a calculator.

1. Press [LN].

2. Enter the value given for  x, followed by [ ) ].

3. Press [ENTER].

Example 6.26

Evaluating a Natural Logarithm Using a Calculator

Evaluate  y = ln(500)  to four decimal places using a calculator.

Solution
• Press [LN].

• Enter  500, followed by [ ) ].

• Press [ENTER].

Rounding to four decimal places,  ln(500) ≈ 6.2146

Evaluate  ln(−500).

Access this online resource for additional instruction and practice with logarithms.

• Introduction to Logarithms (http://openstaxcollege.org/l/intrologarithms)
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6.3 EXERCISES
Verbal

What is a base  b  logarithm? Discuss the meaning by
interpreting each part of the equivalent equations  by = x
and  logb x = y  for  b > 0, b ≠ 1.

How is the logarithmic function   f (x) = logb x

related to the exponential function  g(x) = bx ?  What is the

result of composing these two functions?

How can the logarithmic equation  logb x = y  be

solved for  x  using the properties of exponents?

Discuss the meaning of the common logarithm. What
is its relationship to a logarithm with base  b, and how
does the notation differ?

Discuss the meaning of the natural logarithm. What is
its relationship to a logarithm with base  b, and how does
the notation differ?

Algebraic
For the following exercises, rewrite each equation in
exponential form.

log4(q) = m

loga(b) = c

log16 (y) = x

logx (64) = y

logy (x) = −11

log15 (a) = b

logy (137) = x

log13 (142) = a

log(v) = t

ln(w) = n

For the following exercises, rewrite each equation in
logarithmic form.

4x = y

cd = k

m−7 = n

19x = y

x
− 10

13 = y

n4 = 103

⎛
⎝
7
5

⎞
⎠

m
= n

yx = 39
100

10a = b

ek = h

For the following exercises, solve for  x  by converting the
logarithmic equation to exponential form.

log3(x) = 2

log2(x) = − 3

log5(x) = 2

log3 (x) = 3

log2(x) = 6

log9(x) = 1
2

log18(x) = 2

log6 (x) = − 3

log(x) = 3

ln(x) = 2

For the following exercises, use the definition of common
and natural logarithms to simplify.

log(1008)

10log(32)

2log(.0001)
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162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

eln(1.06)

ln⎛
⎝e

−5.03⎞
⎠

eln(10.125) + 4

Numeric
For the following exercises, evaluate the base  b 
logarithmic expression without using a calculator.

log3
⎛
⎝

1
27

⎞
⎠

log6( 6)

log2
⎛
⎝
1
8

⎞
⎠ + 4

6log8(4)

For the following exercises, evaluate the common
logarithmic expression without using a calculator.

log(10, 000)

log(0.001)

log(1) + 7

2log(100−3)

For the following exercises, evaluate the natural
logarithmic expression without using a calculator.

ln(e
1
3)

ln(1)

ln(e−0.225) − 3

25ln(e
2
5)

Technology
For the following exercises, evaluate each expression using
a calculator. Round to the nearest thousandth.

log(0.04)

ln(15)

ln⎛
⎝
4
5

⎞
⎠

log( 2)

ln( 2)

Extensions

Is  x = 0  in the domain of the function
  f (x) = log(x)?   If so, what is the value of the function

when  x = 0?  Verify the result.

Is   f (x) = 0  in the range of the function

  f (x) = log(x)?   If so, for what value of  x?  Verify the

result.

Is there a number  x  such that  lnx = 2?   If so, what is
that number? Verify the result.

Is the following true:  log3(27)
log4

⎛
⎝

1
64

⎞
⎠

= −1?  Verify the

result.

Is the following true:  
ln⎛

⎝e
1.725⎞

⎠
ln(1) = 1.725?  Verify the

result.

Real-World Applications

The exposure index  EI  for a 35 millimeter camera is
a measurement of the amount of light that hits the film. It is

determined by the equation  EI = log2
⎛

⎝
⎜ f 2

t
⎞

⎠
⎟ , where   f   is

the “f-stop” setting on the camera, and t is the exposure
time in seconds. Suppose the f-stop setting is  8  and the
desired exposure time is  2  seconds. What will the resulting
exposure index be?

Refer to the previous exercise. Suppose the light
meter on a camera indicates an  EI  of  − 2, and the
desired exposure time is 16 seconds. What should the f-stop
setting be?

The intensity levels I of two earthquakes measured on
a seismograph can be compared by the formula

 logI1
I2

= M1 − M2  where  M  is the magnitude given by

the Richter Scale. In August 2009, an earthquake of
magnitude 6.1 hit Honshu, Japan. In March 2011, that same
region experienced yet another, more devastating
earthquake, this time with a magnitude of 9.0.[8] How many

8. http://earthquake.usgs.gov/earthquakes/world/historical.php. Accessed 3/4/2014.
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times greater was the intensity of the 2011 earthquake?
Round to the nearest whole number.
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6.4 | Graphs of Logarithmic Functions

Learning Objectives

In this section, you will:

6.4.1 Identify the domain of a logarithmic function.
6.4.2 Graph logarithmic functions.

In Graphs of Exponential Functions, we saw how creating a graphical representation of an exponential model gives
us another layer of insight for predicting future events. How do logarithmic graphs give us insight into situations? Because
every logarithmic function is the inverse function of an exponential function, we can think of every output on a logarithmic
graph as the input for the corresponding inverse exponential equation. In other words, logarithms give the cause for an
effect.

To illustrate, suppose we invest  $2500  in an account that offers an annual interest rate of  5%, compounded continuously.

We already know that the balance in our account for any year  t  can be found with the equation  A = 2500e0.05t.

But what if we wanted to know the year for any balance? We would need to create a corresponding new function by
interchanging the input and the output; thus we would need to create a logarithmic model for this situation. By graphing the
model, we can see the output (year) for any input (account balance). For instance, what if we wanted to know how many
years it would take for our initial investment to double? Figure 6.23 shows this point on the logarithmic graph.

Figure 6.23

In this section we will discuss the values for which a logarithmic function is defined, and then turn our attention to graphing
the family of logarithmic functions.

Finding the Domain of a Logarithmic Function
Before working with graphs, we will take a look at the domain (the set of input values) for which the logarithmic function
is defined.

Recall that the exponential function is defined as  y = bx   for any real number  x  and constant  b > 0, b ≠ 1, where

• The domain of  y  is  (−∞, ∞).
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• The range of  y  is  (0, ∞).

In the last section we learned that the logarithmic function  y = logb (x)  is the inverse of the exponential function  y = bx. 
So, as inverse functions:

• The domain of  y = logb (x)  is the range of  y = bx :   (0, ∞).

• The range of  y = logb (x)  is the domain of  y = bx :   (−∞, ∞).

Transformations of the parent function  y = logb (x)  behave similarly to those of other functions. Just as with other parent

functions, we can apply the four types of transformations—shifts, stretches, compressions, and reflections—to the parent
function without loss of shape.

In Graphs of Exponential Functions we saw that certain transformations can change the range of  y = bx.  Similarly,

applying transformations to the parent function  y = logb (x)  can change the domain. When finding the domain of a

logarithmic function, therefore, it is important to remember that the domain consists only of positive real numbers. That is,
the argument of the logarithmic function must be greater than zero.

For example, consider   f (x) = log4 (2x − 3). This function is defined for any values of  x  such that the argument, in this

case  2x − 3, is greater than zero. To find the domain, we set up an inequality and solve for  x :

2x − 3 > 0 Show the argument greater than zero.
          2x > 3 Add 3.

  x > 1.5 Divide by 2.

In interval notation, the domain of   f (x) = log4 (2x − 3)  is  (1.5, ∞).

Given a logarithmic function, identify the domain.

1. Set up an inequality showing the argument greater than zero.

2. Solve for  x.

3. Write the domain in interval notation.

Example 6.27

Identifying the Domain of a Logarithmic Shift

What is the domain of   f (x) = log2(x + 3)?

Solution
The logarithmic function is defined only when the input is positive, so this function is defined when  x + 3 > 0. 
Solving this inequality,

x + 3 > 0 The input must be positive.
          x > − 3 Subtract 3.

The domain of   f (x) = log2(x + 3)  is  (−3, ∞).

What is the domain of   f (x) = log5(x − 2) + 1?
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Example 6.28

Identifying the Domain of a Logarithmic Shift and Reflection

What is the domain of   f (x) = log(5 − 2x)?

Solution
The logarithmic function is defined only when the input is positive, so this function is defined when  5 – 2x > 0. 
Solving this inequality,

5 − 2x > 0 The input must be positive.
   − 2x > − 5 Subtract 5.
            x < 5

2 Divide by − 2 and switch the inequality.

The domain of   f (x) = log(5 − 2x)  is  ⎛⎝ – ∞, 5
2

⎞
⎠.

What is the domain of   f (x) = log(x − 5) + 2?

Graphing Logarithmic Functions
Now that we have a feel for the set of values for which a logarithmic function is defined, we move on to graphing
logarithmic functions. The family of logarithmic functions includes the parent function  y = logb (x)  along with all its

transformations: shifts, stretches, compressions, and reflections.

We begin with the parent function  y = logb (x). Because every logarithmic function of this form is the inverse of an

exponential function with the form  y = bx, their graphs will be reflections of each other across the line  y = x. To

illustrate this, we can observe the relationship between the input and output values of  y = 2x   and its equivalent

 x = log2(y)  in Table 6.13.

x −3 −2 −1 0 1 2 3

2x = y 1
8

1
4

1
2 1 2 4 8

log2 (y) = x −3 −2 −1 0 1 2 3

Table 6.13

Using the inputs and outputs from Table 6.13, we can build another table to observe the relationship between points on the
graphs of the inverse functions   f (x) = 2x   and  g(x) = log2(x).  See Table 6.14.
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f(x) = 2x ⎛
⎝−3, 1

8
⎞
⎠

⎛
⎝−2, 1

4
⎞
⎠

⎛
⎝−1, 1

2
⎞
⎠ (0, 1) (1, 2) (2, 4) (3, 8)

g(x) = log2 (x) ⎛
⎝
1
8, − 3⎞

⎠
⎛
⎝
1
4, − 2⎞

⎠
⎛
⎝
1
2, − 1⎞

⎠ (1, 0) (2, 1) (4, 2) (8, 3)

Table 6.14

As we’d expect, the x- and y-coordinates are reversed for the inverse functions. Figure 6.24 shows the graph of   f   and  g.

Figure 6.24 Notice that the graphs of   f (x) = 2x   and

 g(x) = log2 (x)  are reflections about the line  y = x.

Observe the following from the graph:

• f (x) = 2x   has a y-intercept at  (0, 1)  and  g(x) = log2 (x)  has an x- intercept at  (1, 0).

• The domain of   f (x) = 2x, (−∞, ∞), is the same as the range of  g(x) = log2 (x).

• The range of   f (x) = 2x, (0, ∞), is the same as the domain of  g(x) = log2 (x).

Characteristics of the Graph of the Parent Function, f(x) = logb(x)

For any real number  x  and constant  b > 0, b ≠ 1, we can see the following characteristics in the graph of
f (x) = logb (x) :

• one-to-one function

• vertical asymptote:  x = 0

• domain:  (0, ∞)

• range:  (−∞, ∞)

• x-intercept:  (1, 0)  and key point (b, 1)

• y-intercept: none
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• increasing if  b > 1

• decreasing if  0 < b < 1

See Figure 6.25.

Figure 6.25

Figure 6.26 shows how changing the base  b  in   f (x) = logb (x)  can affect the graphs. Observe that the graphs

compress vertically as the value of the base increases. (Note: recall that the function  ln(x)  has base  e ≈ 2.718.)

Figure 6.26 The graphs of three logarithmic functions with
different bases, all greater than 1.

Given a logarithmic function with the form   f(x) = logb (x), graph the function.

1. Draw and label the vertical asymptote,  x = 0.

2. Plot the x-intercept,  (1, 0).

3. Plot the key point  (b, 1).

4. Draw a smooth curve through the points.

5. State the domain,  (0, ∞), the range,  (−∞,∞), and the vertical asymptote,  x = 0.
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Example 6.29

Graphing a Logarithmic Function with the Form f(x) = logb(x).

Graph   f (x) = log5 (x).  State the domain, range, and asymptote.

Solution
Before graphing, identify the behavior and key points for the graph.

• Since  b = 5  is greater than one, we know the function is increasing. The left tail of the graph will
approach the vertical asymptote  x = 0, and the right tail will increase slowly without bound.

• The x-intercept is  (1, 0).

• The key point  (5, 1)  is on the graph.

• We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points
(see Figure 6.27).

Figure 6.27

The domain is  (0, ∞), the range is  (−∞, ∞), and the vertical asymptote is  x = 0.

Graph   f (x) = log 1
5
(x).  State the domain, range, and asymptote.

Graphing Transformations of Logarithmic Functions
As we mentioned in the beginning of the section, transformations of logarithmic graphs behave similarly to those of other
parent functions. We can shift, stretch, compress, and reflect the parent function  y = logb (x) without loss of shape.

Graphing a Horizontal Shift of f(x) = logb(x)

When a constant  c  is added to the input of the parent function   f (x) = logb(x), the result is a horizontal shift  c  units in the

opposite direction of the sign on  c. To visualize horizontal shifts, we can observe the general graph of the parent function
f (x) = logb (x)  and for  c > 0  alongside the shift left,  g(x) = logb (x + c), and the shift right,  h(x) = logb (x − c). See

Figure 6.28.
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Figure 6.28

Horizontal Shifts of the Parent Function y = logb(x)

For any constant  c, the function   f (x) = logb (x + c)

• shifts the parent function  y = logb (x)  left  c  units if  c > 0.

• shifts the parent function  y = logb (x)  right  c  units if  c < 0.

• has the vertical asymptote  x = − c.

• has domain  (−c, ∞).

• has range  (−∞, ∞).

Given a logarithmic function with the form   f(x) = logb (x + c), graph the translation.

1. Identify the horizontal shift:

a. If  c > 0, shift the graph of   f (x) = logb (x)  left  c  units.

b. If  c < 0, shift the graph of   f (x) = logb (x)  right  c  units.

2. Draw the vertical asymptote  x = − c.

3. Identify three key points from the parent function. Find new coordinates for the shifted functions by
subtracting  c  from the  x  coordinate.

4. Label the three points.

5. The Domain is  (−c, ∞), the range is  (−∞, ∞), and the vertical asymptote is  x = − c.
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Example 6.30

Graphing a Horizontal Shift of the Parent Function y = logb(x)

Sketch the horizontal shift   f (x) = log3(x − 2)  alongside its parent function. Include the key points and

asymptotes on the graph. State the domain, range, and asymptote.

Solution
Since the function is   f (x) = log3(x − 2), we notice  x + (−2) = x – 2.

Thus  c = − 2, so  c < 0. This means we will shift the function   f (x) = log3(x)  right 2 units.

The vertical asymptote is  x = − ( − 2)  or  x = 2.

Consider the three key points from the parent function,  ⎛⎝1
3, −1⎞

⎠, (1, 0), and  (3, 1).

The new coordinates are found by adding 2 to the  x  coordinates.

Label the points  ⎛⎝7
3, −1⎞

⎠, (3, 0), and  (5, 1).

The domain is  (2, ∞), the range is  (−∞, ∞), and the vertical asymptote is  x = 2.

Figure 6.29

Sketch a graph of   f (x) = log3(x + 4)  alongside its parent function. Include the key points and

asymptotes on the graph. State the domain, range, and asymptote.

Graphing a Vertical Shift of y = logb(x)

When a constant  d  is added to the parent function   f (x) = logb (x), the result is a vertical shift  d  units in the direction

of the sign on  d. To visualize vertical shifts, we can observe the general graph of the parent function   f (x) = logb (x) 
alongside the shift up,  g(x) = logb (x) + d  and the shift down,  h(x) = logb (x) − d. See Figure 6.30.
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Figure 6.30

Vertical Shifts of the Parent Function y = logb(x)

For any constant  d, the function   f (x) = logb (x) + d

• shifts the parent function  y = logb (x)  up  d  units if  d > 0.

• shifts the parent function  y = logb (x)  down  d  units if  d < 0.

• has the vertical asymptote  x = 0.

• has domain  (0, ∞).

• has range  (−∞, ∞).
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Given a logarithmic function with the form   f(x) = logb (x) + d, graph the translation.

1. Identify the vertical shift:

◦ If  d > 0, shift the graph of   f (x) = logb (x)  up  d  units.

◦ If  d < 0, shift the graph of   f (x) = logb (x) down  d  units.

2. Draw the vertical asymptote  x = 0.

3. Identify three key points from the parent function. Find new coordinates for the shifted functions by adding
 d  to the  y  coordinate.

4. Label the three points.

5. The domain is  (0,∞), the range is  (−∞,∞), and the vertical asymptote is  x = 0.

Example 6.31

Graphing a Vertical Shift of the Parent Function y = logb(x)

Sketch a graph of   f (x) = log3(x) − 2  alongside its parent function. Include the key points and asymptote on the

graph. State the domain, range, and asymptote.

Solution
Since the function is   f (x) = log3(x) − 2, we will notice  d = – 2. Thus  d < 0.

This means we will shift the function   f (x) = log3(x)  down 2 units.

The vertical asymptote is  x = 0.

Consider the three key points from the parent function,  ⎛⎝1
3, −1⎞

⎠, (1, 0), and  (3, 1).

The new coordinates are found by subtracting 2 from the y coordinates.

Label the points  ⎛⎝1
3, −3⎞

⎠, (1, −2), and  (3, −1).

The domain is  (0, ∞), the range is  (−∞, ∞), and the vertical asymptote is  x = 0.
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6.31

Figure 6.31

The domain is  (0, ∞), the range is  (−∞, ∞), and the vertical asymptote is  x = 0.

Sketch a graph of   f (x) = log2(x) + 2  alongside its parent function. Include the key points and

asymptote on the graph. State the domain, range, and asymptote.

Graphing Stretches and Compressions of y = logb(x)

When the parent function   f (x) = logb (x)  is multiplied by a constant  a > 0, the result is a vertical stretch or compression

of the original graph. To visualize stretches and compressions, we set  a > 1  and observe the general graph of the parent

function   f (x) = logb (x)  alongside the vertical stretch,  g(x) = alogb (x)  and the vertical compression,  h(x) = 1
alogb (x).

See Figure 6.32.
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Figure 6.32

Vertical Stretches and Compressions of the Parent Function y = logb(x)

For any constant  a > 1, the function   f (x) = alogb (x)

• stretches the parent function  y = logb (x)  vertically by a factor of  a  if  a > 1.

• compresses the parent function  y = logb (x)  vertically by a factor of  a  if  0 < a < 1.

• has the vertical asymptote  x = 0.

• has the x-intercept  (1, 0).

• has domain  (0, ∞).

• has range  (−∞, ∞).
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Given a logarithmic function with the form   f(x) = alogb (x), a > 0, graph the translation.

1. Identify the vertical stretch or compressions:

◦ If  |a| > 1, the graph of   f (x) = logb (x)  is stretched by a factor of  a  units.

◦ If  |a| < 1, the graph of   f (x) = logb (x)  is compressed by a factor of  a  units.

2. Draw the vertical asymptote  x = 0.

3. Identify three key points from the parent function. Find new coordinates for the shifted functions by
multiplying the  y  coordinates by  a.

4. Label the three points.

5. The domain is  (0, ∞), the range is  (−∞, ∞), and the vertical asymptote is  x = 0.

Example 6.32

Graphing a Stretch or Compression of the Parent Function y = logb(x)

Sketch a graph of   f (x) = 2log4(x)  alongside its parent function. Include the key points and asymptote on the

graph. State the domain, range, and asymptote.

Solution
Since the function is   f (x) = 2log4(x), we will notice  a = 2.

This means we will stretch the function   f (x) = log4(x)  by a factor of 2.

The vertical asymptote is  x = 0.

Consider the three key points from the parent function,  ⎛⎝1
4, −1⎞

⎠, (1, 0),  and  (4, 1).

The new coordinates are found by multiplying the  y  coordinates by 2.

Label the points  ⎛⎝1
4, −2⎞

⎠, (1, 0) , and  (4, 2).

The domain is  (0, ∞), the range is  (−∞, ∞),  and the vertical asymptote is  x = 0.  See Figure 6.33.
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6.32

Figure 6.33

The domain is  (0, ∞), the range is  (−∞, ∞), and the vertical asymptote is  x = 0.

Sketch a graph of   f (x) = 1
2  log4(x)  alongside its parent function. Include the key points and asymptote

on the graph. State the domain, range, and asymptote.

Example 6.33

Combining a Shift and a Stretch

Sketch a graph of   f (x) = 5log(x + 2).  State the domain, range, and asymptote.

Solution
Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then stretch
the function vertically by a factor of 5, as in Figure 6.34. The vertical asymptote will be shifted to  x = −2.
The x-intercept will be  (−1,0). The domain will be  (−2, ∞). Two points will help give the shape of the
graph:  (−1, 0)  and  (8, 5). We chose  x = 8  as the x-coordinate of one point to graph because when  x = 8, 
 x + 2 = 10,  the base of the common logarithm.
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6.33

Figure 6.34

The domain is  (−2, ∞), the range is  (−∞, ∞), and the vertical asymptote is  x = − 2.

Sketch a graph of the function   f (x) = 3log(x − 2) + 1.  State the domain, range, and asymptote.

Graphing Reflections of f(x) = logb(x)

When the parent function   f (x) = logb (x)  is multiplied by  −1, the result is a reflection about the x-axis. When the input

is multiplied by  −1, the result is a reflection about the y-axis. To visualize reflections, we restrict  b > 1,  and observe the
general graph of the parent function   f (x) = logb (x)  alongside the reflection about the x-axis,  g(x) = −logb (x)  and the

reflection about the y-axis,  h(x) = logb (−x).
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Figure 6.35

Reflections of the Parent Function y = logb(x)

The function   f (x) = −logb (x)

• reflects the parent function  y = logb (x)  about the x-axis.

• has domain,  (0, ∞), range,  (−∞, ∞), and vertical asymptote,  x = 0, which are unchanged from the
parent function.

The function   f (x) = logb (−x)

• reflects the parent function  y = logb (x)  about the y-axis.

• has domain  (−∞, 0).

• has range,  (−∞, ∞), and vertical asymptote,  x = 0, which are unchanged from the parent function.
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Given a logarithmic function with the parent function   f(x) = logb (x), graph a translation.

If f(x) = − logb(x) If f(x) = logb( − x)

1. Draw the vertical asymptote,  x = 0. 1. Draw the vertical asymptote,  x = 0.

2. Plot the x-intercept,  (1, 0). 2. Plot the x-intercept,  (1, 0).

3. Reflect the graph of the parent function
  f (x) = logb (x)  about the x-axis.

3. Reflect the graph of the parent function
  f (x) = logb (x)  about the y-axis.

4. Draw a smooth curve through the points. 4. Draw a smooth curve through the points.

5. State the domain,  (0, ∞), the range,

 (−∞, ∞), and the vertical asymptote

 x = 0.

5. State the domain,  (−∞, 0), the range,

 (−∞, ∞), and the vertical asymptote

 x = 0.

Example 6.34

Graphing a Reflection of a Logarithmic Function

Sketch a graph of   f (x) = log( − x)  alongside its parent function. Include the key points and asymptote on the

graph. State the domain, range, and asymptote.

Solution
Before graphing   f (x) = log( − x), identify the behavior and key points for the graph.

• Since  b = 10  is greater than one, we know that the parent function is increasing. Since the input value
is multiplied by  −1, f   is a reflection of the parent graph about the y-axis. Thus,   f (x) = log( − x) will

be decreasing as  x moves from negative infinity to zero, and the right tail of the graph will approach the
vertical asymptote  x = 0. 

• The x-intercept is  (−1, 0).

• We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points.
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6.34

Figure 6.36

The domain is  (−∞, 0), the range is  (−∞, ∞), and the vertical asymptote is  x = 0.

Graph   f (x) = − log( − x).  State the domain, range, and asymptote.

Given a logarithmic equation, use a graphing calculator to approximate solutions.

1. Press [Y=]. Enter the given logarithm equation or equations as Y1= and, if needed, Y2=.

2. Press [GRAPH] to observe the graphs of the curves and use [WINDOW] to find an appropriate view of
the graphs, including their point(s) of intersection.

3. To find the value of  x, we compute the point of intersection. Press [2ND] then [CALC]. Select
“intersect” and press [ENTER] three times. The point of intersection gives the value of  x, for the point(s)
of intersection.

Example 6.35

Approximating the Solution of a Logarithmic Equation

Solve  4ln(x) + 1 = − 2ln(x − 1)  graphically. Round to the nearest thousandth.

Solution
Press [Y=] and enter  4ln(x) + 1  next to Y1=. Then enter  − 2ln(x − 1)  next to Y2=. For a window, use the
values 0 to 5 for  x  and –10 to 10 for  y.  Press [GRAPH]. The graphs should intersect somewhere a little to right

of  x = 1.
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6.35

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three times. The
x-coordinate of the point of intersection is displayed as 1.3385297. (Your answer may be different if you use a
different window or use a different value for Guess?) So, to the nearest thousandth,  x ≈ 1.339.

Solve  5log(x + 2) = 4 − log(x)  graphically. Round to the nearest thousandth.

Summarizing Translations of the Logarithmic Function
Now that we have worked with each type of translation for the logarithmic function, we can summarize each in Table 6.15
to arrive at the general equation for translating exponential functions.

Translations of the Parent Function  y = logb (x)

Translation Form

Shift
• Horizontally  c  units to the left

• Vertically  d  units up
y = logb (x + c) + d

Stretch and Compress
• Stretch if  |a| > 1

• Compression if  |a| < 1
y = alogb (x)

Reflect about the x-axis y = − logb (x)

Reflect about the y-axis y = logb (−x)

General equation for all translations y = alogb(x + c) + d

Table 6.15

Translations of Logarithmic Functions

All translations of the parent logarithmic function,  y = logb (x), have the form

(6.8) f (x) = alogb (x + c) + d

where the parent function,  y = logb (x), b > 1, is

• shifted vertically up  d  units.

• shifted horizontally to the left  c  units.

• stretched vertically by a factor of  |a|  if  |a| > 0.
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6.36

• compressed vertically by a factor of  |a|  if  0 < |a| < 1.

• reflected about the x-axis when  a < 0.

For   f (x) = log(−x), the graph of the parent function is reflected about the y-axis.

Example 6.36

Finding the Vertical Asymptote of a Logarithm Graph

What is the vertical asymptote of   f (x) = −2log3(x + 4) + 5?

Solution
The vertical asymptote is at  x = − 4.

Analysis
The coefficient, the base, and the upward translation do not affect the asymptote. The shift of the curve 4 units to
the left shifts the vertical asymptote to  x = −4.

What is the vertical asymptote of   f (x) = 3 + ln(x − 1)?

Example 6.37

Finding the Equation from a Graph

Find a possible equation for the common logarithmic function graphed in Figure 6.37.

Figure 6.37

Solution
This graph has a vertical asymptote at  x = –2  and has been vertically reflected. We do not know yet the vertical
shift or the vertical stretch. We know so far that the equation will have form:
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f (x) = − alog(x + 2) + k

It appears the graph passes through the points  (–1, 1)  and  (2, –1).  Substituting  (–1, 1),

1 = − alog(−1 + 2) + k             Substitute (−1, 1).
1 = − alog(1) + k Arithmetic.
1 = k log(1) = 0.

Next, substituting in  (2, –1) ,

−1 = − alog(2 + 2) + 1 Plug in (2, −1).
−2 = − alog(4) Arithmetic.

  a = 2
log(4) Solve for a.

This gives us the equation   f (x) = – 2
log(4)log(x + 2) + 1.

Analysis
We can verify this answer by comparing the function values in Table 6.15 with the points on the graph in Figure
6.37.

x −1 0 1 2 3

f(x) 1 0 −0.58496 −1 −1.3219

x 4 5 6 7 8

f(x) −1.5850 −1.8074 −2 −2.1699 −2.3219

Table 6.15
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6.37 Give the equation of the natural logarithm graphed in Figure 6.38.

Figure 6.38

Is it possible to tell the domain and range and describe the end behavior of a function just by looking at the
graph?

Yes, if we know the function is a general logarithmic function. For example, look at the graph in Figure 6.38.
The graph approaches  x = −3  (or thereabouts) more and more closely, so  x = −3  is, or is very close to, the
vertical asymptote. It approaches from the right, so the domain is all points to the right,  {x | x > −3}.  The range,
as with all general logarithmic functions, is all real numbers. And we can see the end behavior because the graph
goes down as it goes left and up as it goes right. The end behavior is that as  x → − 3+ , f (x) → − ∞  and as

 x → ∞ , f (x) → ∞ .

Access these online resources for additional instruction and practice with graphing logarithms.

• Graph an Exponential Function and Logarithmic Function (http://openstaxcollege.org/l/
graphexplog)

• Match Graphs with Exponential and Logarithmic Functions (http://openstaxcollege.org/l/
matchexplog)

• Find the Domain of Logarithmic Functions (http://openstaxcollege.org/l/domainlog)
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6.4 EXERCISES
Verbal

The inverse of every logarithmic function is an
exponential function and vice-versa. What does this tell us
about the relationship between the coordinates of the points
on the graphs of each?

What type(s) of translation(s), if any, affect the range
of a logarithmic function?

What type(s) of translation(s), if any, affect the
domain of a logarithmic function?

Consider the general logarithmic function
  f (x) = logb (x). Why can’t  x  be zero?

Does the graph of a general logarithmic function have
a horizontal asymptote? Explain.

Algebraic
For the following exercises, state the domain and range of
the function.

f (x) = log3 (x + 4)

h(x) = ln⎛
⎝
1
2 − x⎞

⎠

g(x) = log5 (2x + 9) − 2

h(x) = ln(4x + 17) − 5

f (x) = log2 (12 − 3x) − 3

For the following exercises, state the domain and the
vertical asymptote of the function.

  f (x) = logb(x − 5)

 g(x) = ln(3 − x)

  f (x) = log(3x + 1)

  f (x) = 3log( − x) + 2

 g(x) = − ln(3x + 9) − 7

For the following exercises, state the domain, vertical
asymptote, and end behavior of the function.

f (x) = ln(2 − x)

f (x) = log⎛
⎝x − 3

7
⎞
⎠

h(x) = − log(3x − 4) + 3

g(x) = ln(2x + 6) − 5

f (x) = log3 (15 − 5x) + 6

For the following exercises, state the domain, range, and
x- and y-intercepts, if they exist. If they do not exist, write
DNE.

h(x) = log4 (x − 1) + 1

f (x) = log(5x + 10) + 3

g(x) = ln(−x) − 2

f (x) = log2 (x + 2) − 5

h(x) = 3ln(x) − 9

Graphical
For the following exercises, match each function in Figure
6.39 with the letter corresponding to its graph.

Figure 6.39

d(x) = log(x)

f (x) = ln(x)

g(x) = log2 (x)

h(x) = log5 (x)

j(x) = log25 (x)
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236.

237.

For the following exercises, match each function in Figure
6.40 with the letter corresponding to its graph.

Figure 6.40

f (x) = log 1
3

(x)

g(x) = log2 (x)

h(x) = log 3
4

(x)

For the following exercises, sketch the graphs of each pair
of functions on the same axis.

f (x) = log(x)  and  g(x) = 10x

f (x) = log(x)  and  g(x) = log 1
2
(x)

f (x) = log4(x)  and  g(x) = ln(x)

f (x) = ex   and  g(x) = ln(x)

For the following exercises, match each function in Figure
6.41 with the letter corresponding to its graph.

Graph of three logarithmic functions.
Figure 6.41

f (x) = log4 (−x + 2)

g(x) = − log4 (x + 2)

h(x) = log4 (x + 2)

For the following exercises, sketch the graph of the
indicated function.

f (x) = log2(x + 2)

  f (x) = 2log(x)

  f (x) = ln( − x)

g(x) = log(4x + 16) + 4

g(x) = log(6 − 3x) + 1

h(x) = − 1
2ln(x + 1) − 3

For the following exercises, write a logarithmic equation
corresponding to the graph shown.

Use  y = log2(x)  as the parent function.

Use   f (x) = log3(x)  as the parent function.

Use   f (x) = log4(x)  as the parent function.
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239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

Use   f (x) = log5(x)  as the parent function.

Technology
For the following exercises, use a graphing calculator to
find approximate solutions to each equation.

log(x − 1) + 2 = ln(x − 1) + 2

log(2x − 3) + 2 = − log(2x − 3) + 5

ln(x − 2) = − ln(x + 1)

2ln(5x + 1) = 1
2ln(−5x) + 1

1
3log(1 − x) = log(x + 1) + 1

3

Extensions

Let  b  be any positive real number such that  b ≠ 1. 
What must  logb 1  be equal to? Verify the result.

Explore and discuss the graphs of   f (x) = log 1
2

(x)  and

 g(x) = − log2 (x). Make a conjecture based on the result.

Prove the conjecture made in the previous exercise.

What is the domain of the function

  f (x) = ln⎛
⎝
x + 2
x − 4

⎞
⎠?  Discuss the result.

Use properties of exponents to find the x-intercepts of
the function   f (x) = log⎛

⎝x2 + 4x + 4⎞
⎠  algebraically. Show

the steps for solving, and then verify the result by graphing
the function.
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6.5 | Logarithmic Properties

Learning Objectives

In this section, you will:

6.5.1 Use the product rule for logarithms.
6.5.2 Use the quotient rule for logarithms.
6.5.3 Use the power rule for logarithms.
6.5.4 Expand logarithmic expressions.
6.5.5 Condense logarithmic expressions.
6.5.6 Use the change-of-base formula for logarithms.

Figure 6.42 The pH of hydrochloric acid is tested with litmus
paper. (credit: David Berardan)

In chemistry, pH is used as a measure of the acidity or alkalinity of a substance. The pH scale runs from 0 to 14. Substances
with a pH less than 7 are considered acidic, and substances with a pH greater than 7 are said to be alkaline. Our bodies, for
instance, must maintain a pH close to 7.35 in order for enzymes to work properly. To get a feel for what is acidic and what
is alkaline, consider the following pH levels of some common substances:

• Battery acid: 0.8

• Stomach acid: 2.7

• Orange juice: 3.3

• Pure water: 7 (at 25° C)

• Human blood: 7.35

• Fresh coconut: 7.8

• Sodium hydroxide (lye): 14

To determine whether a solution is acidic or alkaline, we find its pH, which is a measure of the number of active positive
hydrogen ions in the solution. The pH is defined by the following formula, where  a  is the concentration of hydrogen ion in
the solution

pH = − log([H+ ])

= log⎛
⎝

1
[H+ ]

⎞
⎠
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The equivalence of  − log⎛
⎝
⎡
⎣H+ ⎤

⎦
⎞
⎠  and  log

⎛

⎝
⎜ 1

⎡
⎣H+ ⎤

⎦

⎞

⎠
⎟  is one of the logarithm properties we will examine in this section.

Using the Product Rule for Logarithms
Recall that the logarithmic and exponential functions “undo” each other. This means that logarithms have similar properties
to exponents. Some important properties of logarithms are given here. First, the following properties are easy to prove.

logb 1 = 0
logb b = 1

For example,  log5 1 = 0  since  50 = 1. And  log5 5 = 1  since  51 = 5.

Next, we have the inverse property.

logb(bx) = x

   b
logb x

= x, x > 0

For example, to evaluate  log(100), we can rewrite the logarithm as  log10
⎛
⎝102⎞

⎠, and then apply the inverse property

 logb (bx) = x  to get  log10
⎛
⎝102⎞

⎠ = 2.

To evaluate  eln(7), we can rewrite the logarithm as  eloge 7, and then apply the inverse property  blogb x
= x  to get

 eloge 7 = 7.

Finally, we have the one-to-one property.

logb M = logb N   if and only if   M = N

We can use the one-to-one property to solve the equation  log3 (3x) = log3 (2x + 5)  for  x.  Since the bases are the same,

we can apply the one-to-one property by setting the arguments equal and solving for  x :

3x = 2x + 5      Set the arguments equal.
    x = 5 Subtract 2x.

But what about the equation  log3 (3x) + log3 (2x + 5) = 2?  The one-to-one property does not help us in this instance.

Before we can solve an equation like this, we need a method for combining terms on the left side of the equation.

Recall that we use the product rule of exponents to combine the product of exponents by adding:  xa xb = xa + b. We have a
similar property for logarithms, called the product rule for logarithms, which says that the logarithm of a product is equal
to a sum of logarithms. Because logs are exponents, and we multiply like bases, we can add the exponents. We will use the
inverse property to derive the product rule below.

Given any real number  x  and positive real numbers  M, N, and  b, where  b ≠ 1, we will show

 logb (MN)=logb (M) + logb (N).

Let  m = logb M  and  n = logb N.  In exponential form, these equations are  bm = M  and  bn = N.  It follows that

logb (MN) = logb (bm bn)       Substitute for M and N.

= logb
⎛
⎝bm + n⎞

⎠ Apply the product rule for exponents.
= m + n Apply the inverse property of logs.
= logb (M) + logb (N) Substitute for m and n.

Note that repeated applications of the product rule for logarithms allow us to simplify the logarithm of the product of any
number of factors. For example, consider  logb(wxyz). Using the product rule for logarithms, we can rewrite this logarithm

of a product as the sum of logarithms of its factors:
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logb(wxyz) = logb w + logb x + logb y + logb z

The Product Rule for Logarithms

The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of individual
logarithms.

(6.9)logb(MN) = logb (M) + logb (N) for b > 0

Given the logarithm of a product, use the product rule of logarithms to write an equivalent sum of
logarithms.

1. Factor the argument completely, expressing each whole number factor as a product of primes.

2. Write the equivalent expression by summing the logarithms of each factor.

Example 6.38

Using the Product Rule for Logarithms

Expand  log3 (30x(3x + 4)).

Solution
We begin by factoring the argument completely, expressing  30  as a product of primes.

log3 (30x(3x + 4)) = log3
⎛
⎝2 ⋅ 3 ⋅ 5 ⋅ x ⋅ (3x + 4)⎞

⎠

Next we write the equivalent equation by summing the logarithms of each factor.

log3 (30x(3x + 4)) = log3 (2) + log3 (3) + log3 (5) + log3 (x) + log3 (3x + 4)

Expand  logb(8k).

Using the Quotient Rule for Logarithms
For quotients, we have a similar rule for logarithms. Recall that we use the quotient rule of exponents to combine the

quotient of exponents by subtracting:  x
a
b = xa − b. The quotient rule for logarithms says that the logarithm of a quotient

is equal to a difference of logarithms. Just as with the product rule, we can use the inverse property to derive the quotient
rule.

Given any real number  x  and positive real numbers  M, N, and  b, where  b ≠ 1, we will show

logb
⎛
⎝
M
N

⎞
⎠=logb (M) − logb (N).

Let  m = logb M  and  n = logb N.  In exponential form, these equations are  bm = M  and  bn = N.  It follows that

logb
⎛
⎝
M
N

⎞
⎠ = logb

⎛
⎝
bm

bn
⎞
⎠  Substitute for M and N.

= logb (bm − n) Apply the quotient rule for exponents.
= m − n Apply the inverse property of logs.
= logb (M) − logb (N) Substitute for m and n.
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For example, to expand  log⎛
⎝
2x2 + 6x
3x + 9

⎞
⎠, we must first express the quotient in lowest terms. Factoring and canceling we

get,

log⎛
⎝
2x2 + 6x
3x + 9

⎞
⎠ = log⎛

⎝
2x(x + 3)
3(x + 3)

⎞
⎠ Factor the numerator and denominator.

                       = log⎛
⎝
2x
3

⎞
⎠ Cancel the common factors.

Next we apply the quotient rule by subtracting the logarithm of the denominator from the logarithm of the numerator. Then
we apply the product rule.

log⎛
⎝
2x
3

⎞
⎠ = log(2x) − log(3)

             = log(2) + log(x) − log(3)

The Quotient Rule for Logarithms

The quotient rule for logarithms can be used to simplify a logarithm or a quotient by rewriting it as the difference of
individual logarithms.

(6.10)logb
⎛
⎝
M
N

⎞
⎠ = logb M − logb N

Given the logarithm of a quotient, use the quotient rule of logarithms to write an equivalent difference of
logarithms.

1. Express the argument in lowest terms by factoring the numerator and denominator and canceling common
terms.

2. Write the equivalent expression by subtracting the logarithm of the denominator from the logarithm of the
numerator.

3. Check to see that each term is fully expanded. If not, apply the product rule for logarithms to expand
completely.

Example 6.39

Using the Quotient Rule for Logarithms

Expand  log2
⎛
⎝

15x(x − 1)
(3x + 4)(2 − x)

⎞
⎠.

Solution
First we note that the quotient is factored and in lowest terms, so we apply the quotient rule.

log2
⎛
⎝

15x(x − 1)
(3x + 4)(2 − x)

⎞
⎠ = log2

⎛
⎝15x(x − 1)⎞

⎠ − log2 ((3x + 4)(2 − x))

Notice that the resulting terms are logarithms of products. To expand completely, we apply the product rule,
noting that the prime factors of the factor 15 are 3 and 5.

log2(15x(x − 1)) − log2((3x + 4)(2 − x)) = [log2(3) + log2(5) + log2(x) + log2(x − 1)] − [log2(3x + 4) + log2(2 − x)]
                                                                 = log2(3) + log2(5) + log2(x) + log2(x − 1) − log2(3x + 4) − log2(2 − x)

Analysis
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There are exceptions to consider in this and later examples. First, because denominators must never be zero,
this expression is not defined for  x = − 4

3   and  x = 2. Also, since the argument of a logarithm must be positive,

we note as we observe the expanded logarithm, that  x > 0, x > 1, x > − 4
3, and  x < 2. Combining these

conditions is beyond the scope of this section, and we will not consider them here or in subsequent exercises.

Expand  log3
⎛
⎝

7x2 + 21x
7x(x − 1)(x − 2)

⎞
⎠.

Using the Power Rule for Logarithms
We’ve explored the product rule and the quotient rule, but how can we take the logarithm of a power, such as  x2?  One
method is as follows:

logb
⎛
⎝x2⎞

⎠ = logb (x ⋅ x)
= logb x + logb x
= 2logb x

Notice that we used the product rule for logarithms to find a solution for the example above. By doing so, we have derived
the power rule for logarithms, which says that the log of a power is equal to the exponent times the log of the base. Keep
in mind that, although the input to a logarithm may not be written as a power, we may be able to change it to a power. For
example,

100 = 102       3 = 3
1
2 1

e = e−1

The Power Rule for Logarithms

The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the product of the
exponent times the logarithm of the base.

(6.11)logb (Mn) = nlogb M

Given the logarithm of a power, use the power rule of logarithms to write an equivalent product of a factor
and a logarithm.

1. Express the argument as a power, if needed.

2. Write the equivalent expression by multiplying the exponent times the logarithm of the base.

Example 6.40

Expanding a Logarithm with Powers

Expand  log2 x5.

Solution
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6.40

6.41

6.42

The argument is already written as a power, so we identify the exponent, 5, and the base,  x, and rewrite the
equivalent expression by multiplying the exponent times the logarithm of the base.

log2
⎛
⎝x

5⎞
⎠ = 5log2 x

Expand  lnx2. 

Example 6.41

Rewriting an Expression as a Power before Using the Power Rule

Expand  log3 (25)  using the power rule for logs.

Solution

Expressing the argument as a power, we get  log3 (25) = log3
⎛
⎝52⎞

⎠.

Next we identify the exponent, 2, and the base, 5, and rewrite the equivalent expression by multiplying the
exponent times the logarithm of the base.

log3
⎛
⎝52⎞

⎠ = 2log3 (5)

Expand  ln⎛
⎝

1
x2

⎞
⎠.

Example 6.42

Using the Power Rule in Reverse

Rewrite  4ln(x)  using the power rule for logs to a single logarithm with a leading coefficient of 1.

Solution
Because the logarithm of a power is the product of the exponent times the logarithm of the base, it follows that
the product of a number and a logarithm can be written as a power. For the expression  4ln(x), we identify the
factor, 4, as the exponent and the argument,  x, as the base, and rewrite the product as a logarithm of a power:

 4ln(x) = ln(x4). 

Rewrite  2log3 4  using the power rule for logs to a single logarithm with a leading coefficient of 1.
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Expanding Logarithmic Expressions
Taken together, the product rule, quotient rule, and power rule are often called “laws of logs.” Sometimes we apply more
than one rule in order to simplify an expression. For example:

logb
⎛
⎝
6x
y

⎞
⎠ = logb (6x) − logb y

= logb 6 + logb x − logb y

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents. Here is an
alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative power:

logb
⎛
⎝
A
C

⎞
⎠ = logb

⎛
⎝AC−1⎞

⎠

= logb (A) + logb
⎛
⎝C−1⎞

⎠

= logb A + ( − 1)logb C
= logb A − logb C

We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a product.

With practice, we can look at a logarithmic expression and expand it mentally, writing the final answer. Remember,
however, that we can only do this with products, quotients, powers, and roots—never with addition or subtraction inside the
argument of the logarithm.

Example 6.43

Expanding Logarithms Using Product, Quotient, and Power Rules

Rewrite  ln
⎛

⎝
⎜ x4 y

7
⎞

⎠
⎟ as a sum or difference of logs.

Solution
First, because we have a quotient of two expressions, we can use the quotient rule:

ln
⎛

⎝
⎜ x4 y

7
⎞

⎠
⎟ = ln⎛

⎝x4 y⎞
⎠ − ln(7)

Then seeing the product in the first term, we use the product rule:

ln⎛
⎝x4 y⎞

⎠ − ln(7) = ln⎛
⎝x4⎞

⎠ + ln(y) − ln(7)

Finally, we use the power rule on the first term:

ln⎛
⎝x4⎞

⎠ + ln(y) − ln(7) = 4ln(x) + ln(y) − ln(7)

Expand  log
⎛

⎝
⎜x2 y3

z4

⎞

⎠
⎟.

Example 6.44
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6.45

Using the Power Rule for Logarithms to Simplify the Logarithm of a Radical
Expression

Expand  log( x).

Solution

log( x) = logx
⎛
⎝
1
2

⎞
⎠

= 1
2logx

Expand  ln⎛
⎝ x23 ⎞

⎠.

Can we expand  ln⎛
⎝x2 + y2⎞

⎠?

No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

Example 6.45

Expanding Complex Logarithmic Expressions

Expand  log6
⎛
⎝

64x3 (4x + 1)
(2x − 1)

⎞
⎠.

Solution
We can expand by applying the Product and Quotient Rules.

log6
⎛

⎝
⎜ 64x3(4x + 1)

(2x − 1)
⎞

⎠
⎟ = log6 64 + log6 x3 + log6(4x + 1) − log6(2x − 1) Apply the Quotient Rule.

= log6 26 + log6 x3 + log6(4x + 1) − log6(2x − 1) Simplify by writing  64 as 26.
= 6log6 2 + 3log6 x + log6(4x + 1) − log6(2x − 1) Apply the Power Rule.

Expand  ln
⎛

⎝
⎜ (x − 1)(2x + 1)2

(x2 − 9)

⎞

⎠
⎟.

Condensing Logarithmic Expressions
We can use the rules of logarithms we just learned to condense sums, differences, and products with the same base as a
single logarithm. It is important to remember that the logarithms must have the same base to be combined. We will learn
later how to change the base of any logarithm before condensing.
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Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a
single logarithm.

1. Apply the power property first. Identify terms that are products of factors and a logarithm, and rewrite
each as the logarithm of a power.

2. Next apply the product property. Rewrite sums of logarithms as the logarithm of a product.

3. Apply the quotient property last. Rewrite differences of logarithms as the logarithm of a quotient.

Example 6.46

Using the Product and Quotient Rules to Combine Logarithms

Write  log3 (5) + log3 (8) − log3 (2)  as a single logarithm.

Solution
Using the product and quotient rules

log3 (5) + log3 (8) = log3 (5 ⋅ 8) = log3 (40)

This reduces our original expression to

log3(40) − log3(2)

Then, using the quotient rule

log3 (40) − log3 (2) = log3
⎛
⎝
40
2

⎞
⎠ = log3 (20)

Condense  log3 − log4 + log5 − log6.

Example 6.47

Condensing Complex Logarithmic Expressions

Condense  log2
⎛
⎝x2⎞

⎠ + 1
2log2 (x − 1) − 3log2

⎛
⎝(x + 3)2⎞

⎠.

Solution
We apply the power rule first:

log2
⎛
⎝x2⎞

⎠ + 1
2log2 (x − 1) − 3log2

⎛
⎝(x + 3)2⎞

⎠ = log2
⎛
⎝x2⎞

⎠ + log2
⎛
⎝ x − 1⎞

⎠ − log2
⎛
⎝(x + 3)6⎞

⎠

Next we apply the product rule to the sum:

log2
⎛
⎝x2⎞

⎠ + log2
⎛
⎝ x − 1⎞

⎠ − log2
⎛
⎝(x + 3)6⎞

⎠ = log2
⎛
⎝x2 x − 1⎞

⎠ − log2
⎛
⎝(x + 3)6⎞

⎠

Finally, we apply the quotient rule to the difference:
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6.48

log2
⎛
⎝x2 x − 1⎞

⎠ − log2
⎛
⎝(x + 3)6⎞

⎠ = log2
x2 x − 1
(x + 3)6

Example 6.48

Rewriting as a Single Logarithm

Rewrite  2logx − 4log(x + 5) + 1
xlog(3x + 5)  as a single logarithm.

Solution
We apply the power rule first:

2logx − 4log(x + 5) + 1
xlog(3x + 5) = log⎛

⎝x2⎞
⎠ − log⎛

⎝(x + 5)4⎞
⎠ + log⎛

⎝(3x + 5)x−1⎞
⎠

Next we apply the product rule to the sum:

log⎛
⎝x2⎞

⎠ − log⎛
⎝(x + 5)4⎞

⎠ + log⎛
⎝(3x + 5)x−1⎞

⎠ = log⎛
⎝x2⎞

⎠ − log⎛
⎝(x + 5)4 (3x + 5)x−1⎞

⎠

Finally, we apply the quotient rule to the difference:

log⎛
⎝x2⎞

⎠ − log⎛
⎝(x + 5)4 (3x + 5)x−1⎞

⎠ = log

⎛

⎝
⎜
⎜
⎜ x2

(x + 5)4 ⎛
⎝(3x + 5)x−1⎞

⎠

⎞

⎠
⎟
⎟
⎟

Rewrite  log(5) + 0.5log(x) − log(7x − 1) + 3log(x − 1)  as a single logarithm.

Condense  4⎛
⎝3log(x) + log(x + 5) − log(2x + 3)⎞

⎠.

Example 6.49

Applying of the Laws of Logs

Recall that, in chemistry,  pH = − log[H+ ].  If the concentration of hydrogen ions in a liquid is doubled, what is

the effect on pH?

Solution
Suppose  C  is the original concentration of hydrogen ions, and  P  is the original pH of the liquid. Then
 P = – log(C).  If the concentration is doubled, the new concentration is  2C. Then the pH of the new liquid is
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pH = − log(2C)

Using the product rule of logs

pH = − log(2C) = − ⎛
⎝log(2) + log(C)⎞

⎠ = − log(2) − log(C)

Since  P = – log(C), the new pH is

pH = P − log(2) ≈ P − 0.301

When the concentration of hydrogen ions is doubled, the pH decreases by about 0.301.

How does the pH change when the concentration of positive hydrogen ions is decreased by half?

Using the Change-of-Base Formula for Logarithms
Most calculators can evaluate only common and natural logs. In order to evaluate logarithms with a base other than 10 or
 e, we use the change-of-base formula to rewrite the logarithm as the quotient of logarithms of any other base; when using
a calculator, we would change them to common or natural logs.

To derive the change-of-base formula, we use the one-to-one property and power rule for logarithms.

Given any positive real numbers  M, b, and  n, where  n ≠ 1    and  b ≠ 1, we show

 logb M=logn M
logn b

Let  y = logb M. By taking the log base  n  of both sides of the equation, we arrive at an exponential form, namely  by = M. 
It follows that

logn(by) = logn M         Apply the one-to-one property.
  ylogn b = logn M  Apply the power rule for logarithms.

 y = logn M
logn b Isolate y.

 logb M = logn M
logn b Substitute for y.

For example, to evaluate  log5 36  using a calculator, we must first rewrite the expression as a quotient of common or natural

logs. We will use the common log.

log5 36 = log(36)
log(5)    Apply the change of base formula using base 10.

≈ 2.2266 Use a calculator to evaluate to 4 decimal places.

The Change-of-Base Formula

The change-of-base formula can be used to evaluate a logarithm with any base.

For any positive real numbers  M, b,   and  n, where  n ≠ 1    and  b ≠ 1,

(6.12)logb M=logn M
logn b .
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It follows that the change-of-base formula can be used to rewrite a logarithm with any base as the quotient of common
or natural logs.

logb M = lnM
lnb

and

logb M = logM
logb

Given a logarithm with the form  logb M, use the change-of-base formula to rewrite it as a quotient of logs

with any positive base  n, where  n ≠ 1.

1. Determine the new base  n, remembering that the common log,  log(x), has base 10, and the natural log,

 ln(x), has base  e.

2. Rewrite the log as a quotient using the change-of-base formula

◦ The numerator of the quotient will be a logarithm with base  n  and argument  M.

◦ The denominator of the quotient will be a logarithm with base  n  and argument  b.

Example 6.50

Changing Logarithmic Expressions to Expressions Involving Only Natural Logs

Change  log5 3  to a quotient of natural logarithms.

Solution
Because we will be expressing  log5 3  as a quotient of natural logarithms, the new base,  n = e.

We rewrite the log as a quotient using the change-of-base formula. The numerator of the quotient will be the
natural log with argument 3. The denominator of the quotient will be the natural log with argument 5.

logb M = lnM
lnb

   log5 3 = ln3
ln5

Change  log0.5 8  to a quotient of natural logarithms.

Can we change common logarithms to natural logarithms?

Yes. Remember that  log9 means  log10 9. So,  log9 = ln9
ln10.

Example 6.51
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Using the Change-of-Base Formula with a Calculator

Evaluate  log2(10)  using the change-of-base formula with a calculator.

Solution
According to the change-of-base formula, we can rewrite the log base 2 as a logarithm of any other base. Since
our calculators can evaluate the natural log, we might choose to use the natural logarithm, which is the log base
 e.

log2 10 = ln10
ln2 Apply the change of base formula using base e.

≈ 3.3219 Use a calculator to evaluate to 4 decimal places.

Evaluate  log5(100)  using the change-of-base formula.

Access these online resources for additional instruction and practice with laws of logarithms.

• The Properties of Logarithms (http://openstaxcollege.org/l/proplog)

• Expand Logarithmic Expressions (http://openstaxcollege.org/l/expandlog)

• Evaluate a Natural Logarithmic Expression (http://openstaxcollege.org/l/evaluatelog)
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6.5 EXERCISES
Verbal

How does the power rule for logarithms help when
solving logarithms with the form  logb ( xn )?

What does the change-of-base formula do? Why is it
useful when using a calculator?

Algebraic
For the following exercises, expand each logarithm as
much as possible. Rewrite each expression as a sum,
difference, or product of logs.

logb
⎛
⎝7x ⋅ 2y⎞

⎠

ln(3ab ⋅ 5c)

logb
⎛
⎝
13
17

⎞
⎠

log4
⎛
⎝

 x
z  
w

⎞
⎠

ln⎛
⎝

1
4k

⎞
⎠

log2
⎛
⎝yx⎞

⎠

For the following exercises, condense to a single logarithm
if possible.

ln(7) + ln(x) + ln(y)

log3(2) + log3(a) + log3(11) + log3(b)

logb(28) − logb(7)

ln(a) − ln(d) − ln(c)

−logb
⎛
⎝
1
7

⎞
⎠

1
3ln(8)

For the following exercises, use the properties of
logarithms to expand each logarithm as much as possible.
Rewrite each expression as a sum, difference, or product of
logs.

log
⎛

⎝
⎜x15 y13

z19

⎞

⎠
⎟

ln⎛
⎝

a−2

b−4 c5
⎞
⎠

log⎛
⎝ x3 y−4⎞

⎠

ln⎛
⎝y y

1 − y
⎞
⎠

log⎛
⎝x2 y3 x2 y53 ⎞

⎠

For the following exercises, condense each expression to a
single logarithm using the properties of logarithms.

log⎛
⎝2x4⎞

⎠ + log⎛
⎝3x5⎞

⎠

ln(6x9) − ln(3x2)

2log(x) + 3log(x + 1)

log(x) − 1
2log(y) + 3log(z)

4log7 (c) + log7 (a)
3 + log7 (b)

3

For the following exercises, rewrite each expression as an
equivalent ratio of logs using the indicated base.

log7 (15)  to base  e

log14 (55.875)  to base  10

For the following exercises, suppose  log5 (6) = a  and

 log5 (11) = b. Use the change-of-base formula along

with properties of logarithms to rewrite each expression in
terms of  a  and  b.  Show the steps for solving.

log11 (5)

log6 (55)

log11
⎛
⎝

6
11

⎞
⎠

Numeric
For the following exercises, use properties of logarithms to
evaluate without using a calculator.

log3
⎛
⎝
1
9

⎞
⎠ − 3log3 (3)
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279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

6log8 (2) + log8 (64)
3log8 (4)

2log9 (3) − 4log9 (3) + log9
⎛
⎝

1
729

⎞
⎠

For the following exercises, use the change-of-base
formula to evaluate each expression as a quotient of natural
logs. Use a calculator to approximate each to five decimal
places.

log3 (22)

log8 (65)

log6 (5.38)

log4
⎛
⎝
15
2

⎞
⎠

log 1
2

(4.7)

Extensions

Use the product rule for logarithms to find all  x
values such that  log12 (2x + 6) + log12 (x + 2) = 2. 
Show the steps for solving.

Use the quotient rule for logarithms to find all  x
values such that  log6 (x + 2) − log6 (x − 3) = 1.  Show

the steps for solving.

Can the power property of logarithms be derived from
the power property of exponents using the equation
 bx = m?   If not, explain why. If so, show the derivation.

Prove that  logb (n) = 1
logn (b)   for any positive

integers  b > 1  and  n > 1.

Does  log81 (2401) = log3 (7)?  Verify the claim

algebraically.
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6.6 | Exponential and Logarithmic Equations

Learning Objectives

In this section, you will:

6.6.1 Use like bases to solve exponential equations.
6.6.2 Use logarithms to solve exponential equations.
6.6.3 Use the definition of a logarithm to solve logarithmic equations.
6.6.4 Use the one-to-one property of logarithms to solve logarithmic equations.
6.6.5 Solve applied problems involving exponential and logarithmic equations.

Figure 6.43 Wild rabbits in Australia. The rabbit population
grew so quickly in Australia that the event became known as the
“rabbit plague.” (credit: Richard Taylor, Flickr)

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because Australia
had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit population numbered
in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions. Equations
resulting from those exponential functions can be solved to analyze and make predictions about exponential growth. In this
section, we will learn techniques for solving exponential functions.

Using Like Bases to Solve Exponential Equations
The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions tells
us that, for any real numbers  b, S, and  T , where  b > 0,  b ≠ 1, bS = bT   if and only if  S = T .

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also applies
when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the rules of
exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions are one-to-
one to set the exponents equal to one another, and solve for the unknown.

For example, consider the equation  34x − 7 = 32x

3 . To solve for  x, we use the division property of exponents to rewrite

the right side so that both sides have the common base,  3. Then we apply the one-to-one property of exponents by setting
the exponents equal to one another and solving for  x :
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6.52

 34x − 7 = 32x

3

 34x − 7 = 32x

31 Rewrite 3 as 31.

  34x − 7 = 32x − 1 Use the division property of exponents.
4x − 7 = 2x − 1   Apply the one-to-one property of exponents.
  2x = 6 Subtract 2x and add 7 to both sides.
  x = 3 Divide by 3.

Using the One-to-One Property of Exponential Functions to Solve Exponential Equations

For any algebraic expressions  S and T , and any positive real number  b ≠ 1,

(6.13)bS = bT   if and only if   S = T

Given an exponential equation with the form  bS = bT, where  S  and  T  are algebraic expressions with
an unknown, solve for the unknown.

1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form  bS = bT.

2. Use the one-to-one property to set the exponents equal.

3. Solve the resulting equation,  S = T , for the unknown.

Example 6.52

Solving an Exponential Equation with a Common Base

Solve  2x − 1 = 22x − 4.

Solution

2x − 1 = 22x − 4 The common base is  2.
    x − 1 = 2x − 4 By the one-to-one property the exponents must be equal.

  x = 3 Solve for x.

Solve  52x = 53x + 2.

Rewriting Equations So All Powers Have the Same Base
Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite the terms
in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation  256 = 4x − 5. We can rewrite both sides of this equation as a power of  2. Then we
apply the rules of exponents, along with the one-to-one property, to solve for  x :
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6.53

256 = 4x − 5

   28 = ⎛
⎝22⎞

⎠
x − 5

Rewrite each side as a power with base 2.

   28 = 22x − 10 Use the one-to-one property of exponents.
      8 = 2x − 10 Apply the one-to-one property of exponents.
   18 = 2x Add 10 to both sides.
      x = 9 Divide by 2.

Given an exponential equation with unlike bases, use the one-to-one property to solve it.

1. Rewrite each side in the equation as a power with a common base.

2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form  bS = bT.

3. Use the one-to-one property to set the exponents equal.

4. Solve the resulting equation,  S = T , for the unknown.

Example 6.53

Solving Equations by Rewriting Them to Have a Common Base

Solve  8x + 2 = 16x + 1.

Solution

     8x + 2 = 16x + 1

⎛
⎝23⎞

⎠
x + 2

= ⎛
⎝24⎞

⎠
x + 1

Write  8 and 16 as powers of  2.

   23x + 6 = 24x + 4 To take a power of a power, multiply exponents .
   3x + 6 = 4x + 4 Use the one-to-one property to set the exponents equal.
            x = 2 Solve for x.

Solve  52x = 253x + 2.

Example 6.54

Solving Equations by Rewriting Roots with Fractional Exponents to Have a
Common Base

Solve  25x = 2.

Solution
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25x = 2
1
2       Write the square root of  2 as a power of  2.

  5x = 1
2 Use the one-to-one property.

  x = 1
10 Solve for x.

Solve  5x = 5.

Do all exponential equations have a solution? If not, how can we tell if there is a solution during the
problem-solving process?

No. Recall that the range of an exponential function is always positive. While solving the equation, we may obtain
an expression that is undefined.
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Example 6.55

Solving an Equation with Positive and Negative Powers

Solve  3x + 1 = −2.

Solution
This equation has no solution. There is no real value of  x  that will make the equation a true statement because
any power of a positive number is positive.

Analysis
Figure 6.44 shows that the two graphs do not cross so the left side is never equal to the right side. Thus the
equation has no solution.

Figure 6.44

Solve  2x = −100.

Solving Exponential Equations Using Logarithms
Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve by taking
the logarithm of each side. Recall, since  log(a) = log(b)  is equivalent to  a = b, we may apply logarithms with the same

base on both sides of an exponential equation.

Given an exponential equation in which a common base cannot be found, solve for the unknown.

1. Apply the logarithm of both sides of the equation.

◦ If one of the terms in the equation has base 10, use the common logarithm.

◦ If none of the terms in the equation has base 10, use the natural logarithm.

2. Use the rules of logarithms to solve for the unknown.
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Example 6.56

Solving an Equation Containing Powers of Different Bases

Solve  5x + 2 = 4x.

Solution

  5x + 2 = 4x There is no easy way to get the powers to have the same base .

         ln5x + 2 = ln4x Take ln of both sides.
     (x + 2)ln5 = xln4 Use laws of logs.
  xln5 + 2ln5 = xln4 Use the distributive law.
  xln5 − xln4 = − 2ln5 Get terms containing x on one side, terms without x on the other.
  x(ln5 − ln4) = − 2ln5 On the left hand side, factor out an x.

 xln⎛
⎝
5
4

⎞
⎠ = ln⎛

⎝
1
25

⎞
⎠ Use the laws of logs.

 x =
ln⎛

⎝
1
25

⎞
⎠

ln⎛
⎝
5
4

⎞
⎠

Divide by the coefficient o x.

Solve  2x = 3x + 1.

Is there any way to solve  2x = 3x?

Yes. The solution is  x = 0.

Equations Containing e
One common type of exponential equations are those with base  e. This constant occurs again and again in nature, in
mathematics, in science, in engineering, and in finance. When we have an equation with a base  e  on either side, we can use
the natural logarithm to solve it.

Given an equation of the form  y = Aekt , solve for  t.
1. Divide both sides of the equation by  A.

2. Apply the natural logarithm of both sides of the equation.

3. Divide both sides of the equation by  k.

Example 6.57

Solve an Equation of the Form y = Aekt

Solve  100 = 20e2t.

Solution
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6.58

100 = 20e2t

   5 = e2t Divide by the coefficient of he power .
ln5 = 2t Take ln of both sides. Use the fact that ln(x) and ex  are inverse functions.

   t = ln5
2       Divide by the coefficient o t.

Analysis
Using laws of logs, we can also write this answer in the form  t = ln 5. If we want a decimal approximation of
the answer, we use a calculator.

Solve  3e0.5t = 11.

Does every equation of the form  y = Aekt   have a solution?

No. There is a solution when  k ≠ 0, and when  y  and  A  are either both 0 or neither 0, and they have the same

sign. An example of an equation with this form that has no solution is  2 = −3et.

Example 6.58

Solving an Equation That Can Be Simplified to the Form y = Aekt

Solve  4e2x + 5 = 12.

Solution

4e2x + 5 = 12
          4e2x = 7 Combine like terms.
             e2x = 7

4 Divide by the coefficient of he power .

               2x = ln⎛
⎝
7
4

⎞
⎠ Take ln of both sides.

                  x = 1
2ln⎛

⎝
7
4

⎞
⎠ Solve for x.

Solve  3 + e2t = 7e2t.

Extraneous Solutions
Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution that is correct
algebraically but does not satisfy the conditions of the original equation. One such situation arises in solving when the
logarithm is taken on both sides of the equation. In such cases, remember that the argument of the logarithm must be
positive. If the number we are evaluating in a logarithm function is negative, there is no output.
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Example 6.59

Solving Exponential Functions in Quadratic Form

Solve  e2x − ex = 56.

Solution

  e2x − ex = 56
    e2x − ex − 56 = 0 Get one side of the equation equal to zero.
(ex + 7)(ex − 8) = 0 Factor by the FOIL method.

  ex + 7 = 0 or ex − 8 = 0 If a product is zero, then one factor must be zero.
  ex = − 7 or ex = 8 Isolate the exponentials.
  ex = 8 Reject the equation in which the power equals a negative number.
   x = ln8 Solve the equation in which the power equals a positive number .

Analysis
When we plan to use factoring to solve a problem, we always get zero on one side of the equation, because
zero has the unique property that when a product is zero, one or both of the factors must be zero. We reject the
equation  ex = −7  because a positive number never equals a negative number. The solution  x = ln(−7)  is not a
real number, and in the real number system this solution is rejected as an extraneous solution.

Solve  e2x = ex + 2.

Does every logarithmic equation have a solution?

No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous
solutions.

Using the Definition of a Logarithm to Solve Logarithmic Equations
We have already seen that every logarithmic equation  logb (x) = y  is equivalent to the exponential equation  by = x. We

can use this fact, along with the rules of logarithms, to solve logarithmic equations where the argument is an algebraic
expression.

For example, consider the equation  log2 (2) + log2 (3x − 5) = 3. To solve this equation, we can use rules of logarithms to

rewrite the left side in compact form and then apply the definition of logs to solve for  x :

log2(2) + log2(3x − 5) = 3
            log2(2(3x − 5)) = 3 Apply the product rule of logarithms.
              log2(6x − 10) = 3 Distribute.

  23 = 6x − 10 Apply the definition of a lo arithm.

8 = 6x − 10 Calculate 23.
18 = 6x Add 10 to both sides.
 x = 3 Divide by 6.
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6.61

Using the Definition of a Logarithm to Solve Logarithmic Equations

For any algebraic expression  S  and real numbers  b  and  c, where  b > 0,  b ≠ 1,

(6.14)logb(S) = c  if and only if   bc = S

Example 6.60

Using Algebra to Solve a Logarithmic Equation

Solve  2lnx + 3 = 7.

Solution
2lnx + 3 = 7
       2lnx = 4 Subtract 3.
         lnx = 2 Divide by 2.

            x = e2 Rewrite in exponential form.

Solve  6 + lnx = 10.

Example 6.61

Using Algebra Before and After Using the Definition of the Natural Logarithm

Solve  2ln(6x) = 7.

Solution
2ln(6x) = 7

  ln(6x) = 7
2 Divide by 2.

        6x = e
⎛
⎝
7
2

⎞
⎠ Use the definition of ln.

          x = 1
6e

⎛
⎝
7
2

⎞
⎠ Divide by 6.

Solve  2ln(x + 1) = 10.

Example 6.62

Using a Graph to Understand the Solution to a Logarithmic Equation
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Solve  lnx = 3.

Solution
lnx = 3
     x = e3 Use the definition of he natural logarithm.

Figure 6.45 represents the graph of the equation. On the graph, the x-coordinate of the point at which
the two graphs intersect is close to 20. In other words  e3 ≈ 20. A calculator gives a better approximation:

 e3 ≈ 20.0855.

Figure 6.45 The graphs of  y = lnx  and  y = 3  cross at the

point  (e3, 3), which is approximately (20.0855, 3).

Use a graphing calculator to estimate the approximate solution to the logarithmic equation  2x = 1000  to
2 decimal places.

Using the One-to-One Property of Logarithms to Solve Logarithmic
Equations
As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-to-one property
of logarithmic functions tells us that, for any real numbers  x > 0, S > 0, T > 0  and any positive real number  b, where
 b ≠ 1,

logb S = logb T  if and only if S = T .

For example,

If  log2(x − 1) = log2(8), then x − 1 = 8.

So, if  x − 1 = 8, then we can solve for  x, and we get  x = 9. To check, we can substitute  x = 9  into the original equation:
 log2 (9 − 1) = log2 (8) = 3.  In other words, when a logarithmic equation has the same base on each side, the arguments

must be equal. This also applies when the arguments are algebraic expressions. Therefore, when given an equation with
logs of the same base on each side, we can use rules of logarithms to rewrite each side as a single logarithm. Then we use
the fact that logarithmic functions are one-to-one to set the arguments equal to one another and solve for the unknown.

For example, consider the equation  log(3x − 2) − log(2) = log(x + 4). To solve this equation, we can use the rules of

logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property to solve for  x :

746 Chapter 6 Exponential and Logarithmic Functions

This content is available for free at https://cnx.org/content/col11758/1.5



log(3x − 2) − log(2) = log(x + 4)

               log⎛
⎝
3x − 2

2
⎞
⎠ = log(x + 4) Apply the quotient rule of logarithms.

                      3x − 2
2 = x + 4 Apply the one to one property of a logarithm.

                       3x − 2 = 2x + 8 Multiply both sides of the equation by 2.
                               x = 10 Subtract 2x and add 2.

To check the result, substitute  x = 10  into  log(3x − 2) − log(2) = log(x + 4).

log(3(10) − 2) − log(2) = log((10) + 4)
           log(28) − log(2) = log(14)

                         log⎛
⎝
28
2

⎞
⎠ = log(14) The solution checks.

Using the One-to-One Property of Logarithms to Solve Logarithmic Equations

For any algebraic expressions  S  and  T   and any positive real number  b, where  b ≠ 1,

(6.15)logb S = logb T   if and only if   S = T

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an
extraneous solution.

Given an equation containing logarithms, solve it using the one-to-one property.

1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form
 logb S = logb T .

2. Use the one-to-one property to set the arguments equal.

3. Solve the resulting equation,  S = T , for the unknown.

Example 6.63

Solving an Equation Using the One-to-One Property of Logarithms

Solve  ln(x2) = ln(2x + 3).

Solution

                  ln(x2) = ln(2x + 3)
                       x2 = 2x + 3 Use the one-to-one property of the logarithm.

       x2 − 2x − 3 = 0 Get zero on one side before factoring.
   (x − 3)(x + 1) = 0 Factor using FOIL.
                 x − 3 = 0 or x + 1 = 0 If a product is zero, one of the factors must be zero.
                        x = 3 or x = − 1 Solve for x.

Analysis
There are two solutions:  x = 3  or  x = −1. The solution  x = −1  is negative, but it checks when substituted into
the original equation because the argument of the logarithm functions is still positive.
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6.63 Solve  ln(x2) = ln1.

Solving Applied Problems Using Exponential and Logarithmic
Equations
In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have seen
that any exponential function can be written as a logarithmic function and vice versa. We have used exponents to solve
logarithmic equations and logarithms to solve exponential equations. We are now ready to combine our skills to solve
equations that model real-world situations, whether the unknown is in an exponent or in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a
radioactive substance to decay, called its half-life. Table 6.16 lists the half-life for several of the more common radioactive
substances.

Substance Use Half-life

gallium-67 nuclear medicine 80 hours

cobalt-60 manufacturing 5.3 years

technetium-99m nuclear medicine 6 hours

americium-241 construction 432 years

carbon-14 archeological dating 5,715 years

uranium-235 atomic power 703,800,000 years

Table 6.16

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to calculate
the amount remaining after a specified time. We can use the formula for radioactive decay:

A(t) = A0 e
ln(0.5)

T t

A(t) = A0 e
ln(0.5) t

T

A(t) = A0 (eln(0.5))

t
T

A(t) = A0
⎛
⎝
1
2

⎞
⎠

t
T

where

• A0   is the amount initially present

• T   is the half-life of the substance

• t  is the time period over which the substance is studied

• y  is the amount of the substance present after time  t
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Example 6.64

Using the Formula for Radioactive Decay to Find the Quantity of a Substance

How long will it take for ten percent of a 1000-gram sample of uranium-235 to decay?

Solution

         y = 1000e ln(0.5)
703,800,000t

     900 = 1000e
ln(0.5)

703,800,000t
After 10% decays, 900 grams are left.

      0.9 = e
ln(0.5)

703,800,000t
Divide by 1000.

ln(0.9) = ln
⎛

⎝
⎜
⎜e

ln(0.5)
703,800,000t⎞

⎠
⎟
⎟ Take ln of both sides.

ln(0.9) = ln(0.5)
703,800,000t ln(eM) = M

          t = 703,800,000×ln(0.9)
ln(0.5)years Solve for t.

          t ≈ 106,979,777 years

Analysis
Ten percent of 1000 grams is 100 grams. If 100 grams decay, the amount of uranium-235 remaining is 900 grams.

How long will it take before twenty percent of our 1000-gram sample of uranium-235 has decayed?

Access these online resources for additional instruction and practice with exponential and logarithmic equations.

• Solving Logarithmic Equations (http://openstaxcollege.org/l/solvelogeq)

• Solving Exponential Equations with Logarithms (http://openstaxcollege.org/l/
solveexplog)
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6.6 EXERCISES
Verbal

How can an exponential equation be solved?

When does an extraneous solution occur? How can an
extraneous solution be recognized?

When can the one-to-one property of logarithms be
used to solve an equation? When can it not be used?

Algebraic
For the following exercises, use like bases to solve the
exponential equation.

4−3v − 2 = 4−v

64 ⋅ 43x = 16

32x + 1 ⋅ 3x = 243

2−3n ⋅ 1
4 = 2n + 2

625 ⋅ 53x + 3 = 125

363b

362b = 2162 − b

⎛
⎝

1
64

⎞
⎠

3n
⋅ 8 = 26

For the following exercises, use logarithms to solve.

9x − 10 = 1

2e6x = 13

er + 10 − 10 = −42

2 ⋅ 109a = 29

−8 ⋅ 10 p + 7 − 7 = −24

7e3n − 5 + 5 = −89

e−3k + 6 = 44

−5e9x − 8 − 8 = −62

−6e9x + 8 + 2 = −74

2x + 1 = 52x − 1

e2x − ex − 132 = 0

7e8x + 8 − 5 = −95

10e8x + 3 + 2 = 8

4e3x + 3 − 7 = 53

8e−5x − 2 − 4 = −90

32x + 1 = 7x − 2

e2x − ex − 6 = 0

3e3 − 3x + 6 = −31

For the following exercises, use the definition of a
logarithm to rewrite the equation as an exponential
equation.

log⎛
⎝

1
100

⎞
⎠ = −2

log324 (18) = 1
2

For the following exercises, use the definition of a
logarithm to solve the equation.

5log7 n = 10

−8log9 x = 16

4 + log2 (9k) = 2

2log(8n + 4) + 6 = 10

10 − 4ln(9 − 8x) = 6

For the following exercises, use the one-to-one property of
logarithms to solve.

ln(10 − 3x) = ln(−4x)

log13 (5n − 2) = log13 (8 − 5n)

log(x + 3) − log(x) = log(74)

ln(−3x) = ln⎛
⎝x2 − 6x⎞

⎠

log4 (6 − m) = log4 3m
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331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

ln(x − 2) − ln(x) = ln(54)

log9
⎛
⎝2n2 − 14n⎞

⎠ = log9
⎛
⎝−45 + n2⎞

⎠

ln⎛
⎝x2 − 10⎞

⎠ + ln(9) = ln(10)

For the following exercises, solve each equation for  x.

log(x + 12) = log(x) + log(12)

ln(x) + ln(x − 3) = ln(7x)

log2(7x + 6) = 3

ln(7) + ln⎛
⎝2 − 4x2⎞

⎠ = ln(14)

log8 (x + 6) − log8 (x) = log8 (58)

ln(3) − ln(3 − 3x) = ln(4)

log3 (3x) − log3 (6) = log3 (77)

Graphical
For the following exercises, solve the equation for  x, if
there is a solution. Then graph both sides of the equation,
and observe the point of intersection (if it exists) to verify
the solution.

log9 (x) − 5 = −4

log3 (x) + 3 = 2

ln(3x) = 2

ln(x − 5) = 1

log(4) + log(−5x) = 2

−7 + log3 (4 − x) = −6

ln(4x − 10) − 6 = − 5

log(4 − 2x) = log(−4x)

log11
⎛
⎝−2x2 − 7x⎞

⎠ = log11 (x − 2)

ln(2x + 9) = ln(−5x)

log9 (3 − x) = log9 (4x − 8)

log⎛
⎝x2 + 13⎞

⎠ = log(7x + 3)

3
log2 (10) − log(x − 9) = log(44)

ln(x) − ln(x + 3) = ln(6)

For the following exercises, solve for the indicated value,
and graph the situation showing the solution point.

An account with an initial deposit of  $6,500  earns
 7.25%  annual interest, compounded continuously. How
much will the account be worth after 20 years?

The formula for measuring sound intensity in decibels

 D  is defined by the equation  D = 10log⎛
⎝

I
I0

⎞
⎠, where  I  is

the intensity of the sound in watts per square meter and
 I0 = 10−12   is the lowest level of sound that the average

person can hear. How many decibels are emitted from a jet
plane with a sound intensity of  8.3 ⋅ 102  watts per square
meter?

The population of a small town is modeled by the
equation  P = 1650e0.5t  where  t  is measured in years. In
approximately how many years will the town’s population
reach  20,000?

Technology
For the following exercises, solve each equation by
rewriting the exponential expression using the indicated
logarithm. Then use a calculator to approximate  x  to 3
decimal places.

1000(1.03)t = 5000  using the common log.

e5x = 17  using the natural log

3(1.04)3t = 8  using the common log

34x − 5 = 38  using the common log

50e−0.12t = 10  using the natural log

For the following exercises, use a calculator to solve the
equation. Unless indicated otherwise, round all answers to
the nearest ten-thousandth.

7e3x − 5 + 7.9 = 47

ln(3) + ln(4.4x + 6.8) = 2

log(−0.7x − 9) = 1 + 5log(5)
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367.

368.

369.

370.

371.

Atmospheric pressure  P  in pounds per square inch is

represented by the formula  P = 14.7e−0.21x, where x is
the number of miles above sea level. To the nearest foot,
how high is the peak of a mountain with an atmospheric
pressure of  8.369  pounds per square inch? (Hint: there are
5280 feet in a mile)

The magnitude M of an earthquake is represented by

the equation  M = 2
3log⎛

⎝
E
E0

⎞
⎠ where  E  is the amount of

energy released by the earthquake in joules and
 E0 = 104.4   is the assigned minimal measure released by

an earthquake. To the nearest hundredth, what would the
magnitude be of an earthquake releasing  1.4 ⋅ 1013   joules
of energy?

Extensions

Use the definition of a logarithm along with the one-

to-one property of logarithms to prove that  blogb x
= x.

Recall the formula for continually compounding
interest,  y = Aekt. Use the definition of a logarithm along

with properties of logarithms to solve the formula for time
 t  such that  t  is equal to a single logarithm.

Recall the compound interest formula

 A = a⎛
⎝1 + r

k
⎞
⎠

kt
. Use the definition of a logarithm along

with properties of logarithms to solve the formula for time
 t.

Newton’s Law of Cooling states that the temperature
 T   of an object at any time t can be described by the

equation  T = Ts + ⎛
⎝T0 − Ts

⎞
⎠e−kt, where  Ts   is the

temperature of the surrounding environment,  T0   is the

initial temperature of the object, and  k is the cooling rate.
Use the definition of a logarithm along with properties of
logarithms to solve the formula for time  t  such that  t  is
equal to a single logarithm.
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6.7 | Exponential and Logarithmic Models

Learning Objectives

In this section, you will:

6.7.1 Model exponential growth and decay.
6.7.2 Use Newton’s Law of Cooling.
6.7.3 Use logistic-growth models.
6.7.4 Choose an appropriate model for data.
6.7.5 Express an exponential model in base  e .

Figure 6.46 A nuclear research reactor inside the Neely
Nuclear Research Center on the Georgia Institute of Technology
campus (credit: Georgia Tech Research Institute)

We have already explored some basic applications of exponential and logarithmic functions. In this section, we explore
some important applications in more depth, including radioactive isotopes and Newton’s Law of Cooling.

Modeling Exponential Growth and Decay
In real-world applications, we need to model the behavior of a function. In mathematical modeling, we choose a familiar
general function with properties that suggest that it will model the real-world phenomenon we wish to analyze. In the case
of rapid growth, we may choose the exponential growth function:

y = A0 ekt

where A0 is equal to the value at time zero, e is Euler’s constant, and k is a positive constant that determines the rate

(percentage) of growth. We may use the exponential growth function in applications involving doubling time, the time
it takes for a quantity to double. Such phenomena as wildlife populations, financial investments, biological samples, and
natural resources may exhibit growth based on a doubling time. In some applications, however, as we will see when we
discuss the logistic equation, the logistic model sometimes fits the data better than the exponential model.

On the other hand, if a quantity is falling rapidly toward zero, without ever reaching zero, then we should probably choose
the exponential decay model. Again, we have the form y = A0 ekt where A0 is the starting value, and e is Euler’s

constant. Now k is a negative constant that determines the rate of decay. We may use the exponential decay model when
we are calculating half-life, or the time it takes for a substance to exponentially decay to half of its original quantity. We use
half-life in applications involving radioactive isotopes.
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In our choice of a function to serve as a mathematical model, we often use data points gathered by careful observation and
measurement to construct points on a graph and hope we can recognize the shape of the graph. Exponential growth and
decay graphs have a distinctive shape, as we can see in Figure 6.47 and Figure 6.48. It is important to remember that,
although parts of each of the two graphs seem to lie on the x-axis, they are really a tiny distance above the x-axis.

Figure 6.47 A graph showing exponential growth. The
equation is y = 2e3x.

Figure 6.48 A graph showing exponential decay. The
equation is y = 3e−2x.

Exponential growth and decay often involve very large or very small numbers. To describe these numbers, we often use
orders of magnitude. The order of magnitude is the power of ten, when the number is expressed in scientific notation, with
one digit to the left of the decimal. For example, the distance to the nearest star, Proxima Centauri, measured in kilometers,
is 40,113,497,200,000 kilometers. Expressed in scientific notation, this is 4.01134972 × 1013. So, we could describe this

number as having order of magnitude 1013.

Characteristics of the Exponential Function, y = A0ekt

An exponential function with the form y = A0 ekt has the following characteristics:

• one-to-one function

• horizontal asymptote: y = 0
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• domain: ( – ∞,  ∞)

• range: (0, ∞)

• x intercept: none

• y-intercept: ⎛
⎝0, A0

⎞
⎠

• increasing if k > 0 (see Figure 6.49)

• decreasing if k < 0 (see Figure 6.49)

Figure 6.49 An exponential function models exponential growth when k > 0 and
exponential decay when k < 0.

Example 6.65

Graphing Exponential Growth

A population of bacteria doubles every hour. If the culture started with 10 bacteria, graph the population as a
function of time.

Solution
When an amount grows at a fixed percent per unit time, the growth is exponential. To find A0 we use the fact that

A0 is the amount at time zero, so A0 = 10. To find k, use the fact that after one hour (t = 1) the population

doubles from 10 to 20. The formula is derived as follows

 20 = 10ek ⋅ 1

   2 = ek Divide by 10
ln2 = k Take the natural logarithm

so k = ln(2). Thus the equation we want to graph is  y = 10e(ln2)t = 10(eln2)t = 10 · 2t. The graph is shown in

Figure 6.50.
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Figure 6.50 The graph of y = 10e(ln2)t

Analysis
The population of bacteria after ten hours is 10,240. We could describe this amount is being of the order of
magnitude 104. The population of bacteria after twenty hours is 10,485,760 which is of the order of magnitude

107, so we could say that the population has increased by three orders of magnitude in ten hours.

Half-Life
We now turn to exponential decay. One of the common terms associated with exponential decay, as stated above, is half-
life, the length of time it takes an exponentially decaying quantity to decrease to half its original amount. Every radioactive
isotope has a half-life, and the process describing the exponential decay of an isotope is called radioactive decay.

To find the half-life of a function describing exponential decay, solve the following equation:

1
2A0 = Ao ekt

We find that the half-life depends only on the constant k and not on the starting quantity A0.

The formula is derived as follows

1
2A0 = Ao ekt

1
2 = ekt Divide by A0.

  ln⎛
⎝
1
2

⎞
⎠ = kt Take the natural log.

−ln(2) = kt Apply laws of logarithms.

− ln(2)
k = t Divide by k.

Since t, the time, is positive, k must, as expected, be negative. This gives us the half-life formula

(6.16)t = − ln(2)
k
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6.65

Given the half-life, find the decay rate.

1. Write A = Ao ekt.

2. Replace A by 1
2A0 and replace t by the given half-life.

3. Solve to find k. Express k as an exact value (do not round).

Note: It is also possible to find the decay rate using k = − ln(2)
t .

Example 6.66

Finding the Function that Describes Radioactive Decay

The half-life of carbon-14 is 5,730 years. Express the amount of carbon-14 remaining as a function of time, t.

Solution
This formula is derived as follows.

()

        A = A0 ekt The continuous growth formula.

  0.5A0 = A0 ek ⋅ 5730 Substitute the half-life for t and 0.5A0  for f (t).

      0.5 = e5730k Divide by A0.
ln(0.5) = 5730k Take the natural log of both sides.

         k = ln(0.5)
5730 Divide by the coefficient o k.

        A = A0 e
⎛
⎝
ln(0.5)
5730

⎞
⎠t

Substitute for r in the continuous growth formula.

The function that describes this continuous decay is f (t) = A0 e
⎛
⎝
ln(0.5)
5730

⎞
⎠t

. We observe that the coefficient of t,
ln(0.5)
5730 ≈ − 1.2097 is negative, as expected in the case of exponential decay.

The half-life of plutonium-244 is 80,000,000 years. Find function gives the amount of carbon-14
remaining as a function of time, measured in years.

Radiocarbon Dating
The formula for radioactive decay is important in radiocarbon dating, which is used to calculate the approximate date a plant
or animal died. Radiocarbon dating was discovered in 1949 by Willard Libby, who won a Nobel Prize for his discovery. It
compares the difference between the ratio of two isotopes of carbon in an organic artifact or fossil to the ratio of those two
isotopes in the air. It is believed to be accurate to within about 1% error for plants or animals that died within the last 60,000
years.

Carbon-14 is a radioactive isotope of carbon that has a half-life of 5,730 years. It occurs in small quantities in the carbon
dioxide in the air we breathe. Most of the carbon on Earth is carbon-12, which has an atomic weight of 12 and is not
radioactive. Scientists have determined the ratio of carbon-14 to carbon-12 in the air for the last 60,000 years, using tree
rings and other organic samples of known dates—although the ratio has changed slightly over the centuries.
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As long as a plant or animal is alive, the ratio of the two isotopes of carbon in its body is close to the ratio in the atmosphere.
When it dies, the carbon-14 in its body decays and is not replaced. By comparing the ratio of carbon-14 to carbon-12 in a
decaying sample to the known ratio in the atmosphere, the date the plant or animal died can be approximated.

Since the half-life of carbon-14 is 5,730 years, the formula for the amount of carbon-14 remaining after t years is

A ≈ A0 e
⎛
⎝
ln(0.5)
5730

⎞
⎠t

where

• A is the amount of carbon-14 remaining

• A0 is the amount of carbon-14 when the plant or animal began decaying.

This formula is derived as follows:

A = A0 ekt The continuous growth formula.

0.5A0 = A0 ek ⋅ 5730 Substitute the half-life for t and 0.5A0  for f (t).

      0.5 = e5730k Divide by A0.
ln(0.5) = 5730k Take the natural log of both sides.

k = ln(0.5)
5730 Divide by the coefficient o k.

        A = A0 e
⎛
⎝
ln(0.5)
5730

⎞
⎠t

Substitute for r in the continuous growth formula.

To find the age of an object, we solve this equation for t :

(6.17)

t =
ln⎛

⎝
A

A0
⎞
⎠

−0.000121

Out of necessity, we neglect here the many details that a scientist takes into consideration when doing carbon-14 dating, and
we only look at the basic formula. The ratio of carbon-14 to carbon-12 in the atmosphere is approximately 0.0000000001%.
Let r be the ratio of carbon-14 to carbon-12 in the organic artifact or fossil to be dated, determined by a method called

liquid scintillation. From the equation A ≈ A0 e−0.000121t we know the ratio of the percentage of carbon-14 in the object

we are dating to the percentage of carbon-14 in the atmosphere is r = A
A0

≈ e−0.000121t. We solve this equation for t, to

get

t = ln(r)
−0.000121

Given the percentage of carbon-14 in an object, determine its age.

1. Express the given percentage of carbon-14 as an equivalent decimal,  k.

2. Substitute for k in the equation  t = ln(r)
−0.000121   and solve for the age,  t.

Example 6.67

Finding the Age of a Bone

A bone fragment is found that contains 20% of its original carbon-14. To the nearest year, how old is the bone?

Solution

758 Chapter 6 Exponential and Logarithmic Functions

This content is available for free at https://cnx.org/content/col11758/1.5



6.66

We substitute  20% = 0.20  for  k  in the equation and solve for  t :

t = ln(r)
−0.000121 Use the general form of the equation.

    = ln(0.20)
−0.000121 Substitute for r.

    ≈ 13301 Round to the nearest year.

The bone fragment is about 13,301 years old.

Analysis
The instruments that measure the percentage of carbon-14 are extremely sensitive and, as we mention above, a
scientist will need to do much more work than we did in order to be satisfied. Even so, carbon dating is only
accurate to about 1%, so this age should be given as  13,301 years ± 1% or 13,301 years ± 133 years.

Cesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take more or
less than 230 years until only 1 milligram remains?

Calculating Doubling Time
For decaying quantities, we determined how long it took for half of a substance to decay. For growing quantities, we might
want to find out how long it takes for a quantity to double. As we mentioned above, the time it takes for a quantity to double
is called the doubling time.

Given the basic exponential growth equation  A = A0 ekt, doubling time can be found by solving for when the original

quantity has doubled, that is, by solving  2A0 = A0 ekt.

The formula is derived as follows:

2A0 = A0 ekt

       2 = ekt Divide by A0.
  ln2 = kt Take the natural logarithm.

        t = ln2
k Divide by the coefficient o t.

Thus the doubling time is

(6.18)t = ln2
k

Example 6.68

Finding a Function That Describes Exponential Growth

According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer chip is
approximately two years. Give a function that describes this behavior.

Solution
The formula is derived as follows:
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6.67

 t = ln2
k The doubling time formula.

2 = ln2
k Use a doubling time of two years.

k = ln2
2 Multiply by k and divide by 2.

A  = A0 e
ln2
2 t

Substitute k into the continuous growth formula.

The function is  A = A0 e
ln2
2 t

.

Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer holds.
Growth has slowed to a doubling time of approximately three years. Find the new function that takes that longer
doubling time into account.

Using Newton’s Law of Cooling
Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower
temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air
temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at the
temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift of the generic
exponential decay function. This translation leads to Newton’s Law of Cooling, the scientific formula for temperature as a
function of time as an object’s temperature is equalized with the ambient temperature

T(t) = aekt + Ts

This formula is derived as follows:

T(t) = Abct + Ts

T(t) = Aeln(bct) + Ts Laws of logarithms.

T(t) = Aectlnb + Ts Laws of logarithms.

T(t) = Aekt + Ts Rename the constant c  ln  b,  calling it k.

Newton’s Law of Cooling

The temperature of an object,  T , in surrounding air with temperature  Ts  will behave according to the formula

(6.19)T(t) = Aekt + Ts

where

• t  is time

• A  is the difference between the initial temperature of the object and the surroundings

• k  is a constant, the continuous rate of cooling of the object
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Given a set of conditions, apply Newton’s Law of Cooling.

1. Set  Ts   equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).

2. Substitute the given values into the continuous growth formula  T(t) = Aek t + Ts   to find the parameters

 A  and  k.

3. Substitute in the desired time to find the temperature or the desired temperature to find the time.

Example 6.69

Using Newton’s Law of Cooling

A cheesecake is taken out of the oven with an ideal internal temperature of  165°F,  and is placed into a  35°F 
refrigerator. After 10 minutes, the cheesecake has cooled to  150°F.  If we must wait until the cheesecake has
cooled to  70°F  before we eat it, how long will we have to wait?

Solution
Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature will decay
exponentially toward 35, following the equation

T(t) = Aekt + 35

We know the initial temperature was 165, so  T(0) = 165.

165 = Aek0 + 35 Substitute (0, 165).
     A = 130 Solve for A.

We were given another data point,  T(10) = 150, which we can use to solve for  k.

               150 = 130ek10 + 35 Substitute (10, 150).
               115 = 130ek10 Subtract 35.
               115

130 = e10k Divide by 130.

         ln⎛
⎝
115
130

⎞
⎠ = 10k Take the natural log of both sides.

                    k =
ln⎛

⎝
115
130

⎞
⎠

10 = − 0.0123 Divide by the coefficient o k.

This gives us the equation for the cooling of the cheesecake:  T(t) = 130e – 0.0123t + 35.

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

              70 = 130e−0.0123t + 35 Substitute in 70 for T(t).
              35 = 130e−0.0123t Subtract 35.
           35

130 = e−0.0123t Divide by 130.

  ln( 35
130) = − 0.0123t Take the natural log of both sides

                   t =
ln( 35

130)
−0.0123 ≈ 106.68 Divide by the coefficient o t.

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to  70°F.
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6.68 A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the
temperature has risen to 45 degrees. How long will it take for the temperature to rise to 60 degrees?

Using Logistic Growth Models
Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term, tend to fall
apart the longer they continue. Consider an aspiring writer who writes a single line on day one and plans to double the
number of lines she writes each day for a month. By the end of the month, she must write over 17 billion lines, or one-half-
billion pages. It is impractical, if not impossible, for anyone to write that much in such a short period of time. Eventually,
an exponential model must begin to approach some limiting value, and then the growth is forced to slow. For this reason, it
is often better to use a model with an upper bound instead of an exponential growth model, though the exponential growth
model is still useful over a short term, before approaching the limiting value.

The logistic growth model is approximately exponential at first, but it has a reduced rate of growth as the output approaches
the model’s upper bound, called the carrying capacity. For constants a, b, and c, the logistic growth of a population over
time  x  is represented by the model

f (x) = c
1 + ae−bx

The graph in Figure 6.51 shows how the growth rate changes over time. The graph increases from left to right, but the
growth rate only increases until it reaches its point of maximum growth rate, at which point the rate of increase decreases.

Figure 6.51

Logistic Growth

The logistic growth model is

f (x) = c
1 + ae−bx

where

• c
1 + a   is the initial value

• c  is the carrying capacity, or limiting value

• b  is a constant determined by the rate of growth.
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Example 6.70

Using the Logistic-Growth Model

An influenza epidemic spreads through a population rapidly, at a rate that depends on two factors: The more
people who have the flu, the more rapidly it spreads, and also the more uninfected people there are, the more
rapidly it spreads. These two factors make the logistic model a good one to study the spread of communicable
diseases. And, clearly, there is a maximum value for the number of people infected: the entire population.

For example, at time  t = 0  there is one person in a community of 1,000 people who has the flu. So, in that
community, at most 1,000 people can have the flu. Researchers find that for this particular strain of the flu, the
logistic growth constant is  b = 0.6030. Estimate the number of people in this community who will have had this
flu after ten days. Predict how many people in this community will have had this flu after a long period of time
has passed.

Solution
We substitute the given data into the logistic growth model

f (x) = c
1 + ae−bx

Because at most 1,000 people, the entire population of the community, can get the flu, we know the limiting value
is  c = 1000. To find  a, we use the formula that the number of cases at time  t = 0  is   c

1 + a = 1, from which

it follows that  a = 999. This model predicts that, after ten days, the number of people who have had the flu is

  f (x) = 1000
1 + 999e−0.6030x ≈ 293.8. Because the actual number must be a whole number (a person has either

had the flu or not) we round to 294. In the long term, the number of people who will contract the flu is the limiting
value,  c = 1000.

Analysis
Remember that, because we are dealing with a virus, we cannot predict with certainty the number of people
infected. The model only approximates the number of people infected and will not give us exact or actual values.

The graph in Figure 6.52 gives a good picture of how this model fits the data.
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Figure 6.52 The graph of   f (x) = 1000
1 + 999e−0.6030x

Using the model in Example 6.70, estimate the number of cases of flu on day 15.

Choosing an Appropriate Model for Data
Now that we have discussed various mathematical models, we need to learn how to choose the appropriate model for the
raw data we have. Many factors influence the choice of a mathematical model, among which are experience, scientific laws,
and patterns in the data itself. Not all data can be described by elementary functions. Sometimes, a function is chosen that
approximates the data over a given interval. For instance, suppose data were gathered on the number of homes bought in
the United States from the years 1960 to 2013. After plotting these data in a scatter plot, we notice that the shape of the data
from the years 2000 to 2013 follow a logarithmic curve. We could restrict the interval from 2000 to 2010, apply regression
analysis using a logarithmic model, and use it to predict the number of home buyers for the year 2015.

Three kinds of functions that are often useful in mathematical models are linear functions, exponential functions, and
logarithmic functions. If the data lies on a straight line, or seems to lie approximately along a straight line, a linear model
may be best. If the data is non-linear, we often consider an exponential or logarithmic model, though other models, such as
quadratic models, may also be considered.

In choosing between an exponential model and a logarithmic model, we look at the way the data curves. This is called the
concavity. If we draw a line between two data points, and all (or most) of the data between those two points lies above that
line, we say the curve is concave down. We can think of it as a bowl that bends downward and therefore cannot hold water.
If all (or most) of the data between those two points lies below the line, we say the curve is concave up. In this case, we can
think of a bowl that bends upward and can therefore hold water. An exponential curve, whether rising or falling, whether
representing growth or decay, is always concave up away from its horizontal asymptote. A logarithmic curve is always
concave away from its vertical asymptote. In the case of positive data, which is the most common case, an exponential curve
is always concave up, and a logarithmic curve always concave down.

A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a certain point, called
a point of inflection.

After using the graph to help us choose a type of function to use as a model, we substitute points, and solve to find the
parameters. We reduce round-off error by choosing points as far apart as possible.

764 Chapter 6 Exponential and Logarithmic Functions

This content is available for free at https://cnx.org/content/col11758/1.5



Example 6.71

Choosing a Mathematical Model

Does a linear, exponential, logarithmic, or logistic model best fit the values listed in Table 6.17? Find the model,
and use a graph to check your choice.

x 1 2 3 4 5 6 7 8 9

y 0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

Table 6.17

Solution
First, plot the data on a graph as in Figure 6.53. For the purpose of graphing, round the data to two significant
digits.

Figure 6.53

Clearly, the points do not lie on a straight line, so we reject a linear model. If we draw a line between any two of
the points, most or all of the points between those two points lie above the line, so the graph is concave down,
suggesting a logarithmic model. We can try  y = aln(bx).  Plugging in the first point,  (1,0),  gives  0 = alnb. 
We reject the case that  a = 0  (if it were, all outputs would be 0), so we know  ln(b) = 0. Thus  b = 1  and
 y = aln(x). Next we can use the point  (9,4.394)  to solve for  a :

          y = aln(x)
4.394 = aln(9)

           a = 4.394
ln(9)
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Because  a = 4.394
ln(9) ≈ 2, an appropriate model for the data is  y = 2ln(x).

To check the accuracy of the model, we graph the function together with the given points as in Figure 6.54.

Figure 6.54 The graph of  y = 2lnx.

We can conclude that the model is a good fit to the data.

Compare Figure 6.54 to the graph of  y = ln⎛
⎝x2⎞

⎠  shown in Figure 6.55.

Figure 6.55 The graph of  y = ln⎛
⎝x2⎞

⎠
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The graphs appear to be identical when  x > 0. A quick check confirms this conclusion:  y = ln⎛
⎝x2⎞

⎠ = 2ln(x)  for

 x > 0.

However, if  x < 0, the graph of  y = ln⎛
⎝x2⎞

⎠  includes a “extra” branch, as shown in Figure 6.56. This occurs

because, while  y = 2ln(x)  cannot have negative values in the domain (as such values would force the argument

to be negative), the function  y = ln⎛
⎝x2⎞

⎠  can have negative domain values.

Figure 6.56

Does a linear, exponential, or logarithmic model best fit the data in Table 6.18? Find the model.

x 1 2 3 4 5 6 7 8 9

y 3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034

Table 6.18

Expressing an Exponential Model in Base e
While powers and logarithms of any base can be used in modeling, the two most common bases are  10  and  e.  In science
and mathematics, the base  e  is often preferred. We can use laws of exponents and laws of logarithms to change any base to
base  e.

Given a model with the form  y = abx, change it to the form  y = A0 ekx.

1. Rewrite  y = abx   as  y = ae
ln⎛

⎝bx⎞
⎠.

2. Use the power rule of logarithms to rewrite y as  y = aexln(b) = aeln(b)x.

3. Note that  a = A0   and  k = ln(b)  in the equation  y = A0 ekx.

Example 6.72
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Changing to base e

Change the function  y = 2.5(3.1)x   so that this same function is written in the form  y = A0 ekx.

Solution
The formula is derived as follows

y = 2.5(3.1)x

= 2.5e
ln⎛

⎝3.1x⎞
⎠ Insert exponential and its inverse.

= 2.5exln3.1 Laws of logs.

= 2.5e(ln3.1) x Commutative law of multiplication

Change the function  y = 3(0.5)x   to one having  e  as the base.

Access these online resources for additional instruction and practice with exponential and logarithmic models.

• Logarithm Application – pH (http://openstaxcollege.org/l/logph)

• Exponential Model – Age Using Half-Life (http://openstaxcollege.org/l/expmodelhalf)

• Newton’s Law of Cooling (http://openstaxcollege.org/l/newtoncooling)

• Exponential Growth Given Doubling Time (http://openstaxcollege.org/l/expgrowthdbl)

• Exponential Growth – Find Initial Amount Given Doubling Time
(http://openstaxcollege.org/l/initialdouble)
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6.7 EXERCISES
Verbal

With what kind of exponential model would half-life
be associated? What role does half-life play in these
models?

What is carbon dating? Why does it work? Give an
example in which carbon dating would be useful.

With what kind of exponential model would doubling
time be associated? What role does doubling time play in
these models?

Define Newton’s Law of Cooling. Then name at least
three real-world situations where Newton’s Law of Cooling
would be applied.

What is an order of magnitude? Why are orders of
magnitude useful? Give an example to explain.

Numeric

The temperature of an object in degrees Fahrenheit
after t minutes is represented by the equation
 T(t) = 68e−0.0174t + 72. To the nearest degree, what is
the temperature of the object after one and a half hours?

For the following exercises, use the logistic growth model
  f (x) = 150

1 + 8e−2x.

Find and interpret   f (0). Round to the nearest tenth.

Find and interpret   f (4). Round to the nearest tenth.

Find the carrying capacity.

Graph the model.

Determine whether the data from the table could best
be represented as a function that is linear, exponential, or
logarithmic. Then write a formula for a model that
represents the data.

x f(x)

–2 0.694

–1 0.833

0 1

1 1.2

2 1.44

3 1.728

4 2.074

5 2.488

Rewrite   f (x) = 1.68(0.65)x   as an exponential

equation with base  e  to five significant digits.

Technology
For the following exercises, enter the data from each table
into a graphing calculator and graph the resulting scatter
plots. Determine whether the data from the table could
represent a function that is linear, exponential, or
logarithmic.
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x f(x)

1 2

2 4.079

3 5.296

4 6.159

5 6.828

6 7.375

7 7.838

8 8.238

9 8.592

10 8.908

x f(x)

1 2.4

2 2.88

3 3.456

4 4.147

5 4.977

6 5.972

7 7.166

8 8.6

9 10.32

10 12.383

770 Chapter 6 Exponential and Logarithmic Functions

This content is available for free at https://cnx.org/content/col11758/1.5



388.

389.

390.

391.

392.

393.

394.

395.

x f(x)

4 9.429

5 9.972

6 10.415

7 10.79

8 11.115

9 11.401

10 11.657

11 11.889

12 12.101

13 12.295

x f(x)

1.25 5.75

2.25 8.75

3.56 12.68

4.2 14.6

5.65 18.95

6.75 22.25

7.25 23.75

8.6 27.8

9.25 29.75

10.5 33.5

For the following exercises, use a graphing calculator and
this scenario: the population of a fish farm in  t  years is

modeled by the equation  P(t) = 1000
1 + 9e−0.6t .

Graph the function.

What is the initial population of fish?

To the nearest tenth, what is the doubling time for the
fish population?

To the nearest whole number, what will the fish
population be after  2  years?

To the nearest tenth, how long will it take for the
population to reach  900?

What is the carrying capacity for the fish population?
Justify your answer using the graph of  P.

Extensions

A substance has a half-life of 2.045 minutes. If the
initial amount of the substance was 132.8 grams, how many
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413.

414.

415.

416.

half-lives will have passed before the substance decays to
8.3 grams? What is the total time of decay?

The formula for an increasing population is given by
 P(t) = P0 ert  where  P0   is the initial population and

 r > 0. Derive a general formula for the time t it takes for
the population to increase by a factor of M.

Recall the formula for calculating the magnitude of an

earthquake,  M = 2
3log⎛

⎝
S
S0

⎞
⎠. Show each step for solving

this equation algebraically for the seismic moment  S.

What is the y-intercept of the logistic growth model
 y = c

1 + ae−rx ?   Show the steps for calculation. What

does this point tell us about the population?

Prove that  bx = exln(b)   for positive  b ≠ 1.

Real-World Applications
For the following exercises, use this scenario: A doctor
prescribes 125 milligrams of a therapeutic drug that decays
by about 30% each hour.

To the nearest hour, what is the half-life of the drug?

Write an exponential model representing the amount
of the drug remaining in the patient’s system after  t  hours.
Then use the formula to find the amount of the drug that
would remain in the patient’s system after 3 hours. Round
to the nearest milligram.

Using the model found in the previous exercise, find
  f (10)  and interpret the result. Round to the nearest

hundredth.

For the following exercises, use this scenario: A tumor is
injected with  0.5  grams of Iodine-125, which has a decay
rate of  1.15%  per day.

To the nearest day, how long will it take for half of the
Iodine-125 to decay?

Write an exponential model representing the amount
of Iodine-125 remaining in the tumor after  t  days. Then
use the formula to find the amount of Iodine-125 that would
remain in the tumor after 60 days. Round to the nearest
tenth of a gram.

A scientist begins with  250  grams of a radioactive
substance. After  250 minutes, the sample has decayed to
 32  grams. Rounding to five significant digits, write an
exponential equation representing this situation. To the
nearest minute, what is the half-life of this substance?

The half-life of Radium-226 is  1590  years. What is the
annual decay rate? Express the decimal result to four
significant digits and the percentage to two significant
digits.

The half-life of Erbium-165 is  10.4  hours. What is
the hourly decay rate? Express the decimal result to four
significant digits and the percentage to two significant
digits.

A wooden artifact from an archeological dig contains
60 percent of the carbon-14 that is present in living trees.
To the nearest year, about how many years old is the
artifact? (The half-life of carbon-14 is  5730  years.)

A research student is working with a culture of
bacteria that doubles in size every twenty minutes. The
initial population count was  1350  bacteria. Rounding to
five significant digits, write an exponential equation
representing this situation. To the nearest whole number,
what is the population size after  3 hours?

For the following exercises, use this scenario: A biologist
recorded a count of  360  bacteria present in a culture after
 5 minutes and  1000  bacteria present after  20 minutes.

To the nearest whole number, what was the initial
population in the culture?

Rounding to six significant digits, write an
exponential equation representing this situation. To the
nearest minute, how long did it take the population to
double?

For the following exercises, use this scenario: A pot of
boiling soup with an internal temperature of  100°
Fahrenheit was taken off the stove to cool in a  69° F  room.
After fifteen minutes, the internal temperature of the soup
was  95° F.

Use Newton’s Law of Cooling to write a formula that
models this situation.

To the nearest minute, how long will it take the soup
to cool to  80° F?

To the nearest degree, what will the temperature be
after  2  and a half hours?

For the following exercises, use this scenario: A turkey
is taken out of the oven with an internal temperature of
 165°F  and is allowed to cool in a  75°F  room. After half
an hour, the internal temperature of the turkey is  145°F.

Write a formula that models this situation.

To the nearest degree, what will the temperature be
after 50 minutes?
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418.

419.

420.

421.

422.

423.

424.

425.

To the nearest minute, how long will it take the turkey
to cool to  110° F?

For the following exercises, find the value of the number
shown on each logarithmic scale. Round all answers to the
nearest thousandth.

Plot each set of approximate values of intensity of
sounds on a logarithmic scale: Whisper:  10−10  W

m2,

Vacuum:  10−4 W
m2, Jet:  102  W

m2

Recall the formula for calculating the magnitude of an

earthquake,  M = 2
3log⎛

⎝
S
S0

⎞
⎠. One earthquake has

magnitude  3.9  on the MMS scale. If a second earthquake
has  750  times as much energy as the first, find the
magnitude of the second quake. Round to the nearest
hundredth.

For the following exercises, use this scenario: The equation
 N(t) = 500

1 + 49e−0.7t  models the number of people in a

town who have heard a rumor after t days.

How many people started the rumor?

To the nearest whole number, how many people will
have heard the rumor after 3 days?

As  t  increases without bound, what value does  N(t) 
approach? Interpret your answer.

For the following exercise, choose the correct answer
choice.

A doctor and injects a patient with  13 milligrams of
radioactive dye that decays exponentially. After  12 
minutes, there are  4.75 milligrams of dye remaining in the
patient’s system. Which is an appropriate model for this
situation?

A. f (t) = 13(0.0805)t

B. f (t) = 13e0.9195t

C. f (t) = 13e( − 0.0839t)

D. f (t) = 4.75
1 + 13e−0.83925t
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6.8 | Fitting Exponential Models to Data

Learning Objectives

In this section, you will:

6.8.1 Build an exponential model from data.
6.8.2 Build a logarithmic model from data.
6.8.3 Build a logistic model from data.

In previous sections of this chapter, we were either given a function explicitly to graph or evaluate, or we were given a set
of points that were guaranteed to lie on the curve. Then we used algebra to find the equation that fit the points exactly. In
this section, we use a modeling technique called regression analysis to find a curve that models data collected from real-
world observations. With regression analysis, we don’t expect all the points to lie perfectly on the curve. The idea is to find
a model that best fits the data. Then we use the model to make predictions about future events.

Do not be confused by the word model. In mathematics, we often use the terms function, equation, and model
interchangeably, even though they each have their own formal definition. The term model is typically used to indicate that
the equation or function approximates a real-world situation.

We will concentrate on three types of regression models in this section: exponential, logarithmic, and logistic. Having
already worked with each of these functions gives us an advantage. Knowing their formal definitions, the behavior of their
graphs, and some of their real-world applications gives us the opportunity to deepen our understanding. As each regression
model is presented, key features and definitions of its associated function are included for review. Take a moment to rethink
each of these functions, reflect on the work we’ve done so far, and then explore the ways regression is used to model real-
world phenomena.

Building an Exponential Model from Data
As we’ve learned, there are a multitude of situations that can be modeled by exponential functions, such as investment
growth, radioactive decay, atmospheric pressure changes, and temperatures of a cooling object. What do these phenomena
have in common? For one thing, all the models either increase or decrease as time moves forward. But that’s not the whole
story. It’s the way data increase or decrease that helps us determine whether it is best modeled by an exponential equation.
Knowing the behavior of exponential functions in general allows us to recognize when to use exponential regression, so
let’s review exponential growth and decay.

Recall that exponential functions have the form  y = abx   or  y = A0 ekx. When performing regression analysis, we use the

form most commonly used on graphing utilities,  y = abx. Take a moment to reflect on the characteristics we’ve already

learned about the exponential function  y = abx   (assume  a > 0) :

• b must be greater than zero and not equal to one.

• The initial value of the model is  y = a.

◦ If  b > 1, the function models exponential growth. As  x  increases, the outputs of the model increase
slowly at first, but then increase more and more rapidly, without bound.

◦ If  0 < b < 1, the function models exponential decay. As  x  increases, the outputs for the model decrease
rapidly at first and then level off to become asymptotic to the x-axis. In other words, the outputs never
become equal to or less than zero.

As part of the results, your calculator will display a number known as the correlation coefficient, labeled by the variable
 r, or  r2.  (You may have to change the calculator’s settings for these to be shown.) The values are an indication of the

“goodness of fit” of the regression equation to the data. We more commonly use the value of  r2   instead of  r, but the
closer either value is to 1, the better the regression equation approximates the data.
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Exponential Regression

Exponential regression is used to model situations in which growth begins slowly and then accelerates rapidly without
bound, or where decay begins rapidly and then slows down to get closer and closer to zero. We use the command
“ExpReg” on a graphing utility to fit an exponential function to a set of data points. This returns an equation of the
form, y = abx

Note that:

• b must be non-negative.

• when  b > 1, we have an exponential growth model.

• when  0 < b < 1, we have an exponential decay model.

Given a set of data, perform exponential regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.

a. Clear any existing data from the lists.

b. List the input values in the L1 column.

c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.

a. Use ZOOM [9] to adjust axes to fit the data.

b. Verify the data follow an exponential pattern.

3. Find the equation that models the data.

a. Select “ExpReg” from the STAT then CALC menu.

b. Use the values returned for a and b to record the model,  y = abx.

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

Example 6.73

Using Exponential Regression to Fit a Model to Data

In 2007, a university study was published investigating the crash risk of alcohol impaired driving. Data from
2,871 crashes were used to measure the association of a person’s blood alcohol level (BAC) with the risk of being
in an accident. Table 6.19 shows results from the study [9]. The relative risk is a measure of how many times
more likely a person is to crash. So, for example, a person with a BAC of 0.09 is 3.54 times as likely to crash as
a person who has not been drinking alcohol.

9. Source: Indiana University Center for Studies of Law in Action, 2007
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BAC 0 0.01 0.03 0.05 0.07 0.09

Relative Risk of Crashing 1 1.03 1.06 1.38 2.09 3.54

BAC 0.11 0.13 0.15 0.17 0.19 0.21

Relative Risk of Crashing 6.41 12.6 22.1 39.05 65.32 99.78

Table 6.19

a. Let  x  represent the BAC level, and let  y  represent the corresponding relative risk. Use exponential

regression to fit a model to these data.

b. After 6 drinks, a person weighing 160 pounds will have a BAC of about  0.16. How many times more
likely is a person with this weight to crash if they drive after having a 6-pack of beer? Round to the nearest
hundredth.

Solution
a. Using the STAT then EDIT menu on a graphing utility, list the BAC values in L1 and the relative risk

values in L2. Then use the STATPLOT feature to verify that the scatterplot follows the exponential pattern
shown in Figure 6.57:

Figure 6.57

Use the “ExpReg” command from the STAT then CALC menu to obtain the exponential model,

y = 0.58304829(2.20720213E10)x

Converting from scientific notation, we have:

y = 0.58304829(22,072,021,300)x
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6.72

Notice that  r2 ≈ 0.97 which indicates the model is a good fit to the data. To see this, graph the model in
the same window as the scatterplot to verify it is a good fit as shown in Figure 6.58:

Figure 6.58

b. Use the model to estimate the risk associated with a BAC of  0.16.  Substitute  0.16  for  x  in the model
and solve for  y.

y = 0.58304829(22,072,021,300)x Use the regression model found in part (a).

= 0.58304829(22,072,021,300)0.16 Substitute 0.16 for x.
≈ 26.35 Round to the nearest hundredth.

If a 160-pound person drives after having 6 drinks, he or she is about 26.35 times more likely to crash
than if driving while sober.

Table 6.20 shows a recent graduate’s credit card balance each month after graduation.

Month 1 2 3 4 5 6 7 8

Debt
($) 620.00 761.88 899.80 1039.93 1270.63 1589.04 1851.31 2154.92

Table 6.20

a. Use exponential regression to fit a model to these data.

b. If spending continues at this rate, what will the graduate’s credit card debt be one year after
graduating?
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Is it reasonable to assume that an exponential regression model will represent a situation indefinitely?

No. Remember that models are formed by real-world data gathered for regression. It is usually reasonable to
make estimates within the interval of original observation (interpolation). However, when a model is used to make
predictions, it is important to use reasoning skills to determine whether the model makes sense for inputs far
beyond the original observation interval (extrapolation).

Building a Logarithmic Model from Data
Just as with exponential functions, there are many real-world applications for logarithmic functions: intensity of sound, pH
levels of solutions, yields of chemical reactions, production of goods, and growth of infants. As with exponential models,
data modeled by logarithmic functions are either always increasing or always decreasing as time moves forward. Again, it
is the way they increase or decrease that helps us determine whether a logarithmic model is best.

Recall that logarithmic functions increase or decrease rapidly at first, but then steadily slow as time moves on. By reflecting
on the characteristics we’ve already learned about this function, we can better analyze real world situations that reflect this
type of growth or decay. When performing logarithmic regression analysis, we use the form of the logarithmic function
most commonly used on graphing utilities,  y = a + bln(x).  For this function

• All input values,  x, must be greater than zero.

• The point  (1, a)  is on the graph of the model.

• If  b > 0, the model is increasing. Growth increases rapidly at first and then steadily slows over time.

• If  b < 0, the model is decreasing. Decay occurs rapidly at first and then steadily slows over time.

Logarithmic Regression

Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then slows
over time. We use the command “LnReg” on a graphing utility to fit a logarithmic function to a set of data points. This
returns an equation of the form,

y = a + bln(x)

Note that

• all input values,  x, must be non-negative.

• when  b > 0, the model is increasing.

• when  b < 0, the model is decreasing.

Given a set of data, perform logarithmic regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.

a. Clear any existing data from the lists.

b. List the input values in the L1 column.

c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.

a. Use ZOOM [9] to adjust axes to fit the data.

b. Verify the data follow a logarithmic pattern.

3. Find the equation that models the data.

a. Select “LnReg” from the STAT then CALC menu.

b. Use the values returned for a and b to record the model,  y = a + bln(x).

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.
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Example 6.74

Using Logarithmic Regression to Fit a Model to Data

Due to advances in medicine and higher standards of living, life expectancy has been increasing in most
developed countries since the beginning of the 20th century.

Table 6.21 shows the average life expectancies, in years, of Americans from 1900–2010[10].

Year 1900 1910 1920 1930 1940 1950

Life Expectancy(Years) 47.3 50.0 54.1 59.7 62.9 68.2

Year 1960 1970 1980 1990 2000 2010

Life Expectancy(Years) 69.7 70.8 73.7 75.4 76.8 78.7

Table 6.21

a. Let  x  represent time in decades starting with  x = 1  for the year 1900,  x = 2  for the year 1910, and so
on. Let  y  represent the corresponding life expectancy. Use logarithmic regression to fit a model to these

data.

b. Use the model to predict the average American life expectancy for the year 2030.

Solution
a. Using the STAT then EDIT menu on a graphing utility, list the years using values 1–12 in L1 and

the corresponding life expectancy in L2. Then use the STATPLOT feature to verify that the scatterplot
follows a logarithmic pattern as shown in Figure 6.59:

Figure 6.59

10. Source: Center for Disease Control and Prevention, 2013
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Use the “LnReg” command from the STAT then CALC menu to obtain the logarithmic model,

y = 42.52722583 + 13.85752327ln(x)
Next, graph the model in the same window as the scatterplot to verify it is a good fit as shown in Figure
6.60:

Figure 6.60

b. To predict the life expectancy of an American in the year 2030, substitute  x = 14  for the in the model
and solve for  y :

y = 42.52722583 + 13.85752327ln(x) Use the regression model found in part (a).
= 42.52722583 + 13.85752327ln(14) Substitute 14 for x.
≈ 79.1 Round to the nearest tenth.

If life expectancy continues to increase at this pace, the average life expectancy of an American will be
79.1 by the year 2030.
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6.73 Sales of a video game released in the year 2000 took off at first, but then steadily slowed as time moved
on. Table 6.22 shows the number of games sold, in thousands, from the years 2000–2010.

Year 2000 2001 2002 2003 2004 2005

Number Sold (thousands) 142 149 154 155 159 161

Year 2006 2007 2008 2009 2010 -

Number Sold (thousands) 163 164 164 166 167 -

Table 6.22

a. Let  x  represent time in years starting with  x = 1  for the year 2000. Let  y  represent the number of

games sold in thousands. Use logarithmic regression to fit a model to these data.

b. If games continue to sell at this rate, how many games will sell in 2015? Round to the nearest
thousand.

Building a Logistic Model from Data
Like exponential and logarithmic growth, logistic growth increases over time. One of the most notable differences with
logistic growth models is that, at a certain point, growth steadily slows and the function approaches an upper bound, or
limiting value. Because of this, logistic regression is best for modeling phenomena where there are limits in expansion, such
as availability of living space or nutrients.

It is worth pointing out that logistic functions actually model resource-limited exponential growth. There are many examples
of this type of growth in real-world situations, including population growth and spread of disease, rumors, and even stains
in fabric. When performing logistic regression analysis, we use the form most commonly used on graphing utilities:

y = c
1 + ae−bx

Recall that:

• c
1 + a   is the initial value of the model.

• when  b > 0, the model increases rapidly at first until it reaches its point of maximum growth rate,  ⎛⎝
ln(a)

b , c
2

⎞
⎠. At

that point, growth steadily slows and the function becomes asymptotic to the upper bound  y = c.

• c  is the limiting value, sometimes called the carrying capacity, of the model.

Logistic Regression

Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows to an
upper limit. We use the command “Logistic” on a graphing utility to fit a logistic function to a set of data points. This
returns an equation of the form

y = c
1 + ae−bx

Note that

• The initial value of the model is   c
1 + a.
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• Output values for the model grow closer and closer to  y = c  as time increases.

Given a set of data, perform logistic regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.

a. Clear any existing data from the lists.

b. List the input values in the L1 column.

c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.

a. Use ZOOM [9] to adjust axes to fit the data.

b. Verify the data follow a logistic pattern.

3. Find the equation that models the data.

a. Select “Logistic” from the STAT then CALC menu.

b. Use the values returned for  a,  b, and  c  to record the model,  y = c
1 + ae−bx.

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

Example 6.75

Using Logistic Regression to Fit a Model to Data

Mobile telephone service has increased rapidly in America since the mid 1990s. Today, almost all residents have
cellular service. Table 6.23 shows the percentage of Americans with cellular service between the years 1995 and
2012 [11].

11. Source: The World Bank, 2013
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Year Americans with Cellular Service
(%) Year Americans with Cellular Service

(%)

1995 12.69 2004 62.852

1996 16.35 2005 68.63

1997 20.29 2006 76.64

1998 25.08 2007 82.47

1999 30.81 2008 85.68

2000 38.75 2009 89.14

2001 45.00 2010 91.86

2002 49.16 2011 95.28

2003 55.15 2012 98.17

Table 6.23

a. Let  x  represent time in years starting with  x = 0  for the year 1995. Let  y  represent the corresponding

percentage of residents with cellular service. Use logistic regression to fit a model to these data.

b. Use the model to calculate the percentage of Americans with cell service in the year 2013. Round to the
nearest tenth of a percent.

c. Discuss the value returned for the upper limit,  c. What does this tell you about the model? What would
the limiting value be if the model were exact?

Solution
a. Using the STAT then EDIT menu on a graphing utility, list the years using values 0–15 in L1 and the

corresponding percentage in L2. Then use the STATPLOT feature to verify that the scatterplot follows a
logistic pattern as shown in Figure 6.61:
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Figure 6.61

Use the “Logistic” command from the STAT then CALC menu to obtain the logistic model,

y = 105.7379526
1 + 6.88328979e−0.2595440013x

Next, graph the model in the same window as shown in Figure 6.62 the scatterplot to verify it is a good
fit:

Figure 6.62

b. To approximate the percentage of Americans with cellular service in the year 2013, substitute  x = 18  for
the in the model and solve for  y :
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6.74

y = 105.7379526
1 + 6.88328979e−0.2595440013x Use the regression model found in part (a).

= 105.7379526
1 + 6.88328979e−0.2595440013(18)

Substitute 18 for x.

≈ 99.3 Round to the nearest tenth
According to the model, about 98.8% of Americans had cellular service in 2013.

c. The model gives a limiting value of about 105. This means that the maximum possible percentage of
Americans with cellular service would be 105%, which is impossible. (How could over 100% of a
population have cellular service?) If the model were exact, the limiting value would be  c = 100  and the
model’s outputs would get very close to, but never actually reach 100%. After all, there will always be
someone out there without cellular service!

Table 6.24 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to
2012.

Year Seal Population (Thousands) Year Seal Population (Thousands)

1997 3.493 2005 19.590

1998 5.282 2006 21.955

1999 6.357 2007 22.862

2000 9.201 2008 23.869

2001 11.224 2009 24.243

2002 12.964 2010 24.344

2003 16.226 2011 24.919

2004 18.137 2012 25.108

Table 6.24

a. Let  x  represent time in years starting with  x = 0  for the year 1997. Let  y  represent the number of

seals in thousands. Use logistic regression to fit a model to these data.

b. Use the model to predict the seal population for the year 2020.

c. To the nearest whole number, what is the limiting value of this model?

Access this online resource for additional instruction and practice with exponential function models.

• Exponential Regression on a Calculator (http://openstaxcollege.org/l/pregresscalc)
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Learningpod.
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426.

427.

428.

429.

430.

6.8 EXERCISES
Verbal

What situations are best modeled by a logistic
equation? Give an example, and state a case for why the
example is a good fit.

What is a carrying capacity? What kind of model has
a carrying capacity built into its formula? Why does this
make sense?

What is regression analysis? Describe the process of
performing regression analysis on a graphing utility.

What might a scatterplot of data points look like if it
were best described by a logarithmic model?

What does the y-intercept on the graph of a logistic
equation correspond to for a population modeled by that
equation?

Graphical
For the following exercises, match the given function of
best fit with the appropriate scatterplot in Figure 6.63
through Figure 6.67. Answer using the letter beneath the
matching graph.

Figure 6.63

Figure 6.64

Figure 6.65
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431.

432.

433.

434.

435.

436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

446.

447.

448.

449.

450.

Figure 6.66

Figure 6.67

y = 10.209e−0.294x

y = 5.598 − 1.912ln(x)

y = 2.104(1.479)x

y = 4.607 + 2.733ln(x)

y = 14.005
1 + 2.79e−0.812x

Numeric

To the nearest whole number, what is the initial value
of a population modeled by the logistic equation
 P(t) = 175

1 + 6.995e−0.68t ?  What is the carrying capacity?

Rewrite the exponential model  A(t) = 1550(1.085)x   as
an equivalent model with base  e. Express the exponent to
four significant digits.

A logarithmic model is given by the equation
 h(p) = 67.682 − 5.792ln(p). To the nearest hundredth,

for what value of  p  does  h(p) = 62?

A logistic model is given by the equation
 P(t) = 90

1 + 5e−0.42t . To the nearest hundredth, for what

value of t does  P(t) = 45?

What is the y-intercept on the graph of the logistic
model given in the previous exercise?

Technology
For the following exercises, use this scenario: The
population  P  of a koi pond over  x months is modeled by

the function  P(x) = 68
1 + 16e−0.28x.

Graph the population model to show the population
over a span of  3  years.

What was the initial population of koi?

How many koi will the pond have after one and a half
years?

How many months will it take before there are  20  koi
in the pond?

Use the intersect feature to approximate the number
of months it will take before the population of the pond
reaches half its carrying capacity.

For the following exercises, use this scenario: The
population  P  of an endangered species habitat for wolves

is modeled by the function  P(x) = 558
1 + 54.8e−0.462x,

where  x  is given in years.

Graph the population model to show the population
over a span of  10  years.

What was the initial population of wolves transported
to the habitat?

How many wolves will the habitat have after  3 
years?

How many years will it take before there are  100 
wolves in the habitat?
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452.

453.

454.

455.

456.

457.

458.

459.

460.

Use the intersect feature to approximate the number of
years it will take before the population of the habitat
reaches half its carrying capacity.

For the following exercises, refer to Table 6.25.

x f(x)

1 1125

2 1495

3 2310

4 3294

5 4650

6 6361

Table 6.25

Use a graphing calculator to create a scatter diagram
of the data.

Use the regression feature to find an exponential
function that best fits the data in the table.

Write the exponential function as an exponential
equation with base  e.

Graph the exponential equation on the scatter
diagram.

Use the intersect feature to find the value of  x  for
which   f (x) = 4000.

For the following exercises, refer to Table 6.26.

x f(x)

1 555

2 383

3 307

4 210

5 158

6 122

Table 6.26

Use a graphing calculator to create a scatter diagram
of the data.

Use the regression feature to find an exponential
function that best fits the data in the table.

Write the exponential function as an exponential
equation with base  e.

Graph the exponential equation on the scatter
diagram.

Use the intersect feature to find the value of  x  for
which   f (x) = 250.

For the following exercises, refer to Table 6.27.
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461.

462.

463.

464.

465.

466.

467.

468.

469.

470.

x f(x)

1 5.1

2 6.3

3 7.3

4 7.7

5 8.1

6 8.6

Table 6.27

Use a graphing calculator to create a scatter diagram
of the data.

Use the LOGarithm option of the REGression feature
to find a logarithmic function of the form  y = a + bln(x) 
that best fits the data in the table.

Use the logarithmic function to find the value of the
function when  x = 10.

Graph the logarithmic equation on the scatter
diagram.

Use the intersect feature to find the value of  x  for
which   f (x) = 7.

For the following exercises, refer to Table 6.28.

x f(x)

1 7.5

2 6

3 5.2

4 4.3

5 3.9

6 3.4

7 3.1

8 2.9

Table 6.28

Use a graphing calculator to create a scatter diagram
of the data.

Use the LOGarithm option of the REGression feature
to find a logarithmic function of the form  y = a + bln(x) 
that best fits the data in the table.

Use the logarithmic function to find the value of the
function when  x = 10.

Graph the logarithmic equation on the scatter
diagram.

Use the intersect feature to find the value of  x  for
which   f (x) = 8.

For the following exercises, refer to Table 6.29.
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472.
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475.

476.

477.

478.

479.

480.

481.

x f(x)

1 8.7

2 12.3

3 15.4

4 18.5

5 20.7

6 22.5

7 23.3

8 24

9 24.6

10 24.8

Table 6.29

Use a graphing calculator to create a scatter diagram
of the data.

Use the LOGISTIC regression option to find a
logistic growth model of the form  y = c

1 + ae−bx   that best

fits the data in the table.

Graph the logistic equation on the scatter diagram.

To the nearest whole number, what is the predicted
carrying capacity of the model?

Use the intersect feature to find the value of  x  for
which the model reaches half its carrying capacity.

For the following exercises, refer to Table 6.30.

x f (x)

0 12

2 28.6

4 52.8

5 70.3

7 99.9

8 112.5

10 125.8

11 127.9

15 135.1

17 135.9

Table 6.30

Use a graphing calculator to create a scatter diagram
of the data.

Use the LOGISTIC regression option to find a
logistic growth model of the form  y = c

1 + ae−bx   that best

fits the data in the table.

Graph the logistic equation on the scatter diagram.

To the nearest whole number, what is the predicted
carrying capacity of the model?

Use the intersect feature to find the value of  x  for
which the model reaches half its carrying capacity.

Extensions

Recall that the general form of a logistic equation for
a population is given by  P(t) = c

1 + ae−bt , such that the

initial population at time  t = 0  is  P(0) = P0.  Show

algebraically that  c − P(t)
P(t) = c − P0

P0
e−bt.
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483.

484.

485.

Use a graphing utility to find an exponential
regression formula   f (x)  and a logarithmic regression

formula  g(x)  for the points  (1.5, 1.5)  and  (8.5,  8.5). 
Round all numbers to 6 decimal places. Graph the points
and both formulas along with the line  y = x  on the same

axis. Make a conjecture about the relationship of the
regression formulas.

Verify the conjecture made in the previous exercise.
Round all numbers to six decimal places when necessary.

Find the inverse function   f −1 (x)  for the logistic

function   f (x) = c
1 + ae−bx.  Show all steps.

Use the result from the previous exercise to graph the
logistic model  P(t) = 20

1 + 4e−0.5t   along with its inverse

on the same axis. What are the intercepts and asymptotes of
each function?
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annual percentage rate (APR)

carrying capacity

change-of-base formula

common logarithm

compound interest

doubling time

exponential growth

extraneous solution

half-life

logarithm

logistic growth model

natural logarithm

Newton’s Law of Cooling

nominal rate

order of magnitude

power rule for logarithms

product rule for logarithms

quotient rule for logarithms

CHAPTER 6 REVIEW

KEY TERMS
the yearly interest rate earned by an investment account, also called nominal rate

in a logistic model, the limiting value of the output

a formula for converting a logarithm with any base to a quotient of logarithms with any other
base.

the exponent to which 10 must be raised to get  x;    log10 (x)  is written simply as  log(x).

interest earned on the total balance, not just the principal

the time it takes for a quantity to double

a model that grows by a rate proportional to the amount present

a solution introduced while solving an equation that does not satisfy the conditions of the original
equation

the length of time it takes for a substance to exponentially decay to half of its original quantity

the exponent to which  b must be raised to get  x;  written  y = logb (x)

a function of the form   f (x) = c
1 + ae−bx  where   c

1 + a   is the initial value,  c  is the carrying

capacity, or limiting value, and  b  is a constant determined by the rate of growth

the exponent to which the number  e must be raised to get  x;  loge (x)  is written as  ln(x).

the scientific formula for temperature as a function of time as an object’s temperature is
equalized with the ambient temperature

the yearly interest rate earned by an investment account, also called annual percentage rate

the power of ten, when a number is expressed in scientific notation, with one non-zero digit to the
left of the decimal

a rule of logarithms that states that the log of a power is equal to the product of the exponent
and the log of its base

a rule of logarithms that states that the log of a product is equal to a sum of logarithms

a rule of logarithms that states that the log of a quotient is equal to a difference of
logarithms

KEY EQUATIONS
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definition of the
exponential function

f (x) = bx ,  where  b > 0,  b ≠ 1

definition of exponential
growth

f (x) = abx,  where a > 0, b > 0, b ≠ 1

compound interest formula

A(t) = P⎛
⎝1 + r

n
⎞
⎠
nt

,  where
A(t) is the account value at time t
t is the number of years
P is the initial investment, often called the principal
r is the annual percentage rate (APR), or nominal rate
n is the number of compounding periods in one year

continuous growth formula

A(t) = aert,  where
t is the number of unit time periods of growth
a is the starting amount (in the continuous compounding formula a is
replaced with P, the principal)
e is the mathematical constant,   e ≈ 2.718282

General Form for the Translation of the Parent Function  f (x) = bx f (x) = abx + c + d

Definition of the logarithmic function
For   x > 0, b > 0, b ≠ 1,
y = logb (x) if and only if  by = x.

Definition of the common logarithm For  x > 0, y = log(x) if and only if  10y = x.

Definition of the natural logarithm For  x > 0, y = ln(x) if and only if  ey = x.

General Form for the Translation of the Parent Logarithmic Function
 f (x) = logb (x) f (x) = alogb (x + c) + d

The Product Rule for Logarithms logb(MN) = logb (M) + logb (N)

The Quotient Rule for Logarithms logb
⎛
⎝
M
N

⎞
⎠ = logb M − logb N

The Power Rule for Logarithms logb (Mn) = nlogb M

The Change-of-Base Formula logb M=logn M
logn b          n > 0, n ≠ 1, b ≠ 1
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One-to-one property for
exponential functions

For any algebraic expressions  S and  T  and any positive real
number  b,  where

bS = bT  if and only if  S = T .

Definition of a logarithm

For any algebraic expression S and positive real numbers  b   and
 c,  where  b ≠ 1,
logb(S) = c if and only if  bc = S.

One-to-one property for
logarithmic functions

For any algebraic expressions S and T and any positive real
number  b,  where  b ≠ 1,
logb S = logb T  if and only if  S = T .

Half-life formula If  A = A0 ekt, k < 0, the half-life is  t = − ln(2)
k .

Carbon-14 dating

t =
ln⎛

⎝
A

A0
⎞
⎠

−0.000121.

A0  A is the amount of carbon-14 when the plant or animal died

t is the amount of carbon-14 remaining today
is the age of the fossil in years

Doubling time
formula

If  A = A0 ekt, k > 0, the doubling time is  t = ln2
k

Newton’s Law of
Cooling

T(t) = Aekt + Ts, where  Ts  is the ambient temperature,  A = T(0) − Ts, and  k is

the continuous rate of cooling.

KEY CONCEPTS
6.1 Exponential Functions

• An exponential function is defined as a function with a positive constant other than  1  raised to a variable exponent.
See Example 6.1.

• A function is evaluated by solving at a specific value. See Example 6.2 and Example 6.3.

• An exponential model can be found when the growth rate and initial value are known. See Example 6.4.

• An exponential model can be found when the two data points from the model are known. See Example 6.5.

• An exponential model can be found using two data points from the graph of the model. See Example 6.6.

• An exponential model can be found using two data points from the graph and a calculator. See Example 6.7.

• The value of an account at any time  t  can be calculated using the compound interest formula when the principal,
annual interest rate, and compounding periods are known. See Example 6.8.

• The initial investment of an account can be found using the compound interest formula when the value of the
account, annual interest rate, compounding periods, and life span of the account are known. See Example 6.9.
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• The number  e  is a mathematical constant often used as the base of real world exponential growth and decay models.
Its decimal approximation is  e ≈ 2.718282.

• Scientific and graphing calculators have the key  [ex]  or  ⎡⎣exp(x)⎤
⎦  for calculating powers of  e.  See Example 6.10.

• Continuous growth or decay models are exponential models that use  e  as the base. Continuous growth and decay
models can be found when the initial value and growth or decay rate are known. See Example 6.11 and Example
6.12.

6.2 Graphs of Exponential Functions

• The graph of the function   f (x) = bx   has a y-intercept at  (0,  1), domain  (−∞,  ∞), range  (0,  ∞), and

horizontal asymptote  y = 0.  See Example 6.13.

• If  b > 1, the function is increasing. The left tail of the graph will approach the asymptote  y = 0, and the right tail

will increase without bound.

• If  0 < b < 1, the function is decreasing. The left tail of the graph will increase without bound, and the right tail
will approach the asymptote  y = 0.

• The equation   f (x) = bx + d  represents a vertical shift of the parent function   f (x) = bx.

• The equation   f (x) = bx + c   represents a horizontal shift of the parent function   f (x) = bx.  See Example 6.14.

• Approximate solutions of the equation   f (x) = bx + c + d  can be found using a graphing calculator. See Example
6.15.

• The equation   f (x) = abx, where  a > 0, represents a vertical stretch if  |a| > 1  or compression if  0 < |a| < 1  of

the parent function   f (x) = bx.  See Example 6.16.

• When the parent function   f (x) = bx   is multiplied by  − 1, the result,   f (x) = − bx, is a reflection about the x-

axis. When the input is multiplied by  − 1, the result,   f (x) = b−x, is a reflection about the y-axis. See Example
6.17.

• All translations of the exponential function can be summarized by the general equation   f (x) = abx + c + d.  See

Table 6.9.

• Using the general equation   f (x) = abx + c + d, we can write the equation of a function given its description. See

Example 6.18.

6.3 Logarithmic Functions

• The inverse of an exponential function is a logarithmic function, and the inverse of a logarithmic function is an
exponential function.

• Logarithmic equations can be written in an equivalent exponential form, using the definition of a logarithm. See
Example 6.19.

• Exponential equations can be written in their equivalent logarithmic form using the definition of a logarithm See
Example 6.20.

• Logarithmic functions with base  b  can be evaluated mentally using previous knowledge of powers of  b.  See
Example 6.21 and Example 6.22.

• Common logarithms can be evaluated mentally using previous knowledge of powers of  10.  See Example 6.23.

• When common logarithms cannot be evaluated mentally, a calculator can be used. See Example 6.24.

• Real-world exponential problems with base  10  can be rewritten as a common logarithm and then evaluated using a
calculator. See Example 6.25.
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• Natural logarithms can be evaluated using a calculator Example 6.26.

6.4 Graphs of Logarithmic Functions

• To find the domain of a logarithmic function, set up an inequality showing the argument greater than zero, and solve
for  x.  See Example 6.27 and Example 6.28

• The graph of the parent function   f (x) = logb (x)  has an x-intercept at  (1, 0), domain  (0, ∞), range  (−∞, ∞),
vertical asymptote  x = 0, and

◦ if  b > 1, the function is increasing.

◦ if  0 < b < 1, the function is decreasing.

See Example 6.29.

• The equation   f (x) = logb (x + c)  shifts the parent function  y = logb (x)  horizontally

◦ left  c  units if  c > 0.

◦ right  c  units if  c < 0.

See Example 6.30.

• The equation   f (x) = logb (x) + d  shifts the parent function  y = logb (x)  vertically

◦ up  d  units if  d > 0.

◦ down  d  units if  d < 0.

See Example 6.31.

• For any constant  a > 0, the equation   f (x) = alogb (x)

◦ stretches the parent function  y = logb (x)  vertically by a factor of  a  if  |a| > 1.

◦ compresses the parent function  y = logb (x)  vertically by a factor of  a  if  |a| < 1.

See Example 6.32 and Example 6.33.

• When the parent function  y = logb (x)  is multiplied by  − 1, the result is a reflection about the x-axis. When the

input is multiplied by  − 1, the result is a reflection about the y-axis.

◦ The equation   f (x) = − logb (x)  represents a reflection of the parent function about the x-axis.

◦ The equation   f (x) = logb (−x)  represents a reflection of the parent function about the y-axis.

See Example 6.34.

◦ A graphing calculator may be used to approximate solutions to some logarithmic equations See Example
6.35.

• All translations of the logarithmic function can be summarized by the general equation
   f (x) = alogb (x + c) + d.  See Table 6.15.

• Given an equation with the general form    f (x) = alogb (x + c) + d, we can identify the vertical asymptote

 x = − c  for the transformation. See Example 6.36.

• Using the general equation   f (x) = alogb (x + c) + d, we can write the equation of a logarithmic function given its

graph. See Example 6.37.
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6.5 Logarithmic Properties

• We can use the product rule of logarithms to rewrite the log of a product as a sum of logarithms. See Example
6.38.

• We can use the quotient rule of logarithms to rewrite the log of a quotient as a difference of logarithms. See
Example 6.39.

• We can use the power rule for logarithms to rewrite the log of a power as the product of the exponent and the log of
its base. See Example 6.40, Example 6.41, and Example 6.42.

• We can use the product rule, the quotient rule, and the power rule together to combine or expand a logarithm with a
complex input. See Example 6.43, Example 6.44, and Example 6.45.

• The rules of logarithms can also be used to condense sums, differences, and products with the same base as a single
logarithm. See Example 6.46, Example 6.47, Example 6.48, and Example 6.49.

• We can convert a logarithm with any base to a quotient of logarithms with any other base using the change-of-base
formula. See Example 6.50.

• The change-of-base formula is often used to rewrite a logarithm with a base other than 10 and  e  as the quotient of
natural or common logs. That way a calculator can be used to evaluate. See Example 6.51.

6.6 Exponential and Logarithmic Equations

• We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the
same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to one another
and solve for the unknown.

• When we are given an exponential equation where the bases are explicitly shown as being equal, set the exponents
equal to one another and solve for the unknown. See Example 6.52.

• When we are given an exponential equation where the bases are not explicitly shown as being equal, rewrite each
side of the equation as powers of the same base, then set the exponents equal to one another and solve for the
unknown. See Example 6.53, Example 6.54, and Example 6.55.

• When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each side.
See Example 6.56.

• We can solve exponential equations with base  e, by applying the natural logarithm of both sides because
exponential and logarithmic functions are inverses of each other. See Example 6.57 and Example 6.58.

• After solving an exponential equation, check each solution in the original equation to find and eliminate any
extraneous solutions. See Example 6.59.

• When given an equation of the form  logb(S) = c, where  S  is an algebraic expression, we can use the definition of

a logarithm to rewrite the equation as the equivalent exponential equation  bc = S, and solve for the unknown. See
Example 6.60 and Example 6.61.

• We can also use graphing to solve equations with the form  logb(S) = c. We graph both equations  y = logb(S)  and

 y = c  on the same coordinate plane and identify the solution as the x-value of the intersecting point. See Example
6.62.

• When given an equation of the form  logb S = logb T , where  S  and  T   are algebraic expressions, we can use the

one-to-one property of logarithms to solve the equation  S = T   for the unknown. See Example 6.63.

• Combining the skills learned in this and previous sections, we can solve equations that model real world situations,
whether the unknown is in an exponent or in the argument of a logarithm. See Example 6.64.
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6.7 Exponential and Logarithmic Models

• The basic exponential function is   f (x) = abx.  If  b > 1, we have exponential growth; if  0 < b < 1, we have

exponential decay.

• We can also write this formula in terms of continuous growth as  A = A0 ekx, where  A0   is the starting value. If

 A0   is positive, then we have exponential growth when  k > 0  and exponential decay when  k < 0.  See Example

6.65.

• In general, we solve problems involving exponential growth or decay in two steps. First, we set up a model and use
the model to find the parameters. Then we use the formula with these parameters to predict growth and decay. See
Example 6.66.

• We can find the age,  t, of an organic artifact by measuring the amount,  k, of carbon-14 remaining in the artifact

and using the formula  t = ln(k)
−0.000121   to solve for  t.  See Example 6.67.

• Given a substance’s doubling time or half-time, we can find a function that represents its exponential growth or
decay. See Example 6.68.

• We can use Newton’s Law of Cooling to find how long it will take for a cooling object to reach a desired
temperature, or to find what temperature an object will be after a given time. See Example 6.69.

• We can use logistic growth functions to model real-world situations where the rate of growth changes over time,
such as population growth, spread of disease, and spread of rumors. See Example 6.70.

• We can use real-world data gathered over time to observe trends. Knowledge of linear, exponential, logarithmic,
and logistic graphs help us to develop models that best fit our data. See Example 6.71.

• Any exponential function with the form  y = abx   can be rewritten as an equivalent exponential function with the

form  y = A0 ekx  where  k = lnb.  See Example 6.72.

6.8 Fitting Exponential Models to Data

• Exponential regression is used to model situations where growth begins slowly and then accelerates rapidly without
bound, or where decay begins rapidly and then slows down to get closer and closer to zero.

• We use the command “ExpReg” on a graphing utility to fit function of the form  y = abx   to a set of data points. See

Example 6.73.

• Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then slows
over time.

• We use the command “LnReg” on a graphing utility to fit a function of the form  y = a + bln(x)  to a set of data

points. See Example 6.74.

• Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows as
the function approaches an upper limit.

• We use the command “Logistic” on a graphing utility to fit a function of the form  y = c
1 + ae−bx   to a set of data

points. See Example 6.75.

CHAPTER 6 REVIEW EXERCISES
Exponential Functions
486. Determine whether the function  y = 156(0.825)t  
represents exponential growth, exponential decay, or

neither. Explain

487. The population of a herd of deer is represented by the
function  A(t) = 205(1.13)t,  where  t  is given in years. To
the nearest whole number, what will the herd population be
after  6  years?
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488. Find an exponential equation that passes through the
points  (2, 2.25)  and  (5, 60.75).

489. Determine whether Table 6.31 could represent a
function that is linear, exponential, or neither. If it appears
to be exponential, find a function that passes through the
points.

x 1 2 3 4

f(x) 3 0.9 0.27 0.081

Table 6.31

490. A retirement account is opened with an initial deposit
of $8,500 and earns  8.12%  interest compounded monthly.
What will the account be worth in  20  years?

491. Hsu-Mei wants to save $5,000 for a down payment
on a car. To the nearest dollar, how much will she need
to invest in an account now with  7.5% APR, compounded
daily, in order to reach her goal in  3  years?

492. Does the equation  y = 2.294e−0.654t   represent

continuous growth, continuous decay, or neither? Explain.

493. Suppose an investment account is opened with an
initial deposit of  $10,500  earning  6.25%  interest,
compounded continuously. How much will the account be
worth after  25  years?

Graphs of Exponential Functions
494. Graph the function   f (x) = 3.5(2)x.  State the

domain and range and give the y-intercept.

495. Graph the function   f (x) = 4⎛
⎝
1
8

⎞
⎠

x
  and its reflection

about the y-axis on the same axes, and give the y-intercept.

496. The graph of   f (x) = 6.5x   is reflected about the y-

axis and stretched vertically by a factor of  7. What is the
equation of the new function,  g(x)?   State its y-intercept,

domain, and range.

497. The graph below shows transformations of the graph
of   f (x) = 2x. What is the equation for the transformation?

Logarithmic Functions
498. Rewrite  log17 (4913) = x  as an equivalent

exponential equation.

499. Rewrite  ln(s) = t  as an equivalent exponential
equation.

500. Rewrite  a
− 25 = b  as an equivalent logarithmic

equation.

501. Rewrite  e−3.5 = h  as an equivalent logarithmic
equation.

502. Solve for  x  log64(x) = 1
3   to exponential form.

503. Evaluate  log5
⎛
⎝

1
125

⎞
⎠ without using a calculator.

504. Evaluate  log(0.000001) without using a calculator.

505. Evaluate  log(4.005)  using a calculator. Round to the

nearest thousandth.

506. Evaluate  ln⎛
⎝e

−0.8648⎞
⎠ without using a calculator.

507. Evaluate  ln⎛
⎝ 183 ⎞

⎠  using a calculator. Round to the

nearest thousandth.

Graphs of Logarithmic Functions
508. Graph the function  g(x) = log(7x + 21) − 4.

800 Chapter 6 Exponential and Logarithmic Functions

This content is available for free at https://cnx.org/content/col11758/1.5



509. Graph the function  h(x) = 2ln(9 − 3x) + 1.

510. State the domain, vertical asymptote, and end
behavior of the function  g(x) = ln(4x + 20) − 17.

Logarithmic Properties
511. Rewrite  ln(7r ⋅ 11st)  in expanded form.

512. Rewrite  log8 (x) + log8 (5) + log8 (y) + log8 (13) 
in compact form.

513. Rewrite  logm
⎛
⎝
67
83

⎞
⎠  in expanded form.

514. Rewrite  ln(z) − ln(x) − ln(y)  in compact form.

515. Rewrite  ln⎛
⎝

1
x5

⎞
⎠  as a product.

516. Rewrite  − logy
⎛
⎝

1
12

⎞
⎠  as a single logarithm.

517. Use properties of logarithms to expand  log⎛
⎝

r2 s11

t14
⎞
⎠.

518. Use properties of logarithms to expand

 ln⎛
⎝2b b + 1

b − 1
⎞
⎠.

519. Condense the expression

 5ln(b) + ln(c) + ln(4 − a)
2   to a single logarithm.

520. Condense the expression

 3log7 v + 6log7 w − log7 u
3   to a single logarithm.

521. Rewrite  log3 (12.75)  to base  e.

522. Rewrite  512x − 17 = 125  as a logarithm. Then apply
the change of base formula to solve for  x  using the
common log. Round to the nearest thousandth.

Exponential and Logarithmic Equations
523. Solve  2163x ⋅ 216x = 363x + 2   by rewriting each
side with a common base.

524. Solve   125
⎛
⎝

1
625

⎞
⎠
−x − 3 = 53   by rewriting each side with

a common base.

525. Use logarithms to find the exact solution for
 7 ⋅ 17−9x − 7 = 49.  If there is no solution, write no
solution.

526. Use logarithms to find the exact solution for
 3e6n − 2 + 1 = − 60.  If there is no solution, write no
solution.

527. Find the exact solution for  5e3x − 4 = 6  . If there is
no solution, write no solution.

528. Find the exact solution for  2e5x − 2 − 9 = − 56.  If
there is no solution, write no solution.

529. Find the exact solution for  52x − 3 = 7x + 1.  If there
is no solution, write no solution.

530. Find the exact solution for  e2x − ex − 110 = 0.  If
there is no solution, write no solution.

531. Use the definition of a logarithm to solve.
 − 5log7 (10n) = 5.

532. 47. Use the definition of a logarithm to find the exact
solution for  9 + 6ln(a + 3) = 33.

533. Use the one-to-one property of logarithms to find
an exact solution for  log8 (7) + log8 (−4x) = log8 (5).  If
there is no solution, write no solution.

534. Use the one-to-one property of logarithms to find an
exact solution for  ln(5) + ln⎛

⎝5x2 − 5⎞
⎠ = ln(56).  If there is

no solution, write no solution.

535. The formula for measuring sound intensity in

decibels  D  is defined by the equation  D = 10log⎛
⎝

I
I0

⎞
⎠,

where  I  is the intensity of the sound in watts per square

meter and  I0 = 10−12   is the lowest level of sound that the

average person can hear. How many decibels are emitted
from a large orchestra with a sound intensity of
 6.3 ⋅ 10−3  watts per square meter?
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536. The population of a city is modeled by the equation
 P(t) = 256, 114e0.25t  where  t  is measured in years. If
the city continues to grow at this rate, how many years will
it take for the population to reach one million?

537. Find the inverse function   f −1   for the exponential

function   f (x) = 2 ⋅ ex + 1 − 5.

538. Find the inverse function   f −1   for the logarithmic

function   f (x) = 0.25 ⋅ log2
⎛
⎝x

3 + 1⎞
⎠.

Exponential and Logarithmic Models

For the following exercises, use this scenario: A doctor
prescribes  300 milligrams of a therapeutic drug that
decays by about  17%  each hour.

539. To the nearest minute, what is the half-life of the
drug?

540. Write an exponential model representing the amount
of the drug remaining in the patient’s system after  t  hours.
Then use the formula to find the amount of the drug that
would remain in the patient’s system after  24  hours.
Round to the nearest hundredth of a gram.

For the following exercises, use this scenario: A soup with
an internal temperature of  350°  Fahrenheit was taken off
the stove to cool in a  71°F  room. After fifteen minutes, the
internal temperature of the soup was  175°F.

541. Use Newton’s Law of Cooling to write a formula that
models this situation.

542. How many minutes will it take the soup to cool to
 85°F?

For the following exercises, use this scenario: The equation
 N(t) = 1200

1 + 199e−0.625t  models the number of people in

a school who have heard a rumor after  t  days.

543. How many people started the rumor?

544. To the nearest tenth, how many days will it be before
the rumor spreads to half the carrying capacity?

545. What is the carrying capacity?

For the following exercises, enter the data from each table
into a graphing calculator and graph the resulting scatter
plots. Determine whether the data from the table would
likely represent a function that is linear, exponential, or
logarithmic.

546.

x f(x)

1 3.05

2 4.42

3 6.4

4 9.28

5 13.46

6 19.52

7 28.3

8 41.04

9 59.5

10 86.28

547.
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x f(x)

0.5 18.05

1 17

3 15.33

5 14.55

7 14.04

10 13.5

12 13.22

13 13.1

15 12.88

17 12.69

20 12.45

548. Find a formula for an exponential equation that goes
through the points  (−2, 100)  and  (0, 4). Then express
the formula as an equivalent equation with base e.

Fitting Exponential Models to Data
549. What is the carrying capacity for a population
modeled by the logistic equation

 P(t) = 250, 000
1  +   499e−0.45t ?  What is the initial population

for the model?

550. The population of a culture of bacteria is modeled

by the logistic equation  P(t) = 14, 250
1  +   29e−0.62t , where  t 

is in days. To the nearest tenth, how many days will it take
the culture to reach  75%  of its carrying capacity?

For the following exercises, use a graphing utility to create
a scatter diagram of the data given in the table. Observe the
shape of the scatter diagram to determine whether the data
is best described by an exponential, logarithmic, or logistic

model. Then use the appropriate regression feature to find
an equation that models the data. When necessary, round
values to five decimal places.

551.

x f(x)

1 409.4

2 260.7

3 170.4

4 110.6

5 74

6 44.7

7 32.4

8 19.5

9 12.7

10 8.1

552.
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x f(x)

0.15 36.21

0.25 28.88

0.5 24.39

0.75 18.28

1 16.5

1.5 12.99

2 9.91

2.25 8.57

2.75 7.23

3 5.99

3.5 4.81

553.

x f(x)

0 9

2 22.6

4 44.2

5 62.1

7 96.9

8 113.4

10 133.4

11 137.6

15 148.4

17 149.3

CHAPTER 6 PRACTICE TEST
554. The population of a pod of bottlenose dolphins is
modeled by the function  A(t) = 8(1.17)t, where  t  is
given in years. To the nearest whole number, what will the
pod population be after  3  years?

555. Find an exponential equation that passes through the
points  (0, 4)  and  (2, 9).

556. Drew wants to save $2,500 to go to the next World
Cup. To the nearest dollar, how much will he need to invest
in an account now with  6.25% APR, compounding daily,
in order to reach his goal in  4  years?

557. An investment account was opened with an initial
deposit of $9,600 and earns  7.4%  interest, compounded
continuously. How much will the account be worth after
 15  years?

558. Graph the function   f (x) = 5(0.5)−x   and its

reflection across the y-axis on the same axes, and give the
y-intercept.

559. The graph shows transformations of the graph of

  f (x) = ⎛
⎝
1
2

⎞
⎠

x
. What is the equation for the transformation?
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560. Rewrite  log8.5 (614.125) = a  as an equivalent

exponential equation.

561. Rewrite  e
1
2 = m  as an equivalent logarithmic

equation.

562. Solve for  x  by converting the logarithmic equation
 log 1

7
(x) = 2  to exponential form.

563. Evaluate  log(10,000,000) without using a

calculator.

564. Evaluate  ln(0.716)  using a calculator. Round to the
nearest thousandth.

565. Graph the function  g(x) = log(12 − 6x) + 3.

566. State the domain, vertical asymptote, and end
behavior of the function   f (x) = log5 (39 − 13x) + 7.

567. Rewrite  log(17a ⋅ 2b)  as a sum.

568. Rewrite  logt (96) − logt (8)  in compact form.

569. Rewrite  log8

⎛

⎝
⎜a

1
b
⎞

⎠
⎟  as a product.

570. Use properties of logarithm to expand

 ln⎛
⎝y3 z2 ⋅ x − 43 ⎞

⎠.

571. Condense the expression

 4ln(c) + ln(d) + ln(a)
3 + ln(b + 3)

3   to a single logarithm.

572. Rewrite  163x − 5 = 1000  as a logarithm. Then apply
the change of base formula to solve for  x  using the natural
log. Round to the nearest thousandth.

573. Solve  ⎛⎝ 1
81

⎞
⎠

x
⋅ 1

243 = ⎛
⎝
1
9

⎞
⎠

−3x − 1
  by rewriting each

side with a common base.

574. Use logarithms to find the exact solution for
 − 9e10a − 8 − 5 = − 41 . If there is no solution, write no
solution.

575. Find the exact solution for  10e4x + 2 + 5 = 56.  If
there is no solution, write no solution.

576. Find the exact solution for  − 5e−4x − 1 − 4 = 64. 
If there is no solution, write no solution.

577. Find the exact solution for  2x − 3 = 62x − 1.  If there
is no solution, write no solution.

578. Find the exact solution for  e2x − ex − 72 = 0.  If
there is no solution, write no solution.

579. Use the definition of a logarithm to find the exact
solution for  4log(2n) − 7 = − 11

580. Use the one-to-one property of logarithms to find
an exact solution for  log⎛

⎝4x2 − 10⎞
⎠ + log(3) = log(51)  If

there is no solution, write no solution.

581. The formula for measuring sound intensity in

decibels  D  is defined by the equation  D = 10log⎛
⎝

I
I0

⎞
⎠,

where  I  is the intensity of the sound in watts per square

meter and  I0 = 10−12   is the lowest level of sound that the

average person can hear. How many decibels are emitted
from a rock concert with a sound intensity of  4.7 ⋅ 10−1  
watts per square meter?

582. A radiation safety officer is working with  112  grams
of a radioactive substance. After  17  days, the sample has
decayed to  80  grams. Rounding to five significant digits,
write an exponential equation representing this situation.
To the nearest day, what is the half-life of this substance?

Chapter 6 Exponential and Logarithmic Functions 805



583. Write the formula found in the previous exercise as
an equivalent equation with base  e. Express the exponent
to five significant digits.

584. A bottle of soda with a temperature of  71° 
Fahrenheit was taken off a shelf and placed in a refrigerator
with an internal temperature of  35° F. After ten minutes,
the internal temperature of the soda was  63° F. Use
Newton’s Law of Cooling to write a formula that models
this situation. To the nearest degree, what will the
temperature of the soda be after one hour?

585. The population of a wildlife habitat is modeled by
the equation  P(t) = 360

1 + 6.2e−0.35t , where  t  is given in

years. How many animals were originally transported to
the habitat? How many years will it take before the habitat
reaches half its capacity?

586. Enter the data from Table 6.32 into a graphing
calculator and graph the resulting scatter plot. Determine
whether the data from the table would likely represent a
function that is linear, exponential, or logarithmic.

x f(x)

1 3

2 8.55

3 11.79

4 14.09

5 15.88

6 17.33

7 18.57

8 19.64

9 20.58

10 21.42

Table 6.32

587. The population of a lake of fish is modeled by the

logistic equation  P(t) = 16, 120
1 + 25e−0.75t , where  t  is time

in years. To the nearest hundredth, how many years will it
take the lake to reach  80%  of its carrying capacity?

For the following exercises, use a graphing utility to create
a scatter diagram of the data given in the table. Observe the
shape of the scatter diagram to determine whether the data
is best described by an exponential, logarithmic, or logistic
model. Then use the appropriate regression feature to find
an equation that models the data. When necessary, round
values to five decimal places.

588.

x f(x)

1 20

2 21.6

3 29.2

4 36.4

5 46.6

6 55.7

7 72.6

8 87.1

9 107.2

10 138.1

589.
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x f(x)

3 13.98

4 17.84

5 20.01

6 22.7

7 24.1

8 26.15

9 27.37

10 28.38

11 29.97

12 31.07

13 31.43

590.

x f(x)

0 2.2

0.5 2.9

1 3.9

1.5 4.8

2 6.4

3 9.3

4 12.3

5 15

6 16.2

7 17.3

8 17.9
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7 | THE UNIT CIRCLE: SINE
AND COSINE FUNCTIONS

Figure 7.1 The tide rises and falls at regular, predictable intervals. (credit: Andrea Schaffer, Flickr)

Chapter Outline
7.1 Angles

7.2 Right Triangle Trigonometry

7.3 Unit Circle

7.4 The Other Trigonometric Functions

Introduction
Life is dense with phenomena that repeat in regular intervals. Each day, for example, the tides rise and fall in response to
the gravitational pull of the moon. Similarly, the progression from day to night occurs as a result of Earth’s rotation, and the
pattern of the seasons repeats in response to Earth’s revolution around the sun. Outside of nature, many stocks that mirror a
company’s profits are influenced by changes in the economic business cycle.

In mathematics, a function that repeats its values in regular intervals is known as a periodic function. The graphs of such
functions show a general shape reflective of a pattern that keeps repeating. This means the graph of the function has the
same output at exactly the same place in every cycle. And this translates to all the cycles of the function having exactly the
same length. So, if we know all the details of one full cycle of a true periodic function, then we know the state of the
function’s outputs at all times, future and past. In this chapter, we will investigate various examples of periodic functions.
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7.1 | Angles

Learning Objectives

In this section you will:

7.1.1 Draw angles in standard position.
7.1.2 Convert between degrees and radians.
7.1.3 Find coterminal angles.
7.1.4 Find the length of a circular arc.
7.1.5 Use linear and angular speed to describe motion on a circular path.

A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a narrow runway.
A dress designer creates the latest fashion. What do they all have in common? They all work with angles, and so do all of
us at one time or another. Sometimes we need to measure angles exactly with instruments. Other times we estimate them or
judge them by eye. Either way, the proper angle can make the difference between success and failure in many undertakings.
In this section, we will examine properties of angles.

Drawing Angles in Standard Position
Properly defining an angle first requires that we define a ray. A ray is a directed line segment. It consists of one point on a
line and all points extending in one direction from that point. The first point is called the endpoint of the ray. We can refer to
a specific ray by stating its endpoint and any other point on it. The ray in Figure 7.2 can be named as ray EF, or in symbol

form   EF⟶.

Figure 7.2

An angle is the union of two rays having a common endpoint. The endpoint is called the vertex of the angle, and the two

rays are the sides of the angle. The angle in Figure 7.3 is formed from   ED⟶   and   EF⟶   . Angles can be named using a point
on each ray and the vertex, such as angle DEF, or in symbol form   ∠ DEF.

Figure 7.3

Greek letters are often used as variables for the measure of an angle. Table 7.1 is a list of Greek letters commonly used to
represent angles, and a sample angle is shown in Figure 7.4.
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θ φ or  ϕ α β γ

theta phi alpha beta gamma

Table 7.1

Figure 7.4 Angle theta, shown as   ∠ θ

Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed in place, and
rotate the other. The fixed ray is the initial side, and the rotated ray is the terminal side. In order to identify the different
sides, we indicate the rotation with a small arrow close to the vertex as in Figure 7.5.

Figure 7.5

As we discussed at the beginning of the section, there are many applications for angles, but in order to use them correctly,
we must be able to measure them. The measure of an angle is the amount of rotation from the initial side to the terminal
side. Probably the most familiar unit of angle measurement is the degree. One degree is   1

360   of a circular rotation, so a

complete circular rotation contains  360  degrees. An angle measured in degrees should always include the unit “degrees”
after the number, or include the degree symbol ° .  For example,  90 degrees = 90°.

To formalize our work, we will begin by drawing angles on an x-y coordinate plane. Angles can occur in any position on
the coordinate plane, but for the purpose of comparison, the convention is to illustrate them in the same position whenever
possible. An angle is in standard position if its vertex is located at the origin, and its initial side extends along the positive
x-axis. See Figure 7.6.
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Figure 7.6

If the angle is measured in a counterclockwise direction from the initial side to the terminal side, the angle is said to be a
positive angle. If the angle is measured in a clockwise direction, the angle is said to be a negative angle.

Drawing an angle in standard position always starts the same way—draw the initial side along the positive x-axis. To place
the terminal side of the angle, we must calculate the fraction of a full rotation the angle represents. We do that by dividing the
angle measure in degrees by  360°.  For example, to draw a  90°  angle, we calculate that   90°

360° = 1
4.  So, the terminal side

will be one-fourth of the way around the circle, moving counterclockwise from the positive x-axis. To draw a  360° angle,

we calculate that  360°
360° = 1.  So the terminal side will be 1 complete rotation around the circle, moving counterclockwise

from the positive x-axis. In this case, the initial side and the terminal side overlap. See Figure 7.7.

Figure 7.7

Since we define an angle in standard position by its terminal side, we have a special type of angle whose terminal side lies
on an axis, a quadrantal angle. This type of angle can have a measure of 0°, 90°, 180°, 270°, or  360°.  See Figure 7.8.
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Figure 7.8 Quadrantal angles have a terminal side that lies along an axis. Examples are shown.

Quadrantal Angles

An angle is a quadrantal angle if its terminal side lies on an axis, including 0°, 90°, 180°, 270°, or  360°.

Given an angle measure in degrees, draw the angle in standard position.

1. Express the angle measure as a fraction of  360°.

2. Reduce the fraction to simplest form.

3. Draw an angle that contains that same fraction of the circle, beginning on the positive x-axis and moving
counterclockwise for positive angles and clockwise for negative angles.

Example 7.1

Drawing an Angle in Standard Position Measured in Degrees

a. Sketch an angle of  30°  in standard position.

b. Sketch an angle of  −135°  in standard position.

Solution
a. Divide the angle measure by  360°.

30°
360° = 1

12
To rewrite the fraction in a more familiar fraction, we can recognize that

1
12 = 1

3
⎛
⎝
1
4

⎞
⎠

One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a
line at  30°, as in Figure 7.9.
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7.1

Figure 7.9

b. Divide the angle measure by  360°.

−135°
360° = − 3

8
In this case, we can recognize that

−3
8 = − 3

2
⎛
⎝
1
4

⎞
⎠

Negative three-eighths is one and one-half times a quarter, so we place a line by moving clockwise one
full quarter and one-half of another quarter, as in Figure 7.10.

Figure 7.10

Show an angle of  240°  on a circle in standard position.

Converting Between Degrees and Radians
Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may choose
other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you stop before the
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circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a full circle, a full circle,
or more than a full circle, represented by more than one full rotation. The length of the arc around an entire circle is called
the circumference of that circle.

The circumference of a circle is  C = 2πr.  If we divide both sides of this equation by  r, we create the ratio of the
circumference, which is always  2π, to the radius, regardless of the length of the radius. So the circumference of any circle
is  2π ≈ 6.28  times the length of the radius. That means that if we took a string as long as the radius and used it to measure
consecutive lengths around the circumference, there would be room for six full string-lengths and a little more than a quarter
of a seventh, as shown in Figure 7.11.

Figure 7.11

This brings us to our new angle measure. One radian is the measure of a central angle of a circle that intercepts an arc equal
in length to the radius of that circle. A central angle is an angle formed at the center of a circle by two radii. Because the
total circumference equals  2π  times the radius, a full circular rotation is  2π  radians.

2π radians = 360°
π radians = 360°

2 = 180°

1 radian = 180°
π ≈ 57.3°

See Figure 7.12. Note that when an angle is described without a specific unit, it refers to radian measure. For example,
an angle measure of 3 indicates 3 radians. In fact, radian measure is dimensionless, since it is the quotient of a length
(circumference) divided by a length (radius) and the length units cancel.

Figure 7.12 The angle  t  sweeps out a measure of one radian.
Note that the length of the intercepted arc is the same as the
length of the radius of the circle.
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Relating Arc Lengths to Radius
An arc length  s  is the length of the curve along the arc. Just as the full circumference of a circle always has a constant ratio
to the radius, the arc length produced by any given angle also has a constant relation to the radius, regardless of the length
of the radius.

This ratio, called the radian measure, is the same regardless of the radius of the circle—it depends only on the angle. This
property allows us to define a measure of any angle as the ratio of the arc length  s  to the radius r. See Figure 7.13.

s = rθ
θ = s

r

If  s = r, then  θ = r
r =  1 radian.

Figure 7.13 (a) In an angle of 1 radian, the arc length  s  equals the radius  r.  (b) An angle of 2 radians has an arc length
 s = 2r.  (c) A full revolution is  2π, or about 6.28 radians.

To elaborate on this idea, consider two circles, one with radius 2 and the other with radius 3. Recall the circumference
of a circle is  C = 2πr, where  r  is the radius. The smaller circle then has circumference  2π(2) = 4π  and the larger has

circumference  2π(3) = 6π. Now we draw a  45°  angle on the two circles, as in Figure 7.14.

Figure 7.14 A  45°  angle contains one-eighth of the
circumference of a circle, regardless of the radius.

Notice what happens if we find the ratio of the arc length divided by the radius of the circle.
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Smaller circle: 
1
2π
2 = 1

4π

Larger circle: 
3
4π
3 = 1

4π

Since both ratios are  14π, the angle measures of both circles are the same, even though the arc length and radius differ.

Radians

One radian is the measure of the central angle of a circle such that the length of the arc between the initial side and the
terminal side is equal to the radius of the circle. A full revolution  (360°)  equals  2π  radians. A half revolution  (180°) 
is equivalent to  π  radians.

The radian measure of an angle is the ratio of the length of the arc subtended by the angle to the radius of the circle.
In other words, if  s  is the length of an arc of a circle, and  r  is the radius of the circle, then the central angle containing
that arc measures  sr   radians. In a circle of radius 1, the radian measure corresponds to the length of the arc.

A measure of 1 radian looks to be about  60°.  Is that correct?

Yes. It is approximately  57.3°. Because  2π  radians equals 360°, 1 radian equals  360°
2π ≈ 57.3°.

Using Radians
Because radian measure is the ratio of two lengths, it is a unitless measure. For example, in Figure 7.13, suppose the radius
were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the angle, the
“inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians” after a radian
measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume that it is a radian
measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees,  360°.
We can also track one rotation around a circle by finding the circumference,  C = 2πr, and for the unit circle  C = 2π. 
These two different ways to rotate around a circle give us a way to convert from degrees to radians.

1 rotation = 360° = 2π radians
1
2 rotation = 180° = π radians

1
4 rotation = 90° = π

2 radians

Identifying Special Angles Measured in Radians
In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full
revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar. It is
common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in Figure 7.15. Memorizing these
angles will be very useful as we study the properties associated with angles.
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Figure 7.15 Commonly encountered angles measured in
degrees

Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in
Figure 7.15, which are shown in Figure 7.16. Be sure you can verify each of these measures.

Figure 7.16 Commonly encountered angles measured in
radians

Example 7.2

Finding a Radian Measure

Find the radian measure of one-third of a full rotation.

Solution
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7.2

For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

1 rotation = 2πr

So,

s = 1
3(2πr)

= 2πr
3

The radian measure would be the arc length divided by the radius.

radian measure =
2πr
3
r

= 2πr
3r

= 2π
3

Find the radian measure of three-fourths of a full rotation.

Converting Between Radians and Degrees
Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so using
a proportion where  θ  is the measure of the angle in degrees and  θR   is the measure of the angle in radians.

θ
180 = θ R

π

This proportion shows that the measure of angle  θ  in degrees divided by 180 equals the measure of angle  θ  in radians
divided by  π. Or, phrased another way, degrees is to 180 as radians is to  π.

Degrees
180 = Radians

π

Converting between Radians and Degrees

To convert between degrees and radians, use the proportion

θ
180 = θR

π

Example 7.3

Converting Radians to Degrees

Convert each radian measure to degrees.

a. π
6

b. 3
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7.3

Solution
Because we are given radians and we want degrees, we should set up a proportion and solve it.

a. We use the proportion, substituting the given information.

θ
180 = θR

π

θ
180 =

π
6
π

θ = 180
6

θ = 30°
b. We use the proportion, substituting the given information.

θ
180 = θ R

π
θ

180 = 3
π

θ = 3(180)
π

θ ≈ 172°

Convert  − 3π
4   radians to degrees.

Example 7.4

Converting Degrees to Radians

Convert  15  degrees to radians.

Solution
In this example, we start with degrees and want radians, so we again set up a proportion, but we substitute the
given information into a different part of the proportion.

θ
180 = θR

π

15
180 = θR

π
15π
180 = θR

π
12 = θR

Analysis
Another way to think about this problem is by remembering that  30° = π

6. Because  15° = 1
2(30°), we can find

that  12
⎛
⎝
π
6

⎞
⎠  is   π

12.
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7.4 Convert  126°  to radians.

Finding Coterminal Angles
Converting between degrees and radians can make working with angles easier in some applications. For other applications,
we may need another type of conversion. Negative angles and angles greater than a full revolution are more awkward to
work with than those in the range of  0°  to  360°, or  0  to  2π.  It would be convenient to replace those out-of-range angles
with a corresponding angle within the range of a single revolution.

It is possible for more than one angle to have the same terminal side. Look at Figure 7.17. The angle of  140°  is a positive
angle, measured counterclockwise. The angle of  –220°  is a negative angle, measured clockwise. But both angles have the
same terminal side. If two angles in standard position have the same terminal side, they are coterminal angles. Every angle
greater than  360°  or less than  0°  is coterminal with an angle between  0°  and  360°, and it is often more convenient to
find the coterminal angle within the range of  0°  to  360°  than to work with an angle that is outside that range.

Figure 7.17 An angle of  140°  and an angle of  –220°  are
coterminal angles.

Any angle has infinitely many coterminal angles because each time we add  360°  to that angle—or subtract  360°  from
it—the resulting value has a terminal side in the same location. For example,  100°  and  460°  are coterminal for this reason,
as is  −260°. 
An angle’s reference angle is the measure of the smallest, positive, acute angle  t  formed by the terminal side of the angle
 t  and the horizontal axis. Thus positive reference angles have terminal sides that lie in the first quadrant and can be used as
models for angles in other quadrants. See Figure 7.18 for examples of reference angles for angles in different quadrants.
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Figure 7.18

Coterminal and Reference Angles

Coterminal angles are two angles in standard position that have the same terminal side.

An angle’s reference angle is the size of the smallest acute angle,  t′, formed by the terminal side of the angle  t  and
the horizontal axis.

Given an angle greater than  360°, find a coterminal angle between  0°  and  360°

1. Subtract  360°  from the given angle.

2. If the result is still greater than  360°, subtract  360°  again till the result is between  0°  and  360°.

3. The resulting angle is coterminal with the original angle.

Example 7.5

Finding an Angle Coterminal with an Angle of Measure Greater Than  360°

Find the least positive angle  θ  that is coterminal with an angle measuring  800°, where  0° ≤ θ < 360 ° .

Solution
An angle with measure  800°  is coterminal with an angle with measure  800 − 360 = 440°, but  440°  is still
greater than  360°, so we subtract  360°  again to find another coterminal angle:  440 − 360 = 80°.

The angle  θ = 80°  is coterminal with  800°. To put it another way,  800°  equals  80°  plus two full rotations, as
shown in Figure 7.19.
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7.5

Figure 7.19

Find an angle  α  that is coterminal with an angle measuring  870°, where  0° ≤ α < 360°.

Given an angle with measure less than  0°, find a coterminal angle having a measure between  0°  and  360°.

1. Add  360°  to the given angle.

2. If the result is still less than  0°, add  360°  again until the result is between  0°  and  360°.

3. The resulting angle is coterminal with the original angle.

Example 7.6

Finding an Angle Coterminal with an Angle Measuring Less Than  0°

Show the angle with measure  −45°  on a circle and find a positive coterminal angle  α  such that  0° ≤ α < 360°.

Solution
Since  45°  is half of  90°, we can start at the positive horizontal axis and measure clockwise half of a  90°  angle.

Because we can find coterminal angles by adding or subtracting a full rotation of  360°, we can find a positive
coterminal angle here by adding  360°.

−45° + 360° = 315°

We can then show the angle on a circle, as in Figure 7.20.
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Figure 7.20

Find an angle  β  that is coterminal with an angle measuring  −300°  such that  0° ≤ β < 360°.

Finding Coterminal Angles Measured in Radians
We can find coterminal angles measured in radians in much the same way as we have found them using degrees. In both
cases, we find coterminal angles by adding or subtracting one or more full rotations.

Given an angle greater than  2π, find a coterminal angle between 0 and  2π.

1. Subtract  2π  from the given angle.

2. If the result is still greater than  2π, subtract  2π  again until the result is between  0  and  2π.

3. The resulting angle is coterminal with the original angle.

Example 7.7

Finding Coterminal Angles Using Radians

Find an angle  β  that is coterminal with  19π
4 , where  0 ≤ β < 2π.

Solution
When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full rotation.
Likewise, in radians, we can find coterminal angles by adding or subtracting full rotations of  2π  radians:

19π
4 − 2π = 19π

4 − 8π
4

= 11π
4
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7.7

The angle  11π
4   is coterminal, but not less than  2π, so we subtract another rotation.

11π
4 − 2π = 11π

4 − 8π
4

= 3π
4

The angle  3π
4   is coterminal with  19π

4 , as shown in Figure 7.21.

Figure 7.21

Find an angle of measure  θ  that is coterminal with an angle of measure  − 17π
6  where  0 ≤ θ < 2π.

Determining the Length of an Arc
Recall that the radian measure  θ  of an angle was defined as the ratio of the arc length  s  of a circular arc to the radius  r  of
the circle,  θ = s

r .  From this relationship, we can find arc length along a circle, given an angle.

Arc Length on a Circle

In a circle of radius r, the length of an arc  s  subtended by an angle with measure  θ  in radians, shown in Figure 7.22,
is

(7.1)s = rθ
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Figure 7.22

Given a circle of radius  r, calculate the length  s  of the arc subtended by a given angle of measure  θ.

1. If necessary, convert  θ  to radians.

2. Multiply the radius  r  θ : s = rθ.

Example 7.8

Finding the Length of an Arc

Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles from
the sun.

a. In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in one
day?

b. Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth day.

Solution
a. Let’s begin by finding the circumference of Mercury’s orbit.

C = 2πr
= 2π(36 million miles)
≈ 226 million miles

Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance
traveled.

(0.0114)226 million miles = 2.58 million miles
b. Now, we convert to radians.

radian = arclength
radius

= 2.58 million miles
36 million miles

= 0.0717

Find the arc length along a circle of radius 10 units subtended by an angle of  215°.
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Finding the Area of a Sector of a Circle
In addition to arc length, we can also use angles to find the area of a sector of a circle. A sector is a region of a circle
bounded by two radii and the intercepted arc, like a slice of pizza or pie. Recall that the area of a circle with radius  r  can

be found using the formula  A = πr2.  If the two radii form an angle of  θ, measured in radians, then   θ
2π   is the ratio of the

angle measure to the measure of a full rotation and is also, therefore, the ratio of the area of the sector to the area of the
circle. Thus, the area of a sector is the fraction   θ

2π  multiplied by the entire area. (Always remember that this formula only

applies if  θ  is in radians.)

Area of sector = ⎛
⎝

θ
2π

⎞
⎠πr2

= θπr2

2π
= 1

2θr2

Area of a Sector

The area of a sector of a circle with radius  r  subtended by an angle  θ, measured in radians, is

(7.2)A = 1
2θr2

See Figure 7.23.

Figure 7.23 The area of the sector equals half the square of
the radius times the central angle measured in radians.

Given a circle of radius  r, find the area of a sector defined by a given angle  θ.

1. If necessary, convert  θ  to radians.

2. Multiply half the radian measure of  θ  by the square of the radius  r : A = 1
2θr2.

Example 7.9

Finding the Area of a Sector
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An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees, as shown in Figure 7.24.
What is the area of the sector of grass the sprinkler waters?

Figure 7.24 The sprinkler sprays 20 ft within an arc of  30°.

Solution
First, we need to convert the angle measure into radians. Because 30 degrees is one of our special angles, we
already know the equivalent radian measure, but we can also convert:

30 degrees = 30 ⋅ π
180

= π
6 radians

The area of the sector is then

Area = 1
2

⎛
⎝
π
6

⎞
⎠(20)2

≈ 104.72

So the area is about  104.72 ft2.

In central pivot irrigation, a large irrigation pipe on wheels rotates around a center point. A farmer has a
central pivot system with a radius of 400 meters. If water restrictions only allow her to water 150 thousand
square meters a day, what angle should she set the system to cover? Write the answer in radian measure to two
decimal places.

Use Linear and Angular Speed to Describe Motion on a Circular Path
In addition to finding the area of a sector, we can use angles to describe the speed of a moving object. An object traveling in
a circular path has two types of speed. Linear speed is speed along a straight path and can be determined by the distance it
moves along (its displacement) in a given time interval. For instance, if a wheel with radius 5 inches rotates once a second,
a point on the edge of the wheel moves a distance equal to the circumference, or  10π  inches, every second. So the linear
speed of the point is  10π  in./s. The equation for linear speed is as follows where  v  is linear speed,  s  is displacement, and
 t  is time.

v = s
t

Angular speed results from circular motion and can be determined by the angle through which a point rotates in a given
time interval. In other words, angular speed is angular rotation per unit time. So, for instance, if a gear makes a full rotation

every 4 seconds, we can calculate its angular speed as  360 degrees
4 seconds = 90 degrees per second. Angular speed can be given

in radians per second, rotations per minute, or degrees per hour for example. The equation for angular speed is as follows,
where  ω  (read as omega) is angular speed,  θ  is the angle traversed, and  t  is time.

ω = θ
t
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Combining the definition of angular speed with the arc length equation,  s = rθ, we can find a relationship between angular
and linear speeds. The angular speed equation can be solved for  θ, giving  θ = ωt. Substituting this into the arc length
equation gives:

s = rθ
= rωt

Substituting this into the linear speed equation gives:

v = s
t

= rωt
t

= rω

Angular and Linear Speed

As a point moves along a circle of radius  r, its angular speed,  ω, is the angular rotation  θ  per unit time,  t.
(7.3)ω = θ

t

The linear speed,  v, of the point can be found as the distance traveled, arc length  s, per unit time,  t.
(7.4)v = s

t

When the angular speed is measured in radians per unit time, linear speed and angular speed are related by the equation

(7.5)v = rω

This equation states that the angular speed in radians,  ω, representing the amount of rotation occurring in a unit of
time, can be multiplied by the radius  r  to calculate the total arc length traveled in a unit of time, which is the definition
of linear speed.

Given the amount of angle rotation and the time elapsed, calculate the angular speed.

1. If necessary, convert the angle measure to radians.

2. Divide the angle in radians by the number of time units elapsed:  ω = θ
t .

3. The resulting speed will be in radians per time unit.

Example 7.10

Finding Angular Speed

A water wheel, shown in Figure 7.25, completes 1 rotation every 5 seconds. Find the angular speed in radians
per second.
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Figure 7.25

Solution
The wheel completes 1 rotation, or passes through an angle of  2π  radians in 5 seconds, so the angular speed

would be  ω = 2π
5 ≈ 1.257  radians per second.

An old vinyl record is played on a turntable rotating clockwise at a rate of 45 rotations per minute. Find
the angular speed in radians per second.

Given the radius of a circle, an angle of rotation, and a length of elapsed time, determine the linear speed.

1. Convert the total rotation to radians if necessary.

2. Divide the total rotation in radians by the elapsed time to find the angular speed: apply  ω = θ
t .

3. Multiply the angular speed by the length of the radius to find the linear speed, expressed in terms of the
length unit used for the radius and the time unit used for the elapsed time: apply  v = rω.

Example 7.11

Finding a Linear Speed

A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM
(revolutions per minute). Find the speed the bicycle is traveling down the road.

Solution
Here, we have an angular speed and need to find the corresponding linear speed, since the linear speed of the
outside of the tires is the speed at which the bicycle travels down the road.
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We begin by converting from rotations per minute to radians per minute. It can be helpful to utilize the units to
make this conversion:

180 rotations
minute ⋅ 2π radians

rotation
= 360πradians

minute

Using the formula from above along with the radius of the wheels, we can find the linear speed:

v = (14 inches)⎛⎝360πradians
minute

⎞
⎠

= 5040π inches
minute

Remember that radians are a unitless measure, so it is not necessary to include them.

Finally, we may wish to convert this linear speed into a more familiar measurement, like miles per hour.

5040π inches
minute

⋅ 1 feet
12 inches

⋅ 1 mile
5280 feet

⋅ 60 minutes
1 hour = 14.99 miles per hour (mph)

A satellite is rotating around Earth at 0.25 radian per hour at an altitude of 242 km above Earth. If the
radius of Earth is 6378 kilometers, find the linear speed of the satellite in kilometers per hour.

Access these online resources for additional instruction and practice with angles, arc length, and areas of sectors.

• Angles in Standard Position (http://openstaxcollege.org/l/standardpos)

• Angle of Rotation (http://openstaxcollege.org/l/angleofrotation)

• Coterminal Angles (http://openstaxcollege.org/l/coterminal)

• Determining Coterminal Angles (http://openstaxcollege.org/l/detcoterm)

• Positive and Negative Coterminal Angles (http://openstaxcollege.org/l/posnegcoterm)

• Radian Measure (http://openstaxcollege.org/l/radianmeas)

• Coterminal Angles in Radians (http://openstaxcollege.org/l/cotermrad)

• Arc Length and Area of a Sector (http://openstaxcollege.org/l/arclength)
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2.
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5.
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8.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

7.1 EXERCISES
Verbal

Draw an angle in standard position. Label the vertex,
initial side, and terminal side.

Explain why there are an infinite number of angles that
are coterminal to a certain angle.

State what a positive or negative angle signifies, and
explain how to draw each.

How does radian measure of an angle compare to the
degree measure? Include an explanation of 1 radian in your
paragraph.

Explain the differences between linear speed and
angular speed when describing motion along a circular
path.

Graphical
For the following exercises, draw an angle in standard
position with the given measure.

30°

300°

−80°

135°

−150°

2π
3

7π
4

5π
6

π
2

− π
10

415°

−120°

−315°

22π
3

−π
6

−4π
3

For the following exercises, refer to Figure 7.26. Round
to two decimal places.

Figure 7.26

Find the arc length.

Find the area of the sector.

For the following exercises, refer to Figure 7.27. Round
to two decimal places.

Figure 7.27

Find the arc length.

Find the area of the sector.

Algebraic
For the following exercises, convert angles in radians to
degrees.
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27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

3π
4   radians

π
9   radians

−5π
4   radians

π
3   radians

−7π
3   radians

−5π
12   radians

11π
6   radians

For the following exercises, convert angles in degrees to
radians.

90°

100°

−540°

−120°

180°

−315°

150°

For the following exercises, use the given information to
find the length of a circular arc. Round to two decimal
places.

Find the length of the arc of a circle of radius 12 inches
subtended by a central angle of  π4.  radians.

Find the length of the arc of a circle of radius 5.02
miles subtended by the central angle of  π3.

Find the length of the arc of a circle of diameter 14
meters subtended by the central angle of  5π

6 .

Find the length of the arc of a circle of radius 10
centimeters subtended by the central angle of  50°.

Find the length of the arc of a circle of radius 5 inches
subtended by the central angle of  220°.

Find the length of the arc of a circle of diameter 12 meters
subtended by the central angle is  63°.

For the following exercises, use the given information to
find the area of the sector. Round to four decimal places.

A sector of a circle has a central angle of  45°  and a
radius 6 cm.

A sector of a circle has a central angle of  30°  and a
radius of 20 cm.

A sector of a circle with diameter 10 feet and an angle
of  π2   radians.

A sector of a circle with radius of 0.7 inches and an
angle of  π  radians.

For the following exercises, find the angle between  0°  and
 360°  that is coterminal to the given angle.

−40°

−110°

700°

1400°

For the following exercises, find the angle between 0 and
 2π  in radians that is coterminal to the given angle.

−π
9

10π
3

13π
6

44π
9

Real-World Applications

A truck with 32-inch diameter wheels is traveling at 60
mi/h. Find the angular speed of the wheels in rad/min. How
many revolutions per minute do the wheels make?

A bicycle with 24-inch diameter wheels is traveling at
15 mi/h. Find the angular speed of the wheels in rad/min.
How many revolutions per minute do the wheels make?

A wheel of radius 8 inches is rotating 15°/s. What is the
linear speed  v, the angular speed in RPM, and the angular
speed in rad/s?
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62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

A wheel of radius  14  inches is rotating  0.5  rad/s. What
is the linear speed  v, the angular speed in RPM, and the
angular speed in deg/s?

A CD has diameter of 120 millimeters. When playing
audio, the angular speed varies to keep the linear speed
constant where the disc is being read. When reading along
the outer edge of the disc, the angular speed is about 200
RPM (revolutions per minute). Find the linear speed.

When being burned in a writable CD-R drive, the
angular speed of a CD is often much faster than when
playing audio, but the angular speed still varies to keep the
linear speed constant where the disc is being written. When
writing along the outer edge of the disc, the angular speed
of one drive is about 4800 RPM (revolutions per minute).
Find the linear speed if the CD has diameter of 120
millimeters.

A person is standing on the equator of Earth (radius
3960 miles). What are his linear and angular speeds?

Find the distance along an arc on the surface of Earth
that subtends a central angle of 5 minutes
⎛
⎝1 minute = 1

60 degree⎞
⎠ . The radius of Earth is 3960

miles.

Find the distance along an arc on the surface of Earth
that subtends a central angle of 7 minutes
⎛
⎝1 minute = 1

60 degree⎞
⎠ . The radius of Earth is  3960 

miles.

Consider a clock with an hour hand and minute hand.
What is the measure of the angle the minute hand traces in
 20 minutes?

Extensions

Two cities have the same longitude. The latitude of city
A is 9.00 degrees north and the latitude of city B is 30.00
degree north. Assume the radius of the earth is 3960 miles.
Find the distance between the two cities.

A city is located at 40 degrees north latitude. Assume
the radius of the earth is 3960 miles and the earth rotates
once every 24 hours. Find the linear speed of a person who
resides in this city.

A city is located at 75 degrees north latitude. Assume
the radius of the earth is 3960 miles and the earth rotates
once every 24 hours. Find the linear speed of a person who
resides in this city.

Find the linear speed of the moon if the average
distance between the earth and moon is 239,000 miles,
assuming the orbit of the moon is circular and requires
about 28 days. Express answer in miles per hour.

A bicycle has wheels 28 inches in diameter. A
tachometer determines that the wheels are rotating at 180
RPM (revolutions per minute). Find the speed the bicycle is
travelling down the road.

A car travels 3 miles. Its tires make 2640 revolutions.
What is the radius of a tire in inches?

A wheel on a tractor has a 24-inch diameter. How
many revolutions does the wheel make if the tractor travels
4 miles?
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7.2 | Right Triangle Trigonometry

Learning Objectives

In this section you will:

7.2.1 Use right triangles to evaluate trigonometric functions.

7.2.2 Find function values for  30°⎛
⎝
π
6

⎞
⎠, 45°⎛

⎝
π
4

⎞
⎠, and  60°⎛

⎝
π
3

⎞
⎠.

7.2.3 Use equal cofunctions of complementary angles.
7.2.4 Use the definitions of trigonometric functions of any angle.
7.2.5 Use right-triangle trigonometry to solve applied problems.

Mt. Everest, which straddles the border between China and Nepal, is the tallest mountain in the world. Measuring its
height is no easy task and, in fact, the actual measurement has been a source of controversy for hundreds of years. The
measurement process involves the use of triangles and a branch of mathematics known as trigonometry. In this section,
we will define a new group of functions known as trigonometric functions, and find out how they can be used to measure
heights, such as those of the tallest mountains.

Using Right Triangles to Evaluate Trigonometric Functions
Figure 7.28 shows a right triangle with a vertical side of length  y  and a horizontal side has length  x. Notice that the

triangle is inscribed in a circle of radius 1. Such a circle, with a center at the origin and a radius of 1, is known as a unit
circle.

Figure 7.28

We can define the trigonometric functions in terms an angle t and the lengths of the sides of the triangle. The adjacent side
is the side closest to the angle, x. (Adjacent means “next to.”) The opposite side is the side across from the angle, y. The
hypotenuse is the side of the triangle opposite the right angle, 1. These sides are labeled in Figure 7.29.

Figure 7.29 The sides of a right triangle in relation to angle  t

Given a right triangle with an acute angle of  t, the first three trigonometric functions are listed.

(7.6)Sine sin t = opposite
hypotenuse

(7.7)Cosine cos t = adjacent
hypotenuse
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(7.8)Tangent tan t = opposite
adjacent

A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of “Sine is opposite
over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent.”

For the triangle shown in Figure 7.28, we have the following.

sin t = y
1

cos t = x
1

sec t = y
x

Given the side lengths of a right triangle and one of the acute angles, find the sine, cosine, and tangent of
that angle.

1. Find the sine as the ratio of the opposite side to the hypotenuse.

2. Find the cosine as the ratio of the adjacent side to the hypotenuse.

3. Find the tangent as the ratio of the opposite side to the adjacent side.

Example 7.12

Evaluating a Trigonometric Function of a Right Triangle

Given the triangle shown in Figure 7.30, find the value of  cos α.

Figure 7.30

Solution
The side adjacent to the angle is 15, and the hypotenuse of the triangle is 17.

cos(α) = adjacent
hypotenuse

= 15
17

Given the triangle shown in Figure 7.31, find the value of  sin t.

Figure 7.31
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Reciprocal Functions
In addition to sine, cosine, and tangent, there are three more functions. These too are defined in terms of the sides of the
triangle.

(7.9)Secant sec t = hypotenuse
adjacent

(7.10)Cosecant csc t = hypotenuse
opposite

(7.11)Cotangent cot t = adjacent
opposite

Take another look at these definitions. These functions are the reciprocals of the first three functions.

(7.12)sin t = 1
csc t csc t = 1

sin t
cos t = 1

sec t sec t = 1
cos t

tan t = 1
cot t cot t = 1

tan t

When working with right triangles, keep in mind that the same rules apply regardless of the orientation of the triangle. In
fact, we can evaluate the six trigonometric functions of either of the two acute angles in the triangle in Figure 7.32. The
side opposite one acute angle is the side adjacent to the other acute angle, and vice versa.

Figure 7.32 The side adjacent to one angle is opposite the
other angle.

Many problems ask for all six trigonometric functions for a given angle in a triangle. A possible strategy to use is to find
the sine, cosine, and tangent of the angles first. Then, find the other trigonometric functions easily using the reciprocals.

Given the side lengths of a right triangle, evaluate the six trigonometric functions of one of the acute angles.

1. If needed, draw the right triangle and label the angle provided.

2. Identify the angle, the adjacent side, the side opposite the angle, and the hypotenuse of the right triangle.

3. Find the required function:

◦ sine as the ratio of the opposite side to the hypotenuse

◦ cosine as the ratio of the adjacent side to the hypotenuse

◦ tangent as the ratio of the opposite side to the adjacent side

◦ secant as the ratio of the hypotenuse to the adjacent side

◦ cosecant as the ratio of the hypotenuse to the opposite side

◦ cotangent as the ratio of the adjacent side to the opposite side

Example 7.13

Evaluating Trigonometric Functions of Angles Not in Standard Position
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Using the triangle shown in Figure 7.33, evaluate  sin α, cos α, tan α, sec α, csc α, and cot α.

Figure 7.33

Solution

sin α = opposite α
hypotenuse = 4

5

cos α = adjacent to α
hypotenuse = 3

5

tan α = opposite α
adjacent to α = 4

3

sec α = hypotenuse
adjacent to α = 5

3

csc α = hypotenuse
opposite α = 5

4

cot α = adjacent to α
opposite α = 3

4

Analysis
Another approach would have been to find sine, cosine, and tangent first. Then find their reciprocals to determine
the other functions.

sec α = 1
cos α = 1

3
5

= 5
3

csc α = 1
csc α = 1

4
5

= 5
4

cot α = 1
tan α = 1

4
3

= 3
4

Using the triangle shown in Figure 7.34,evaluate  sin t, cos t, tan t, sec t, csc t, and cot t.

Figure 7.34
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Finding Trigonometric Functions of Special Angles Using Side Lengths
It is helpful to evaluate the trigonometric functions as they relate to the special angles—multiples of  30°, 60°, and  45°. 
Remember, however, that when dealing with right triangles, we are limited to angles between  0° and 90°.

Suppose we have a  30°, 60°, 90°  triangle, which can also be described as a  π6, π
3, π

2   triangle. The sides have lengths in the

relation  s, s 3, 2s. The sides of a  45°, 45°, 90°  triangle, which can also be described as a  π4, π
4, π

2   triangle, have lengths

in the relation  s, s, 2s. These relations are shown in Figure 7.35.

Figure 7.35 Side lengths of special triangles

We can then use the ratios of the side lengths to evaluate trigonometric functions of special angles.

Given trigonometric functions of a special angle, evaluate using side lengths.

1. Use the side lengths shown in Figure 7.35 for the special angle you wish to evaluate.

2. Use the ratio of side lengths appropriate to the function you wish to evaluate.

Example 7.14

Evaluating Trigonometric Functions of Special Angles Using Side Lengths

Find the exact value of the trigonometric functions of  π3, using side lengths.

Solution
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sin⎛
⎝
π
3

⎞
⎠ = opp

hyp = 3s
2s = 3

2

cos⎛
⎝
π
3

⎞
⎠ = adj

hyp = s
2s = 1

2

tan⎛
⎝
π
3

⎞
⎠ = opp

adj = 3s
s = 3

sec⎛
⎝
π
3

⎞
⎠ = hyp

adj = 2s
s = 2

csc⎛
⎝
π
3

⎞
⎠ = hyp

opp = 2s
3s

= 2
3

= 2 3
3

cot⎛⎝
π
3

⎞
⎠ = adj

opp = s
3s

= 1
3

= 3
3

Find the exact value of the trigonometric functions of  π4, using side lengths.

Using Equal Cofunction of Complements
If we look more closely at the relationship between the sine and cosine of the special angles, we notice a pattern. In a right

triangle with angles of  π6   and π
3, we see that the sine of  π3, namely   3

2 , is also the cosine of  π6, while the sine of  π6,

namely  12, is also the cosine of  π3.

sinπ
3 = cosπ

6 = 3s
2s = 3

2
sinπ

6 = cosπ
3 = s

2s = 1
2

See Figure 7.36.

Figure 7.36 The sine of  π3   equals the cosine of  π6   and vice

versa.
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This result should not be surprising because, as we see from Figure 7.36, the side opposite the angle of  π3   is also the side

adjacent to  π6, so  sin⎛
⎝
π
3

⎞
⎠  and  cos⎛

⎝
π
6

⎞
⎠  are exactly the same ratio of the same two sides,   3s  and  2s.  Similarly,  cos⎛

⎝
π
3

⎞
⎠  and

 sin⎛
⎝
π
6

⎞
⎠  are also the same ratio using the same two sides,  s  and  2s.

The interrelationship between the sines and cosines of  π6   and  π3   also holds for the two acute angles in any right triangle,

since in every case, the ratio of the same two sides would constitute the sine of one angle and the cosine of the other. Since
the three angles of a triangle add to  π, and the right angle is  π2, the remaining two angles must also add up to  π2. That

means that a right triangle can be formed with any two angles that add to  π2  —in other words, any two complementary

angles. So we may state a cofunction identity: If any two angles are complementary, the sine of one is the cosine of the
other, and vice versa. This identity is illustrated in Figure 7.37.

Figure 7.37 Cofunction identity of sine and cosine of
complementary angles

Using this identity, we can state without calculating, for instance, that the sine of   π
12   equals the cosine of  5π

12, and that the

sine of  5π
12   equals the cosine of   π

12. We can also state that if, for a given angle  t, cos t = 5
13, then  sin⎛

⎝
π
2 − t⎞⎠ = 5

13   as

well.

Cofunction Identities

The cofunction identities in radians are listed in Table 7.2.

cos t = sin⎛
⎝
π
2 − t⎞⎠ sin t = cos⎛

⎝
π
2 − t⎞⎠

tan t = cot⎛⎝
π
2 − t⎞⎠ cot t = tan⎛

⎝
π
2 − t⎞⎠

sec t = csc⎛
⎝
π
2 − t⎞⎠ csc t = sec⎛

⎝
π
2 − t⎞⎠

Table 7.2
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Given the sine and cosine of an angle, find the sine or cosine of its complement.

1. To find the sine of the complementary angle, find the cosine of the original angle.

2. To find the cosine of the complementary angle, find the sine of the original angle.

Example 7.15

Using Cofunction Identities

If  sin t = 5
12, find  cos⎛

⎝
π
2 − t⎞⎠.

Solution
According to the cofunction identities for sine and cosine, we have the following.

sin t = cos ⎛⎝π
2 − t⎞⎠

So

cos ⎛⎝π
2 − t⎞⎠ = 5

12

If  csc ⎛⎝π
6

⎞
⎠ = 2, find  sec ⎛⎝π

3
⎞
⎠.

Using Trigonometric Functions
In previous examples, we evaluated the sine and cosine in triangles where we knew all three sides. But the real power of
right-triangle trigonometry emerges when we look at triangles in which we know an angle but do not know all the sides.

Given a right triangle, the length of one side, and the measure of one acute angle, find the remaining sides.

1. For each side, select the trigonometric function that has the unknown side as either the numerator or the
denominator. The known side will in turn be the denominator or the numerator.

2. Write an equation setting the function value of the known angle equal to the ratio of the corresponding
sides.

3. Using the value of the trigonometric function and the known side length, solve for the missing side length.

Example 7.16

Finding Missing Side Lengths Using Trigonometric Ratios

Find the unknown sides of the triangle in Figure 7.38.
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Figure 7.38

Solution
We know the angle and the opposite side, so we can use the tangent to find the adjacent side.

tan(30°) = 7
a

We rearrange to solve for  a.

a = 7
tan(30°)

≈ 12.1

We can use the sine to find the hypotenuse.

sin(30°) = 7
c

Again, we rearrange to solve for  c.

c = 7
sin(30°)

≈ 14

A right triangle has one angle of  π3   and a hypotenuse of 20. Find the unknown sides and angle of the

triangle.

Using Right Triangle Trigonometry to Solve Applied Problems
Right-triangle trigonometry has many practical applications. For example, the ability to compute the lengths of sides of a
triangle makes it possible to find the height of a tall object without climbing to the top or having to extend a tape measure
along its height. We do so by measuring a distance from the base of the object to a point on the ground some distance away,
where we can look up to the top of the tall object at an angle. The angle of elevation of an object above an observer relative
to the observer is the angle between the horizontal and the line from the object to the observer's eye. The right triangle this
position creates has sides that represent the unknown height, the measured distance from the base, and the angled line of
sight from the ground to the top of the object. Knowing the measured distance to the base of the object and the angle of the
line of sight, we can use trigonometric functions to calculate the unknown height.

Similarly, we can form a triangle from the top of a tall object by looking downward. The angle of depression of an object
below an observer relative to the observer is the angle between the horizontal and the line from the object to the observer's
eye. See Figure 7.39.
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Figure 7.39

Given a tall object, measure its height indirectly.

1. Make a sketch of the problem situation to keep track of known and unknown information.

2. Lay out a measured distance from the base of the object to a point where the top of the object is clearly
visible.

3. At the other end of the measured distance, look up to the top of the object. Measure the angle the line of
sight makes with the horizontal.

4. Write an equation relating the unknown height, the measured distance, and the tangent of the angle of the
line of sight.

5. Solve the equation for the unknown height.

Example 7.17

Measuring a Distance Indirectly

To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of
 57°  between a line of sight to the top of the tree and the ground, as shown in Figure 7.40. Find the height of
the tree.

Figure 7.40

Solution
We know that the angle of elevation is  57°  and the adjacent side is 30 ft long. The opposite side is the unknown
height.

The trigonometric function relating the side opposite to an angle and the side adjacent to the angle is the tangent.
So we will state our information in terms of the tangent of  57°, letting  h  be the unknown height.
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7.17

tan θ = opposite
adjacent

tan(57°) = h
30 Solve for h.

h = 30tan(57°) Multiply.
h ≈ 46.2 Use a calculator.

The tree is approximately 46 feet tall.

How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests against the
building making an angle of  5π

12  with the ground? Round to the nearest foot.

Access these online resources for additional instruction and practice with right triangle trigonometry.

• Finding Trig Functions on Calculator (http://openstaxcollege.org/l/findtrigcal)

• Finding Trig Functions Using a Right Triangle (http://openstaxcollege.org/l/trigrttri)

• Relate Trig Functions to Sides of a Right Triangle (http://openstaxcollege.org/l/reltrigtri)

• Determine Six Trig Functions from a Triangle (http://openstaxcollege.org/l/sixtrigfunc)

• Determine Length of Right Triangle Side (http://openstaxcollege.org/l/rttriside)
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96.

7.2 EXERCISES
Verbal

For the given right triangle, label the adjacent side,
opposite side, and hypotenuse for the indicated angle.

When a right triangle with a hypotenuse of 1 is placed
in a circle of radius 1, which sides of the triangle
correspond to the x- and y-coordinates?

The tangent of an angle compares which sides of the
right triangle?

What is the relationship between the two acute angles
in a right triangle?

Explain the cofunction identity.

Algebraic
For the following exercises, use cofunctions of
complementary angles.

cos(34°) = sin(___°)

cos⎛
⎝
π
3

⎞
⎠ = sin(___)

csc(21°) = sec(___°)

tan⎛
⎝
π
4

⎞
⎠ = cot(___)

For the following exercises, find the lengths of the missing
sides if side  a  is opposite angle  A, side  b  is opposite
angle  B, and side  c  is the hypotenuse.

cos B = 4
5, a = 10

sin B = 1
2, a = 20

tan A = 5
12, b = 6

tan A = 100, b = 100

sin B = 1
3

, a = 2

a = 5, ∡  A = 60°

c = 12, ∡  A = 45°

Graphical
For the following exercises, use Figure 7.41 to evaluate
each trigonometric function of angle  A.

Figure 7.41

sin A

cos A

tan A

csc A

sec A

cot A

For the following exercises, use Figure 7.42 to evaluate
each trigonometric function of angle  A.
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98.

99.
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103.

104.

105.

106.

107.

108.

Figure 7.42

sin A

cos A

tan A

csc A

sec A

cot A

For the following exercises, solve for the unknown sides of
the given triangle.

Technology
For the following exercises, use a calculator to find the
length of each side to four decimal places.
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110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

b = 15, ∡  B = 15°

c = 200, ∡  B = 5°

c = 50, ∡  B = 21°

a = 30, ∡  A = 27°

b = 3.5, ∡  A = 78°

Extensions

Find  x.

Find  x.

Find  x.

Find  x.

A radio tower is located 400 feet from a building.
From a window in the building, a person determines that
the angle of elevation to the top of the tower is  36°, and
that the angle of depression to the bottom of the tower is
 23°. How tall is the tower?

A radio tower is located 325 feet from a building.
From a window in the building, a person determines that
the angle of elevation to the top of the tower is  43°, and
that the angle of depression to the bottom of the tower is
 31°. How tall is the tower?
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123.

124.

125.

126.

127.

128.

129.

130.

A 200-foot tall monument is located in the distance. From a
window in a building, a person determines that the angle of
elevation to the top of the monument is  15°, and that the
angle of depression to the bottom of the tower is  2°. How
far is the person from the monument?

A 400-foot tall monument is located in the distance.
From a window in a building, a person determines that the
angle of elevation to the top of the monument is  18°, and
that the angle of depression to the bottom of the tower is
 3°. How far is the person from the monument?

There is an antenna on the top of a building. From a
location 300 feet from the base of the building, the angle of
elevation to the top of the building is measured to be  40°. 
From the same location, the angle of elevation to the top of
the antenna is measured to be  43°.  Find the height of the
antenna.

There is lightning rod on the top of a building. From a
location 500 feet from the base of the building, the angle of
elevation to the top of the building is measured to be  36°. 
From the same location, the angle of elevation to the top of
the lightning rod is measured to be  38°.  Find the height of
the lightning rod.

Real-World Applications

A 33-ft ladder leans against a building so that the
angle between the ground and the ladder is  80°. How high
does the ladder reach up the side of the building?

A 23-ft ladder leans against a building so that the
angle between the ground and the ladder is  80°. How high
does the ladder reach up the side of the building?

The angle of elevation to the top of a building in New
York is found to be 9 degrees from the ground at a distance
of 1 mile from the base of the building. Using this
information, find the height of the building.

The angle of elevation to the top of a building in
Seattle is found to be 2 degrees from the ground at a
distance of 2 miles from the base of the building. Using this
information, find the height of the building.

Assuming that a 370-foot tall giant redwood grows
vertically, if I walk a certain distance from the tree and
measure the angle of elevation to the top of the tree to be
 60°, how far from the base of the tree am I?
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7.3 | Unit Circle

Learning Objectives

In this section you will:

7.3.1 Find function values for the sine and cosine of  30° or ⎛⎝
π
6

⎞
⎠, 45° or ⎛⎝

π
4

⎞
⎠, and  60∘  or ⎛⎝

π
3

⎞
⎠.

7.3.2 Identify the domain and range of sine and cosine functions.
7.3.3 Find reference angles.
7.3.4 Use reference angles to evaluate trigonometric functions.

Figure 7.43 The Singapore Flyer is the world’s tallest Ferris
wheel. (credit: ʺVibin JKʺ/Flickr)

Looking for a thrill? Then consider a ride on the Singapore Flyer, the world’s tallest Ferris wheel. Located in Singapore, the
Ferris wheel soars to a height of 541 feet—a little more than a tenth of a mile! Described as an observation wheel, riders
enjoy spectacular views as they travel from the ground to the peak and down again in a repeating pattern. In this section,
we will examine this type of revolving motion around a circle. To do so, we need to define the type of circle first, and then
place that circle on a coordinate system. Then we can discuss circular motion in terms of the coordinate pairs.

Finding Trigonometric Functions Using the Unit Circle
We have already defined the trigonometric functions in terms of right triangles. In this section, we will redefine them in
terms of the unit circle. Recall this a unit circle is a circle centered at the origin with radius 1, as shown in Figure 7.44.
The angle (in radians) that  t  intercepts forms an arc of length  s. Using the formula  s = rt, and knowing that  r = 1, we
see that for a unit circle,  s = t.

The x- and y-axes divide the coordinate plane into four quarters called quadrants. We label these quadrants to mimic the
direction a positive angle would sweep. The four quadrants are labeled I, II, III, and IV.

For any angle  t, we can label the intersection of the terminal side and the unit circle as by its coordinates,  (x, y). The

coordinates  x  and  y will be the outputs of the trigonometric functions   f (t) = cos t  and   f (t) = sin t, respectively. This

means x = cos t and y = sin t.
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Figure 7.44 Unit circle where the central angle is  t  radians

Unit Circle

A unit circle has a center at  (0, 0)  and radius  1.  In a unit circle, the length of the intercepted arc is equal to the radian
measure of the central angle  t.
Let  (x, y)  be the endpoint on the unit circle of an arc of arc length  s. The  (x, y)  coordinates of this point can be

described as functions of the angle.

Defining Sine and Cosine Functions from the Unit Circle
The sine function relates a real number  t  to the y-coordinate of the point where the corresponding angle intercepts the unit
circle. More precisely, the sine of an angle  t  equals the y-value of the endpoint on the unit circle of an arc of length  t.  In
Figure 7.44, the sine is equal to  y. Like all functions, the sine function has an input and an output. Its input is the measure

of the angle; its output is the y-coordinate of the corresponding point on the unit circle.

The cosine function of an angle  t  equals the x-value of the endpoint on the unit circle of an arc of length  t.  In Figure
7.45, the cosine is equal to  x.

Figure 7.45

Because it is understood that sine and cosine are functions, we do not always need to write them with parentheses:  sin t  is
the same as  sin(t)  and  cost  is the same as  cos(t). Likewise,  cos2 t  is a commonly used shorthand notation for  (cos(t))2. 
Be aware that many calculators and computers do not recognize the shorthand notation. When in doubt, use the extra
parentheses when entering calculations into a calculator or computer.
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Sine and Cosine Functions

If  t  is a real number and a point  (x, y)  on the unit circle corresponds to a central angle  t, then

(7.13)cos t = x
(7.14)sin t = y

Given a point P  (x, y)  on the unit circle corresponding to an angle of  t, find the sine and cosine.

1. The sine of  t  is equal to the y-coordinate of point  P : sin t = y.

2. The cosine of  t  is equal to the x-coordinate of point  P : cos  t = x.

Example 7.18

Finding Function Values for Sine and Cosine

Point  P  is a point on the unit circle corresponding to an angle of  t, as shown in Figure 7.46. Find  cos(t)  and
 sin(t).

Figure 7.46

Solution
We know that  cos t  is the x-coordinate of the corresponding point on the unit circle and  sin t  is the y-coordinate
of the corresponding point on the unit circle. So:

x = cos t = 1
2

y = sin t = 3
2
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7.18 A certain angle  t  corresponds to a point on the unit circle at  ⎛⎝− 2
2 , 2

2
⎞
⎠  as shown in Figure 7.47. Find

 cos t  and  sin t.

Figure 7.47

Finding Sines and Cosines of Angles on an Axis
For quadrantral angles, the corresponding point on the unit circle falls on the x- or y-axis. In that case, we can easily calculate
cosine and sine from the values of  x  and  y.

Example 7.19

Calculating Sines and Cosines along an Axis

Find  cos(90°)  and  sin(90°).

Solution
Moving  90°  counterclockwise around the unit circle from the positive x-axis brings us to the top of the circle,
where the  (x, y)  coordinates are  (0, 1), as shown in Figure 7.48.
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7.19

Figure 7.48

We can then use our definitions of cosine and sine.

x = cos t = cos(90°) = 0
y = sin t = sin(90°) = 1

The cosine of  90°  is 0; the sine of  90°  is 1.

Find cosine and sine of the angle  π.

The Pythagorean Identity
Now that we can define sine and cosine, we will learn how they relate to each other and the unit circle. Recall that
the equation for the unit circle is  x2 + y2 = 1. Because  x = cos t  and  y = sin t, we can substitute for  x  and  y  to get

 cos2 t + sin2 t = 1. This equation,  cos2 t + sin2 t = 1, is known as the Pythagorean Identity. See Figure 7.49.

Figure 7.49

We can use the Pythagorean Identity to find the cosine of an angle if we know the sine, or vice versa. However, because the
equation yields two solutions, we need additional knowledge of the angle to choose the solution with the correct sign. If we
know the quadrant where the angle is, we can easily choose the correct solution.
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Pythagorean Identity

The Pythagorean Identity states that, for any real number  t,
(7.15)cos2 t + sin2 t = 1

Given the sine of some angle  t  and its quadrant location, find the cosine of  t.
1. Substitute the known value of  sin t  into the Pythagorean Identity.

2. Solve for  cos t.
3. Choose the solution with the appropriate sign for the x-values in the quadrant where  t  is located.

Example 7.20

Finding a Cosine from a Sine or a Sine from a Cosine

If  sin(t) = 3
7   and  t  is in the second quadrant, find  cos(t).

Solution
If we drop a vertical line from the point on the unit circle corresponding to  t, we create a right triangle, from
which we can see that the Pythagorean Identity is simply one case of the Pythagorean Theorem. See Figure 7.50.

Figure 7.50

Substituting the known value for sine into the Pythagorean Identity,

cos2(t) + sin2(t) = 1

cos2(t) + 9
49 = 1

cos2(t) = 40
49

cos(t) = ± 40
49 = ± 40

7 = ± 2 10
7
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7.20

Because the angle is in the second quadrant, we know the x-value is a negative real number, so the cosine is also
negative.

cos(t) = − 2 10
7

If  cos(t) = 24
25   and  t  is in the fourth quadrant, find  sin(t).

Finding Sines and Cosines of Special Angles
We have already learned some properties of the special angles, such as the conversion from radians to degrees, and we
found their sines and cosines using right triangles. We can also calculate sines and cosines of the special angles using the
Pythagorean Identity.

Finding Sines and Cosines of  45° Angles

First, we will look at angles of  45°  or  π4, as shown in Figure 7.51. A  45° – 45° – 90°  triangle is an isosceles triangle,

so the x- and y-coordinates of the corresponding point on the circle are the same. Because the x- and y-values are the same,
the sine and cosine values will also be equal.

Figure 7.51

At  t = π
4, which is 45 degrees, the radius of the unit circle bisects the first quadrantal angle. This means the radius lies

along the line  y = x. A unit circle has a radius equal to 1 so the right triangle formed below the line  y = x  has sides  x  and

 y (y = x), and radius = 1. See Figure 7.52.

Figure 7.52
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From the Pythagorean Theorem we get

x2 + y2 = 1

We can then substitute  y = x.

x2 + x2 = 1

Next we combine like terms.

2x2 = 1

And solving for  x, we get

x2 = 1
2

x = ± 1
2

In quadrant I,  x = 1
2

.

At  t = π
4   or 45 degrees,

(x, y) = (x, x) = ⎛
⎝

1
2

, 1
2

⎞
⎠

x = 1
2

, y = 1
2

cos t = 1
2

, sin t = 1
2

If we then rationalize the denominators, we get

cos t = 1
2

2
2

= 2
2

sin t = 1
2

2
2

= 2
2

Therefore, the  (x, y)  coordinates of a point on a circle of radius  1  at an angle of  45°  are  ⎛⎝ 2
2 , 2

2
⎞
⎠.

Finding Sines and Cosines of  30°  and  60° Angles

Next, we will find the cosine and sine at an angle of  30°, or  π6.  First, we will draw a triangle inside a circle with one side

at an angle of  30°, and another at an angle of  −30°, as shown in Figure 7.53. If the resulting two right triangles are
combined into one large triangle, notice that all three angles of this larger triangle will be  60°, as shown in Figure 7.54.
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Figure 7.53

Figure 7.54

Because all the angles are equal, the sides are also equal. The vertical line has length  2y, and since the sides are all equal,

we can also conclude that  r = 2y  or  y = 1
2r.  Since  sin t = y,

sin⎛
⎝
π
6

⎞
⎠ = 1

2r

And since  r = 1  in our unit circle,

sin⎛
⎝
π
6

⎞
⎠ = 1

2(1)

= 1
2

Using the Pythagorean Identity, we can find the cosine value.

cos2 ⎛
⎝
π
6

⎞
⎠ + sin2 ⎛

⎝
π
6

⎞
⎠ = 1

cos2 ⎛
⎝
π
6

⎞
⎠ + ⎛

⎝
1
2

⎞
⎠
2

= 1

cos2 ⎛
⎝
π
6

⎞
⎠ = 3

4 Use the square root property.

cos⎛
⎝
π
6

⎞
⎠ = ± 3

± 4
= 3

2 Since y is positive, choose the positive root.

The  (x, y)  coordinates for the point on a circle of radius  1  at an angle of  30°  are  ⎛⎝ 3
2 , 1

2
⎞
⎠. At  t = π

3 (60°), the radius of

the unit circle, 1, serves as the hypotenuse of a 30-60-90 degree right triangle,  BAD, as shown in Figure 7.55. Angle
A  has measure  60°. At point  B, we draw an angle  ABC with measure of  60°. We know the angles in a triangle sum to
 180°, so the measure of angle  C  is also  60°. Now we have an equilateral triangle. Because each side of the equilateral
triangle  ABC  is the same length, and we know one side is the radius of the unit circle, all sides must be of length 1.
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Figure 7.55

The measure of angle  ABD  is 30°. Angle  ABC  is double angle  ABD, so its measure is 60°.  BD  is the perpendicular

bisector of  AC, so it cuts  AC  in half. This means that  AD  is  12   the radius, or  12. Notice that  AD  is the x-coordinate of

point  B, which is at the intersection of the 60° angle and the unit circle. This gives us a triangle  BAD with hypotenuse of

1 and side  x  of length  12.

From the Pythagorean Theorem, we get

x2 + y2 = 1

Substituting  x = 1
2, we get

⎛
⎝
1
2

⎞
⎠
2

+ y2 = 1

Solving for  y, we get

1
4 + y2 = 1

y2 = 1 − 1
4

y2 = 3
4

y = ± 3
2

Since  t = π
3   has the terminal side in quadrant I where the y-coordinate is positive, we choose  y = 3

2 , the positive value.

At  t = π
3   (60°), the  (x, y)  coordinates for the point on a circle of radius  1  at an angle of  60°  are  ⎛⎝1

2, 3
2

⎞
⎠, so we can find

the sine and cosine.

(x, y) = ⎛
⎝
1
2, 3

2
⎞
⎠

x = 1
2, y = 3

2

cos t = 1
2, sin t = 3

2

We have now found the cosine and sine values for all of the most commonly encountered angles in the first quadrant of the
unit circle. Table 7.3 summarizes these values.
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Angle 0 π
6, or  30° π

4, or  45° π
3, or  60° π

2, or  90°

Cosine 1 3
2

2
2

1
2 0

Sine 0
1
2

2
2

3
2 1

Table 7.3

Figure 7.56 shows the common angles in the first quadrant of the unit circle.

Figure 7.56

Using a Calculator to Find Sine and Cosine
To find the cosine and sine of angles other than the special angles, we turn to a computer or calculator. Be aware: Most
calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the input value. When we
evaluate  cos(30)  on our calculator, it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, or the
cosine of 30 radians if the calculator is in radian mode.

Given an angle in radians, use a graphing calculator to find the cosine.

1. If the calculator has degree mode and radian mode, set it to radian mode.

2. Press the COS key.

3. Enter the radian value of the angle and press the close-parentheses key ")".

4. Press ENTER.
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7.21

Example 7.21

Using a Graphing Calculator to Find Sine and Cosine

Evaluate  cos⎛
⎝
5π
3

⎞
⎠  using a graphing calculator or computer.

Solution
Enter the following keystrokes:

COS( 5 × π ÷  3 ) ENTER

cos⎛
⎝
5π
3

⎞
⎠ = 0.5

Analysis
We can find the cosine or sine of an angle in degrees directly on a calculator with degree mode. For calculators or
software that use only radian mode, we can find the sign of  20°, for example, by including the conversion factor
to radians as part of the input:

SIN( 20 × π ÷  180 ) ENTER

Evaluate  sin⎛
⎝
π
3

⎞
⎠.

Identifying the Domain and Range of Sine and Cosine Functions
Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What are the domains
of the sine and cosine functions? That is, what are the smallest and largest numbers that can be inputs of the functions?
Because angles smaller than  0  and angles larger than  2π  can still be graphed on the unit circle and have real values of
 x, y, and r, there is no lower or upper limit to the angles that can be inputs to the sine and cosine functions. The input to

the sine and cosine functions is the rotation from the positive x-axis, and that may be any real number.

What are the ranges of the sine and cosine functions? What are the least and greatest possible values for their output? We
can see the answers by examining the unit circle, as shown in Figure 7.57. The bounds of the x-coordinate are  [−1, 1]. 
The bounds of the y-coordinate are also  [−1, 1]. Therefore, the range of both the sine and cosine functions is  [−1, 1].

Figure 7.57
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Finding Reference Angles
We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in another quadrant?
For any given angle in the first quadrant, there is an angle in the second quadrant with the same sine value. Because the
sine value is the y-coordinate on the unit circle, the other angle with the same sine will share the same y-value, but have the
opposite x-value. Therefore, its cosine value will be the opposite of the first angle’s cosine value.

Likewise, there will be an angle in the fourth quadrant with the same cosine as the original angle. The angle with the same
cosine will share the same x-value but will have the opposite y-value. Therefore, its sine value will be the opposite of the
original angle’s sine value.

As shown in Figure 7.58, angle  α  has the same sine value as angle  t; the cosine values are opposites. Angle  β  has the

same cosine value as angle  t; the sine values are opposites.

sin(t) = sin(α) and cos(t) = − cos(α)
sin(t) = − sin(β) and cos(t) = cos(β)

Figure 7.58

Recall that an angle’s reference angle is the acute angle,  t, formed by the terminal side of the angle  t  and the horizontal

axis. A reference angle is always an angle between  0  and  90°, or  0  and  π2   radians. As we can see from Figure 7.59, for

any angle in quadrants II, III, or IV, there is a reference angle in quadrant I.

Figure 7.59
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Given an angle between  0  and  2π, find its reference angle.

1. An angle in the first quadrant is its own reference angle.

2. For an angle in the second or third quadrant, the reference angle is  |π − t|  or  |180° − t|.

3. For an angle in the fourth quadrant, the reference angle is  2π − t  or  360° − t.

4. If an angle is less than  0  or greater than  2π, add or subtract  2π  as many times as needed to find an
equivalent angle between  0  and  2π.

Example 7.22

Finding a Reference Angle

Find the reference angle of  225°  as shown in Figure 7.60.

Figure 7.60

Solution
Because  225°  is in the third quadrant, the reference angle is

|(180° − 225°)| = |−45°| = 45°

Find the reference angle of  5π
3 .

Using Reference Angles
Now let’s take a moment to reconsider the Ferris wheel introduced at the beginning of this section. Suppose a rider snaps a
photograph while stopped twenty feet above ground level. The rider then rotates three-quarters of the way around the circle.
What is the rider’s new elevation? To answer questions such as this one, we need to evaluate the sine or cosine functions at
angles that are greater than 90 degrees or at a negative angle. Reference angles make it possible to evaluate trigonometric
functions for angles outside the first quadrant. They can also be used to find  (x, y)  coordinates for those angles. We will

use the reference angle of the angle of rotation combined with the quadrant in which the terminal side of the angle lies.
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Using Reference Angles to Evaluate Trigonometric Functions
We can find the cosine and sine of any angle in any quadrant if we know the cosine or sine of its reference angle. The
absolute values of the cosine and sine of an angle are the same as those of the reference angle. The sign depends on the
quadrant of the original angle. The cosine will be positive or negative depending on the sign of the x-values in that quadrant.
The sine will be positive or negative depending on the sign of the y-values in that quadrant.

Using Reference Angles to Find Cosine and Sine

Angles have cosines and sines with the same absolute value as their reference angles. The sign (positive or negative)
can be determined from the quadrant of the angle.

Given an angle in standard position, find the reference angle, and the cosine and sine of the original angle.

1. Measure the angle between the terminal side of the given angle and the horizontal axis. That is the
reference angle.

2. Determine the values of the cosine and sine of the reference angle.

3. Give the cosine the same sign as the x-values in the quadrant of the original angle.

4. Give the sine the same sign as the y-values in the quadrant of the original angle.

Example 7.23

Using Reference Angles to Find Sine and Cosine

a. Using a reference angle, find the exact value of  cos(150°)  and  sin(150°).

b. Using the reference angle, find  cos 5π
4   and  sin 5π

4 .

Solution
a. 150°  is located in the second quadrant. The angle it makes with the x-axis is  180° − 150° = 30°, so the

reference angle is  30°.
This tells us that  150°  has the same sine and cosine values as  30°, except for the sign.

cos(30°) = 3
2 and sin(30°) = 1

2
Since  150°  is in the second quadrant, the x-coordinate of the point on the circle is negative, so the cosine
value is negative. The y-coordinate is positive, so the sine value is positive.

cos(150°) = 3
2 and sin(150°) = 1

2

b. 5π
4   is in the third quadrant. Its reference angle is  5π

4 − π = π
4. The cosine and sine of  π4   are both 2

2 . 
In the third quadrant, both  x  and  y  are negative, so:

cos5π
4 = − 2

2 and sin5π
4 = − 2

2

a. Use the reference angle of  315°  to find  cos(315°)  and  sin(315°).

b. Use the reference angle of  − π
6   to find  cos⎛

⎝−
π
6

⎞
⎠  and  sin⎛

⎝−
π
6

⎞
⎠.
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Using Reference Angles to Find Coordinates
Now that we have learned how to find the cosine and sine values for special angles in the first quadrant, we can use
symmetry and reference angles to fill in cosine and sine values for the rest of the special angles on the unit circle. They are
shown in Figure 7.61. Take time to learn the  (x, y)  coordinates of all of the major angles in the first quadrant.

Figure 7.61 Special angles and coordinates of corresponding points on the unit circle

In addition to learning the values for special angles, we can use reference angles to find  (x, y)  coordinates of any point on

the unit circle, using what we know of reference angles along with the identities
x = cos t
y = sin t

First we find the reference angle corresponding to the given angle. Then we take the sine and cosine values of the reference
angle, and give them the signs corresponding to the y- and x-values of the quadrant.

Given the angle of a point on a circle and the radius of the circle, find the  (x, y)  coordinates of the point.

1. Find the reference angle by measuring the smallest angle to the x-axis.

2. Find the cosine and sine of the reference angle.

3. Determine the appropriate signs for  x  and  y  in the given quadrant.

Example 7.24

Using the Unit Circle to Find Coordinates

Find the coordinates of the point on the unit circle at an angle of  7π
6 .
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Solution

We know that the angle  7π
6   is in the third quadrant.

First, let’s find the reference angle by measuring the angle to the x-axis. To find the reference angle of an angle
whose terminal side is in quadrant III, we find the difference of the angle and  π.

7π
6 − π = π

6

Next, we will find the cosine and sine of the reference angle.

cos⎛
⎝
π
6

⎞
⎠ = 3

2 sin⎛
⎝
π
6

⎞
⎠ = 1

2

We must determine the appropriate signs for x and y in the given quadrant. Because our original angle is in the
third quadrant, where both  x  and  y  are negative, both cosine and sine are negative.

cos⎛
⎝
7π
6

⎞
⎠ = − 3

2
sin(7π) = −1

2

Now we can calculate the  (x, y)  coordinates using the identities  x = cos θ  and  y = sin θ.

The coordinates of the point are  ⎛⎝− 3
2 , − 1

2
⎞
⎠  on the unit circle.

Find the coordinates of the point on the unit circle at an angle of  5π
3 .

Access these online resources for additional instruction and practice with sine and cosine functions.

• Trigonometric Functions Using the Unit Circle (http://openstaxcollege.org/l/trigunitcir)

• Sine and Cosine from the Unit (http://openstaxcollege.org/l/sincosuc)

• Sine and Cosine from the Unit Circle and Multiples of Pi Divided by Six
(http://openstaxcollege.org/l/sincosmult)

• Sine and Cosine from the Unit Circle and Multiples of Pi Divided by Four
(http://openstaxcollege.org/l/sincosmult4)

• Trigonometric Functions Using Reference Angles (http://openstaxcollege.org/l/trigrefang)
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131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

7.3 EXERCISES
Verbal

Describe the unit circle.

What do the x- and y-coordinates of the points on the
unit circle represent?

Discuss the difference between a coterminal angle
and a reference angle.

Explain how the cosine of an angle in the second
quadrant differs from the cosine of its reference angle in the
unit circle.

Explain how the sine of an angle in the second
quadrant differs from the sine of its reference angle in the
unit circle.

Algebraic
For the following exercises, use the given sign of the sine
and cosine functions to find the quadrant in which the
terminal point determined by  t  lies.

sin(t) < 0  and  cos(t) < 0

sin(t) > 0  and  cos(t) > 0

sin(t) > 0  and  cos(t) < 0

sin(t) > 0  and  cos(t) > 0

For the following exercises, find the exact value of each
trigonometric function.

sin π2

sin π3

cos π2

cos π3

sin π4

cos π4

sin π6

sin π

sin 3π
2

cos π

cos 0

cos π6

sin 0

Numeric
For the following exercises, state the reference angle for the
given angle.

240°

−170°

100°

−315°

135°

5π
4

2π
3

5π
6

−11π
3

−7π
4

−π
8

For the following exercises, find the reference angle, the
quadrant of the terminal side, and the sine and cosine of
each angle. If the angle is not one of the angles on the unit
circle, use a calculator and round to three decimal places.

225°

300°

320°

135°

210°

120°
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170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

250°

150°

5π
4

7π
6

5π
3

3π
4

4π
3

2π
3

5π
6

7π
4

For the following exercises, find the requested value.

If  cos(t) = 1
7   and  t  is in the fourth quadrant, find

 sin(t).

If  cos(t) = 2
9    and  t  is in the first quadrant, find

 sin(t).

If  sin(t) = 3
8   and  t  is in the second quadrant, find

 cos(t).

If  sin(t) = − 1
4   and  t  is in the third quadrant, find

 cos(t).

Find the coordinates of the point on a circle with
radius 15 corresponding to an angle of  220°.

Find the coordinates of the point on a circle with
radius 20 corresponding to an angle of  120°.

Find the coordinates of the point on a circle with
radius 8 corresponding to an angle of  7π

4 .

Find the coordinates of the point on a circle with
radius 16 corresponding to an angle of  5π

9 .

State the domain of the sine and cosine functions.

State the range of the sine and cosine functions.

Graphical
For the following exercises, use the given point on the unit
circle to find the value of the sine and cosine of  t.
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194.

195.

196.

197.

198.

199.
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200.

201.

202.

203.

204.

205.
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206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

Technology
For the following exercises, use a graphing calculator to
evaluate.

sin 5π
9

cos 5π
9

sin  π
10

cos  π
10

sin 3π
4

cos 3π
4

sin 98°

cos 98°
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219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

cos 310°

sin 310°

Extensions
For the following exercises, evaluate.

sin⎛
⎝
11π

3
⎞
⎠ cos⎛

⎝
−5π

6
⎞
⎠

sin⎛
⎝
3π
4

⎞
⎠ cos⎛

⎝
5π
3

⎞
⎠

sin⎛
⎝−

4π
3

⎞
⎠ cos⎛

⎝
π
2

⎞
⎠

sin⎛
⎝
−9π

4
⎞
⎠ cos⎛

⎝
−π
6

⎞
⎠

sin⎛
⎝
π
6

⎞
⎠ cos⎛

⎝
−π
3

⎞
⎠

sin⎛
⎝
7π
4

⎞
⎠cos⎛

⎝
−2π

3
⎞
⎠

cos⎛
⎝
5π
6

⎞
⎠ cos⎛

⎝
2π
3

⎞
⎠

cos⎛
⎝
−π
3

⎞
⎠cos⎛

⎝
π
4

⎞
⎠

sin⎛
⎝
−5π

4
⎞
⎠ sin⎛

⎝
11π

6
⎞
⎠

sin(π)sin⎛
⎝
π
6

⎞
⎠

Real-World Applications
For the following exercises, use this scenario: A child
enters a carousel that takes one minute to revolve once
around. The child enters at the point  (0, 1), that is, on the
due north position. Assume the carousel revolves counter
clockwise.

What are the coordinates of the child after 45
seconds?

What are the coordinates of the child after 90
seconds?

What are the coordinates of the child after 125
seconds?

When will the child have coordinates
 (0.707, –0.707)  if the ride lasts 6 minutes? (There are
multiple answers.)

When will the child have coordinates
 (–0.866, –0.5)  if the ride lasts 6 minutes?
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7.4 | The Other Trigonometric Functions

Learning Objectives

In this section you will:

7.4.1 Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent
of  π3, π

4, and  π6.

7.4.2 Use reference angles to evaluate the trigonometric functions secant, tangent, and
cotangent.
7.4.3 Use properties of even and odd trigonometric functions.
7.4.4 Recognize and use fundamental identities.
7.4.5 Evaluate trigonometric functions with a calculator.

A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground
whose tangent is   1

12   or less, regardless of its length. A tangent represents a ratio, so this means that for every 1 inch of

rise, the ramp must have 12 inches of run. Trigonometric functions allow us to specify the shapes and proportions of objects
independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine
are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric
functions. In this section, we will investigate the remaining functions.

Finding Exact Values of the Trigonometric Functions Secant,
Cosecant, Tangent, and Cotangent
We can also define the remaining functions in terms of the unit circle with a point  (x, y)  corresponding to an angle of  t,
as shown in Figure 7.62. As with the sine and cosine, we can use the  (x, y)  coordinates to find the other functions.

Figure 7.62

The first function we will define is the tangent. The tangent of an angle is the ratio of the y-value to the x-value of
the corresponding point on the unit circle. In Figure 7.62, the tangent of angle  t  is equal to  yx, x ≠ 0. Because the y-

value is equal to the sine of  t, and the x-value is equal to the cosine of  t, the tangent of angle  t  can also be defined

as   sin t
cos t , cos t ≠ 0. The tangent function is abbreviated as  tan. The remaining three functions can all be expressed as

reciprocals of functions we have already defined.

• The secant function is the reciprocal of the cosine function. In Figure 7.62, the secant of angle  t  is equal to

  1
cos t = 1

x , x ≠ 0. The secant function is abbreviated as  sec.

• The cotangent function is the reciprocal of the tangent function. In Figure 7.62, the cotangent of angle  t  is equal

to  cos t
sin t = x

y, y ≠ 0. The cotangent function is abbreviated as  cot.
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• The cosecant function is the reciprocal of the sine function. In Figure 7.62, the cosecant of angle  t  is equal to
1

sin t = 1
y , y ≠ 0. The cosecant function is abbreviated as  csc.

Tangent, Secant, Cosecant, and Cotangent Functions

If  t  is a real number and  (x, y)  is a point where the terminal side of an angle of  t  radians intercepts the unit circle,

then

tan t = y
x, x ≠ 0

sec t = 1
x , x ≠ 0

csc t = 1
y , y ≠ 0

cot t = x
y, y ≠ 0

Example 7.25

Finding Trigonometric Functions from a Point on the Unit Circle

The point  ⎛⎝− 3
2 , 1

2
⎞
⎠  is on the unit circle, as shown in Figure 7.63. Find  sin t, cos t, tan t, sec t, csc t, and

 cot t.

Figure 7.63

Solution
Because we know the  (x, y)  coordinates of the point on the unit circle indicated by angle  t, we can use those

coordinates to find the six functions:
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sin t = y = 1
2

cos t = x = − 3
2

tan t = y
x =

1
2

− 3
2

= 1
2

⎛
⎝− 2

3
⎞
⎠ = − 1

3
= − 3

3

sec t = 1
x = 1

− 3
2

= − 2
3

= − 2 3
3

csc t = 1
y = 1

1
2

= 2

cot t = x
y =

− 3
2

1
2

= − 3
2

⎛
⎝
2
1

⎞
⎠ = − 3

The point  ⎛⎝ 2
2 , − 2

2
⎞
⎠  is on the unit circle, as shown in Figure 7.64. Find

 sin t, cos t, tan t, sec t, csc t, and  cot t.

Figure 7.64

Example 7.26

Finding the Trigonometric Functions of an Angle

Find  sin t, cos t, tan t, sec t, csc t, and  cot t. when  t = π
6.

Solution

We have previously used the properties of equilateral triangles to demonstrate that  sin π6 = 1
2   and  cos π6 = 3

2 .

We can use these values and the definitions of tangent, secant, cosecant, and cotangent as functions of sine and
cosine to find the remaining function values.
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tan π6 =
sin π6
cos π6

=
1
2
3
2

= 1
3 = 3

3

sec π6 = 1
cos π6

= 1
3
2

= 2
3 = 2 3

3

csc π6 = 1
sin π6

= 1
1
2

= 2

cot π6 =
cos π6
sin π6

=
3
2
1
2

= 3

Find  sin t, cos t, tan t, sec t, csc t, and  cot t. when  t = π
3.

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function values
for those angles as well by setting  x  equal to the cosine and  y  equal to the sine and then using the definitions of tangent,

secant, cosecant, and cotangent. The results are shown in Table 7.4.
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Angle 0 π
6, or 30° π

4, or 45° π
3, or 60° π

2, or 90°

Cosine 1 3
2

2
2

1
2 0

Sine 0
1
2

2
2

3
2 1

Tangent 0 3
3 1 3 Undefined

Secant 1 2 3
3 2 2 Undefined

Cosecant Undefined 2 2 2 3
3 1

Cotangent Undefined 3 1 3
3 0

Table 7.4

Using Reference Angles to Evaluate Tangent, Secant, Cosecant, and
Cotangent
We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already done
with the sine and cosine functions. The procedure is the same: Find the reference angle formed by the terminal side of the
given angle with the horizontal axis. The trigonometric function values for the original angle will be the same as those for
the reference angle, except for the positive or negative sign, which is determined by x- and y-values in the original quadrant.
Figure 7.65 shows which functions are positive in which quadrant.

To help remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic phrase
“A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting with quadrant
I and rotating counterclockwise. In quadrant I, which is “A,” all of the six trigonometric functions are positive. In quadrant
II, “Smart,” only sine and its reciprocal function, cosecant, are positive. In quadrant III, “Trig,” only tangent and its
reciprocal function, cotangent, are positive. Finally, in quadrant IV, “Class,” only cosine and its reciprocal function, secant,
are positive.
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Figure 7.65 The trigonometric functions are each listed in the
quadrants in which they are positive.

Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the
reference angle.

2. Evaluate the function at the reference angle.

3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant,
determine whether the output is positive or negative.

Example 7.27

Using Reference Angles to Find Trigonometric Functions

Use reference angles to find all six trigonometric functions of  − 5π
6 .

Solution

The angle between this angle’s terminal side and the x-axis is  π6, so that is the reference angle. Since  − 5π
6   is

in the third quadrant, where both  x  and  y  are negative, cosine, sine, secant, and cosecant will be negative, while

tangent and cotangent will be positive.

cos⎛
⎝−

5π
6

⎞
⎠ = − 3

2 , sin⎛
⎝−

5π
6

⎞
⎠ = − 1

2, tan⎛
⎝
5π
6

⎞
⎠ = 3

3 ,

sec⎛
⎝−

5π
6

⎞
⎠ = − 2 3

3 , csc⎛
⎝−

5π
6

⎞
⎠ = −2, cot⎛⎝−

5π
6

⎞
⎠ = 3

Use reference angles to find all six trigonometric functions of  − 7π
4 .

Using Even and Odd Trigonometric Functions
To be able to use our six trigonometric functions freely with both positive and negative angle inputs, we should examine
how each function treats a negative input. As it turns out, there is an important difference among the functions in this regard.
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Consider the function   f (x) = x2, shown in Figure 7.66. The graph of the function is symmetrical about the y-axis. All

along the curve, any two points with opposite x-values have the same function value. This matches the result of calculation:
 (4)2 = (−4)2, (−5)2 = (5)2, and so on. So   f (x) = x2   is an even function, a function such that two inputs that are

opposites have the same output. That means   f (−x) = f (x).

Figure 7.66 The function   f (x) = x2   is an even function.

Now consider the function   f (x) = x3, shown in Figure 7.67. The graph is not symmetrical about the y-axis. All along the

graph, any two points with opposite x-values also have opposite y-values. So   f (x) = x3   is an odd function, one such that

two inputs that are opposites have outputs that are also opposites. That means   f (−x) = − f (x).
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Figure 7.67 The function   f (x) = x3   is an odd function.

We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a negative angle,
as in Figure 7.68. The sine of the positive angle is  y. The sine of the negative angle is  −y. The sine function, then, is an

odd function. We can test each of the six trigonometric functions in this fashion. The results are shown in Table 7.5.

Figure 7.68
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sin t = y
sin(−t) = −y

sin t ≠ sin(−t)

cos t = x
cos(−t) = x

cos t = cos(−t)

tan(t) = y
x

tan(−t) = − y
x

tan t ≠ tan(−t)

sec t = 1
x

sec(−t) = 1
x

sec t = sec(−t)

csc t = 1
y

csc(−t) = 1
−y

csc t ≠ csc(−t)

cot t = x
y

cot(−t) = x
−y

cot t ≠ cot(−t)

Table 7.5

Even and Odd Trigonometric Functions

An even function is one in which   f (−x) = f (x).

An odd function is one in which   f (−x) = − f (x).

Cosine and secant are even:

cos(−t) = cos t
sec(−t) = sec t

Sine, tangent, cosecant, and cotangent are odd:

sin(−t) = −sin t
tan(−t) = −tan t
csc(−t) = −csc t
cot(−t) = −cot t

Example 7.28

Using Even and Odd Properties of Trigonometric Functions

If the secant of angle  t  is 2, what is the secant of  −t ?

Solution
Secant is an even function. The secant of an angle is the same as the secant of its opposite. So if the secant of
angle  t  is 2, the secant of  −t  is also 2.

If the cotangent of angle  t  is   3, what is the cotangent of  −t ?

Recognizing and Using Fundamental Identities
We have explored a number of properties of trigonometric functions. Now, we can take the relationships a step further,
and derive some fundamental identities. Identities are statements that are true for all values of the input on which they
are defined. Usually, identities can be derived from definitions and relationships we already know. For example, the
Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and the definitions of sine and cosine.
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Fundamental Identities

We can derive some useful identities from the six trigonometric functions. The other four trigonometric functions can
be related back to the sine and cosine functions using these basic relationships:

(7.16)tan t = sin t
cos t

(7.17)sec t = 1
cos t

(7.18)csc t = 1
sin t

(7.19)cot t = 1
tan t = cos t

sin t

Example 7.29

Using Identities to Evaluate Trigonometric Functions

a. Given  sin(45°) = 2
2 , cos(45°) = 2

2 , evaluate  tan(45°).

b. Given  sin⎛
⎝
5π
6

⎞
⎠ = 1

2, cos⎛
⎝
5π
6

⎞
⎠ = − 3

2 , evaluate  sec⎛
⎝
5π
6

⎞
⎠.

Solution
Because we know the sine and cosine values for these angles, we can use identities to evaluate the other functions.

a.

tan(45°) = sin(45°)
cos(45°)

=
2
2
2
2

= 1

b.

sec⎛
⎝
5π
6

⎞
⎠ = 1

cos⎛
⎝
5π
6

⎞
⎠

= 1
− 3

2

= −2 3
1

= −2
3

= −2 3
3

Evaluate  csc⎛
⎝
7π
6

⎞
⎠.
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Example 7.30

Using Identities to Simplify Trigonometric Expressions

Simplify  sec t
tan t .

Solution
We can simplify this by rewriting both functions in terms of sine and cosine.

sec t
tan t =

1
cos t
sin t
cos t

= 1
cos t  

cos t
sin t Multiply by the reciprocal.

= 1
sin t = csc t Simplify and use the identity.

By showing that  sec t
tan t   can be simplified to  csc t, we have, in fact, established a new identity.

sec t
tan t = csc t

Simplify  tan t(cos t).

Alternate Forms of the Pythagorean Identity

We can use these fundamental identities to derive alternate forms of the Pythagorean Identity,  cos2 t + sin2 t = 1. One

form is obtained by dividing both sides by  cos2 t.

cos2 t
cos2 t

+ sin2 t
cos2 t

= 1
cos2 t

1 + tan2 t = sec2 t

The other form is obtained by dividing both sides by  sin2 t.

cos2 t
sin2 t

+ sin2 t
sin2 t

= 1
sin2 t

cot2 t + 1 = csc2 t

Alternate Forms of the Pythagorean Identity

1 + tan2 t = sec2 t
cot2 t + 1 = csc2 t

Example 7.31

Using Identities to Relate Trigonometric Functions
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If  cos(t) = 12
13   and  t  is in quadrant IV, as shown in Figure 7.69, find the values of the other five trigonometric

functions.

Figure 7.69

Solution

We can find the sine using the Pythagorean Identity,  cos2 t + sin2 t = 1, and the remaining functions by relating
them to sine and cosine.

⎛
⎝
12
13

⎞
⎠

2
+ sin2 t = 1

sin2 t = 1 − ⎛
⎝
12
13

⎞
⎠

2

sin2 t = 1 − 144
169

sin2 t = 25
169

sin t = ± 25
169

sin t = ± 25
169

sin t = ± 5
13

The sign of the sine depends on the y-values in the quadrant where the angle is located. Since the angle is in
quadrant IV, where the y-values are negative, its sine is negative,  − 5

13.

The remaining functions can be calculated using identities relating them to sine and cosine.
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tan t = sin t
cos t =

− 5
13

12
13

= − 5
12

sec t = 1
cos t = 1

12
13

= 13
12

csc t = 1
sin t = 1

− 5
13

= 13
5

cot t = 1
tan t = 1

− 5
12

= − 12
5

If  sec(t) = − 17
8   and  0 < t < π, find the values of the other five functions.

As we discussed at the beginning of the chapter, a function that repeats its values in regular intervals is known as a periodic
function. The trigonometric functions are periodic. For the four trigonometric functions, sine, cosine, cosecant and secant,
a revolution of one circle, or  2π, will result in the same outputs for these functions. And for tangent and cotangent, only a
half a revolution will result in the same outputs.

Other functions can also be periodic. For example, the lengths of months repeat every four years. If  x  represents the length
time, measured in years, and   f (x)  represents the number of days in February, then   f (x + 4) = f (x). This pattern repeats

over and over through time. In other words, every four years, February is guaranteed to have the same number of days as
it did 4 years earlier. The positive number 4 is the smallest positive number that satisfies this condition and is called the
period. A period is the shortest interval over which a function completes one full cycle—in this example, the period is 4
and represents the time it takes for us to be certain February has the same number of days.

Period of a Function

The period  P  of a repeating function   f   is the number representing the interval such that   f (x + P) = f (x)  for any

value of  x.

The period of the cosine, sine, secant, and cosecant functions is  2π.

The period of the tangent and cotangent functions is  π.

Example 7.32

Finding the Values of Trigonometric Functions

Find the values of the six trigonometric functions of angle  t  based on Figure 7.70.
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Figure 7.70

Solution

sin t = y = − 3
2

cos t = x = − 1
2

tan t = sin t
cos t =

− 3
2

− 1
2

= 3

sec t = 1
cos t = 1

− 1
2

= −2

csc t = 1
sin t = 1

− 3
2

= − 2 3
3

cot t = 1
tan t = 1

3
= 3

3

Find the values of the six trigonometric functions of angle  t  based on Figure 7.71.

Figure 7.71
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Example 7.33

Finding the Value of Trigonometric Functions

If  sin(t) = − 3
2  and cos(t) = 1

2, fin  sec(t), csc(t), tan(t), cot(t).

Solution

sec t = 1
cos t = 1

1
2

= 2

csc t = 1
sin t = 1

− 3
2

− 2 3
3

tan t = sin t
cos t =

− 3
2

1
2

= − 3

cot t = 1
tan t = 1

− 3
= − 3

3

 sin(t) = 2
2  and cos(t) = 2

2 , fin  sec(t), csc(t), tan(t), and cot(t)

Evaluating Trigonometric Functions with a Calculator
We have learned how to evaluate the six trigonometric functions for the common first-quadrant angles and to use them as
reference angles for angles in other quadrants. To evaluate trigonometric functions of other angles, we use a scientific or
graphing calculator or computer software. If the calculator has a degree mode and a radian mode, confirm the correct mode
is chosen before making a calculation.

Evaluating a tangent function with a scientific calculator as opposed to a graphing calculator or computer algebra system is
like evaluating a sine or cosine: Enter the value and press the TAN key. For the reciprocal functions, there may not be any
dedicated keys that say CSC, SEC, or COT. In that case, the function must be evaluated as the reciprocal of a sine, cosine,
or tangent.

If we need to work with degrees and our calculator or software does not have a degree mode, we can enter the degrees
multiplied by the conversion factor   π

180   to convert the degrees to radians. To find the secant of  30°, we could press

(for a scientific calcula or):   1
30 ×  π

180
 COS

or
(for a graphing calculator):  1

cos⎛
⎝
30π
180

⎞
⎠

Given an angle measure in radians, use a scientific calculator to find the cosecant.

1. If the calculator has degree mode and radian mode, set it to radian mode.

2. Enter:  1/

3. Enter the value of the angle inside parentheses.

4. Press the SIN key.

5. Press the = key.
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Given an angle measure in radians, use a graphing utility/calculator to find the cosecant.

• If the graphing utility has degree mode and radian mode, set it to radian mode.

• Enter:  1/

• Press the SIN key.

• Enter the value of the angle inside parentheses.

• Press the ENTER key.

Example 7.34

Evaluating the Secant Using Technology

Evaluate the cosecant of  5π
7 .

Solution
For a scientific calculator, enter information as follows:

1/(5 × π / 7) SIN =

csc⎛
⎝
5π
7

⎞
⎠ ≈ 1.279

Evaluate the cotangent of  − π
8.

Access these online resources for additional instruction and practice with other trigonometric functions.

• Determing Trig Function Values (http://Openstaxcollege.org/l/trigfuncval)

• More Examples of Determining Trig Functions (http://Openstaxcollege.org/l/moretrigfun)

• Pythagorean Identities (http://Openstaxcollege.org/l/pythagiden)

• Trig Functions on a Calculator (http://Openstaxcollege.org/l/trigcalc)
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235.

236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

7.4 EXERCISES
Verbal

On an interval of  [0, 2π), can the sine and cosine
values of a radian measure ever be equal? If so, where?

What would you estimate the cosine of  π  degrees to
be? Explain your reasoning.

For any angle in quadrant II, if you knew the sine of
the angle, how could you determine the cosine of the angle?

Describe the secant function.

Tangent and cotangent have a period of  π. What does
this tell us about the output of these functions?

Algebraic
For the following exercises, find the exact value of each
expression.

tan π6

sec π6

csc π6

cot π6

tan π4

sec π4

csc π4

cot π4

tan π3

sec π3

csc π3

cot π3

For the following exercises, use reference angles to
evaluate the expression.

tan 5π
6

sec 7π
6

csc 11π
6

cot 13π
6

tan 7π
4

sec 3π
4

csc 5π
4

cot 11π
4

tan 8π
3

sec 4π
3

csc 2π
3

cot 5π
3

tan 225°

sec 300°

csc 150°

cot 240°

tan 330°

sec 120°

csc 210°

cot 315°

If  sin t = 3
4, and  t  is in quadrant II, find

 cos t, sec t, csc t, tan t, and  cot t.

If  cos t = − 1
3, and  t  is in quadrant III, find

 sin t, sec t, csc t, tan t, and  cot t.
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275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

If tan t = 12
5 , and  0 ≤ t < π

2, find

 sin t, cos t, sec t, csc t, and cot t.

If  sin t = 3
2   and  cos t = 1

2, find

 sec t, csc t, tan t, and  cot t.

If  sin 40° ≈ 0.643  and  cos 40° ≈ 0.766, find
 sec 40°, csc 40°, tan 40°, and  cot 40°.

If  sin t = 2
2 , what is the  sin(−t)?

If  cos t = 1
2, what is the  cos(−t)?

If  sec t = 3.1, what is the  sec(−t)?

If  csc t = 0.34, what is the  csc(−t)?

If  tan t = −1.4, what is the  tan(−t)?

If  cot t = 9.23, what is the  cot(−t)?

Graphical
For the following exercises, use the angle in the unit circle
to find the value of the each of the six trigonometric
functions.

Technology
For the following exercises, use a graphing calculator to
evaluate to three decimal places.

csc 5π
9

cot 4π
7

sec  π
10

tan 5π
8

sec 3π
4
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291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

csc π4

tan 98°

cot 33°

cot 140°

sec 310°

Extensions
For the following exercises, use identities to evaluate the
expression.

If  tan(t) ≈ 2.7, and  sin(t) ≈ 0.94, find  cos(t).

If  tan(t) ≈ 1.3, and  cos(t) ≈ 0.61, find  sin(t).

If  csc(t) ≈ 3.2, and  cos(t) ≈ 0.95, find  tan(t).

If  cot(t) ≈ 0.58, and  cos(t) ≈ 0.5, find  csc(t).

Determine whether the function   f (x) = 2sinx cos x 
is even, odd, or neither.

Determine whether the function
  f (x) = 3sin2 x cos x + sec x  is even, odd, or neither.

Determine whether the function
  f (x) = sin x − 2cos2 x  is even, odd, or neither.

Determine whether the function
  f (x) = csc2 x + sec x  is even, odd, or neither.

For the following exercises, use identities to simplify the
expression.

csc t tan t

sec t
csc t

Real-World Applications

The amount of sunlight in a certain city can be

modeled by the function  h = 15cos⎛
⎝

1
600d⎞

⎠, where  h 
represents the hours of sunlight, and  d  is the day of the
year. Use the equation to find how many hours of sunlight
there are on February 10, the 42nd day of the year. State the
period of the function.

The amount of sunlight in a certain city can be

modeled by the function  h = 16cos⎛
⎝

1
500d⎞

⎠, where  h 
represents the hours of sunlight, and  d  is the day of the

year. Use the equation to find how many hours of sunlight
there are on September 24, the 267th day of the year. State
the period of the function.

The equation  P = 20sin(2πt) + 100 models the
blood pressure,  P, where  t  represents time in seconds. (a)
Find the blood pressure after 15 seconds. (b) What are the
maximum and minimum blood pressures?

The height of a piston,  h, in inches, can be modeled
by the equation  y = 2cos x + 6, where  x  represents the

crank angle. Find the height of the piston when the crank
angle is  55°.

The height of a piston,  h, in inches, can be modeled
by the equation  y = 2cos x + 5, where  x  represents the

crank angle. Find the height of the piston when the crank
angle is  55°.
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adjacent side

angle

angle of depression

angle of elevation

angular speed

arc length

area of a sector

cosecant

cosine function

cotangent

coterminal angles

degree

hypotenuse

identities

initial side

linear speed

measure of an angle

negative angle

opposite side

period

positive angle

Pythagorean Identity

quadrantal angle

radian

radian measure

ray

reference angle

secant

sine function

standard position

CHAPTER 7 REVIEW

KEY TERMS
in a right triangle, the side between a given angle and the right angle

the union of two rays having a common endpoint

the angle between the horizontal and the line from the object to the observer’s eye, assuming the
object is positioned lower than the observer

the angle between the horizontal and the line from the object to the observer’s eye, assuming the
object is positioned higher than the observer

the angle through which a rotating object travels in a unit of time

the length of the curve formed by an arc

area of a portion of a circle bordered by two radii and the intercepted arc; the fraction   θ
2π . multiplied by

the area of the entire circle

the reciprocal of the sine function: on the unit circle, csc t = 1
y , y ≠ 0

the x-value of the point on a unit circle corresponding to a given angle

the reciprocal of the tangent function: on the unit circle, cot t = x
y, y ≠ 0

description of positive and negative angles in standard position sharing the same terminal side

a unit of measure describing the size of an angle as one-360th of a full revolution of a circle

the side of a right triangle opposite the right angle

statements that are true for all values of the input on which they are defined

the side of an angle from which rotation begins

the distance along a straight path a rotating object travels in a unit of time; determined by the arc length

the amount of rotation from the initial side to the terminal side

description of an angle measured clockwise from the positive x-axis

in a right triangle, the side most distant from a given angle

the smallest interval  P  of a repeating function   f   such that   f (x + P) = f (x)

description of an angle measured counterclockwise from the positive x-axis

a corollary of the Pythagorean Theorem stating that the square of the cosine of a given angle plus
the square of the sine of that angle equals 1

an angle whose terminal side lies on an axis

the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle

the ratio of the arc length formed by an angle divided by the radius of the circle

one point on a line and all points extending in one direction from that point; one side of an angle

the measure of the acute angle formed by the terminal side of the angle and the horizontal axis

the reciprocal of the cosine function: on the unit circle,  sec t = 1
x , x ≠ 0

the y-value of the point on a unit circle corresponding to a given angle

the position of an angle having the vertex at the origin and the initial side along the positive x-axis
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tangent

terminal side

unit circle

vertex

the quotient of the sine and cosine: on the unit circle,  tan t = y
x, x ≠ 0

the side of an angle at which rotation ends

a circle with a center at  (0, 0)  and radius 1

the common endpoint of two rays that form an angle

KEY EQUATIONS

arc length s = rθ

area of a sector A = 1
2θr2

angular speed ω = θ
t

linear speed v = s
t

linear speed related to angular speed v = rω
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Trigonometric Functions Sine sin t = opposite
hypotenuse

Cosine cos t = adjacent
hypotenuse

Tangent tan t = opposite
adjacent

Secant sec t = hypotenuse
adjacent

Cosecant csc t = hypotenuse
opposite

Cotangent cot t = adjacent
opposite

Reciprocal Trigonometric Functions sin t = 1
csc t csc t = 1

sin t
cos t = 1

sec t sec t = 1
cos t

tan t = 1
cot t cot t = 1

tan t

Cofunction Identities cos t = sin⎛
⎝
π
2 − t⎞⎠

sin t = cos⎛
⎝
π
2 − t⎞⎠

tan t = cot⎛⎝
π
2 − t⎞⎠

cot t = tan⎛
⎝
π
2 − t⎞⎠

sec t = csc⎛
⎝
π
2 − t⎞⎠

Cosine cos t = x

Sine sin t = y

Pythagorean Identity cos2 t + sin2 t = 1

Tangent function tan t = sin t
cos t

Secant function sec t = 1
cos t

Cosecant function csc t = 1
sin t

Cotangent function cot t = 1
tan t = cos t

sin t
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KEY CONCEPTS
7.1 Angles

• An angle is formed from the union of two rays, by keeping the initial side fixed and rotating the terminal side. The
amount of rotation determines the measure of the angle.

• An angle is in standard position if its vertex is at the origin and its initial side lies along the positive x-axis. A
positive angle is measured counterclockwise from the initial side and a negative angle is measured clockwise.

• To draw an angle in standard position, draw the initial side along the positive x-axis and then place the terminal side
according to the fraction of a full rotation the angle represents. See Example 7.1.

• In addition to degrees, the measure of an angle can be described in radians. See Example 7.2.

• To convert between degrees and radians, use the proportion   θ
180 = θR

π .  See Example 7.3 and Example 7.4.

• Two angles that have the same terminal side are called coterminal angles.

• We can find coterminal angles by adding or subtracting  360°  or  2π.  See Example 7.5 and Example 7.6.

• Coterminal angles can be found using radians just as they are for degrees. See Example 7.7.

• The length of a circular arc is a fraction of the circumference of the entire circle. See Example 7.8.

• The area of sector is a fraction of the area of the entire circle. See Example 7.9.

• An object moving in a circular path has both linear and angular speed.

• The angular speed of an object traveling in a circular path is the measure of the angle through which it turns in a
unit of time. See Example 7.10.

• The linear speed of an object traveling along a circular path is the distance it travels in a unit of time. See Example
7.11.

7.2 Right Triangle Trigonometry

• We can define trigonometric functions as ratios of the side lengths of a right triangle. See Example 7.12.

• The same side lengths can be used to evaluate the trigonometric functions of either acute angle in a right triangle.
See Example 7.13.

• We can evaluate the trigonometric functions of special angles, knowing the side lengths of the triangles in which
they occur. See Example 7.14.

• Any two complementary angles could be the two acute angles of a right triangle.

• If two angles are complementary, the cofunction identities state that the sine of one equals the cosine of the other
and vice versa. See Example 7.15.

• We can use trigonometric functions of an angle to find unknown side lengths.

• Select the trigonometric function representing the ratio of the unknown side to the known side. See Example 7.16.

• Right-triangle trigonometry facilitates the measurement of inaccessible heights and distances.

• The unknown height or distance can be found by creating a right triangle in which the unknown height or distance
is one of the sides, and another side and angle are known. See Example 7.17.

7.3 Unit Circle

• Finding the function values for the sine and cosine begins with drawing a unit circle, which is centered at the origin
and has a radius of 1 unit.

• Using the unit circle, the sine of an angle  t  equals the y-value of the endpoint on the unit circle of an arc of length
 t whereas the cosine of an angle  t  equals the x-value of the endpoint. See Example 7.18.
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• The sine and cosine values are most directly determined when the corresponding point on the unit circle falls on an
axis. See Example 7.19.

• When the sine or cosine is known, we can use the Pythagorean Identity to find the other. The Pythagorean Identity
is also useful for determining the sines and cosines of special angles. See Example 7.20.

• Calculators and graphing software are helpful for finding sines and cosines if the proper procedure for entering
information is known. See Example 7.21.

• The domain of the sine and cosine functions is all real numbers.

• The range of both the sine and cosine functions is  [−1, 1].

• The sine and cosine of an angle have the same absolute value as the sine and cosine of its reference angle.

• The signs of the sine and cosine are determined from the x- and y-values in the quadrant of the original angle.

• An angle’s reference angle is the size angle,  t, formed by the terminal side of the angle  t  and the horizontal axis.
See Example 7.22.

• Reference angles can be used to find the sine and cosine of the original angle. See Example 7.23.

• Reference angles can also be used to find the coordinates of a point on a circle. See Example 7.24.

7.4 The Other Trigonometric Functions

• The tangent of an angle is the ratio of the y-value to the x-value of the corresponding point on the unit circle.

• The secant, cotangent, and cosecant are all reciprocals of other functions. The secant is the reciprocal of the cosine
function, the cotangent is the reciprocal of the tangent function, and the cosecant is the reciprocal of the sine
function.

• The six trigonometric functions can be found from a point on the unit circle. See Example 7.25.

• Trigonometric functions can also be found from an angle. See Example 7.26.

• Trigonometric functions of angles outside the first quadrant can be determined using reference angles. See
Example 7.27.

• A function is said to be even if   f (−x) = f (x)  and odd if   f (−x) = − f (x)  for all x in the domain of f.

• Cosine and secant are even; sine, tangent, cosecant, and cotangent are odd.

• Even and odd properties can be used to evaluate trigonometric functions. See Example 7.28.

• The Pythagorean Identity makes it possible to find a cosine from a sine or a sine from a cosine.

• Identities can be used to evaluate trigonometric functions. See Example 7.29 and Example 7.30.

• Fundamental identities such as the Pythagorean Identity can be manipulated algebraically to produce new identities.
See Example 7.31.The trigonometric functions repeat at regular intervals.

• The period  P  of a repeating function   f   is the smallest interval such that   f (x + P) = f (x)  for any value of  x.

• The values of trigonometric functions can be found by mathematical analysis. See Example 7.32 and Example
7.33.

• To evaluate trigonometric functions of other angles, we can use a calculator or computer software. See Example
7.34.

CHAPTER 7 REVIEW EXERCISES
Angles

For the following exercises, convert the angle measures to
degrees.

311. π
4

312. −5π
3

For the following exercises, convert the angle measures to
radians.

313. −210°
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314. 180°

315. Find the length of an arc in a circle of radius 7 meters
subtended by the central angle of  85°.

316. Find the area of the sector of a circle with diameter
32 feet and an angle of  3π

5   radians.

For the following exercises, find the angle between  0°  and
 360°  that is coterminal with the given angle.

317. 420°

318. −80°

For the following exercises, find the angle between 0 and
 2π  in radians that is coterminal with the given angle.

319. − 20π
11

320. 14π
5

For the following exercises, draw the angle provided in
standard position on the Cartesian plane.

321. −210°

322. 75°

323. 5π
4

324. −π
3

325. Find the linear speed of a point on the equator of the
earth if the earth has a radius of 3,960 miles and the earth
rotates on its axis every 24 hours. Express answer in miles
per hour. Round to the nearest hundredth.

326. A car wheel with a diameter of 18 inches spins at the
rate of 10 revolutions per second. What is the car's speed in
miles per hour? Round to the nearest hundredth.

Right Triangle Trigonometry

For the following exercises, use side lengths to evaluate.

327. cos π4

328. cot π3

329. tan π6

330. cos⎛
⎝
π
2

⎞
⎠ = sin(___°)

331. csc(18°) = sec(___°)

For the following exercises, use the given information to
find the lengths of the other two sides of the right triangle.

332. cos B = 3
5, a = 6

333. tan A = 5
9, b = 6

For the following exercises, use Figure 7.72 to evaluate
each trigonometric function.

Figure 7.72

334. sin A

335. tan B

For the following exercises, solve for the unknown sides of
the given triangle.

336.

337.
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338. A 15-ft ladder leans against a building so that the
angle between the ground and the ladder is  70°. How high
does the ladder reach up the side of the building? Find the
answer to four decimal places.

339. The angle of elevation to the top of a building in
Baltimore is found to be 4 degrees from the ground at a
distance of 1 mile from the base of the building. Using
this information, find the height of the building. Find the
answer to four decimal places.

Unit Circle
340. Find the exact value of  sin π3.

341. Find the exact value of  cos π4.

342. Find the exact value of  cos π.

343. State the reference angle for  300°.

344. State the reference angle for  3π
4 .

345. Compute cosine of  330°.

346. Compute sine of  5π
4 .

347. State the domain of the sine and cosine functions.

348. State the range of the sine and cosine functions.

The Other Trigonometric Functions

For the following exercises, find the exact value of the
given expression.

349. cos π6

350. tan π4

351. csc π3

352. sec π4

For the following exercises, use reference angles to
evaluate the given expression.

353. sec 11π
3

354. sec 315°

355. If  sec(t) = −2.5, what is the  sec( − t)?

356. If  tan(t) = −0.6, what is the  tan( − t)?

357. If  tan(t) = 1
3, find  tan(t − π).

358. If  cos(t) = 2
2 , find  sin(t + 2π).

359. Which trigonometric functions are even?

360. Which trigonometric functions are odd?
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CHAPTER 7 PRACTICE TEST
361. Convert  5π

6   radians to degrees.

362. Convert  −620°  to radians.

363. Find the length of a circular arc with a radius 12
centimeters subtended by the central angle of  30°.

364. Find the area of the sector with radius of 8 feet and
an angle of  5π

4   radians.

365. Find the angle between  0°  and  360°  that is
coterminal with  375°.

366. Find the angle between 0 and  2π  in radians that is

coterminal with  − 4π
7 .

367. Draw the angle  315°  in standard position on the
Cartesian plane.

368. Draw the angle  − π
6   in standard position on the

Cartesian plane.

369. A carnival has a Ferris wheel with a diameter of 80
feet. The time for the Ferris wheel to make one revolution
is 75 seconds. What is the linear speed in feet per second
of a point on the Ferris wheel? What is the angular speed in
radians per second?

370. Find the missing sides of the triangle
 ABC : sin B = 3

4, c = 12.

371. Find the missing sides of the triangle.

372. The angle of elevation to the top of a building in
Chicago is found to be 9 degrees from the ground at a

distance of 2000 feet from the base of the building. Using
this information, find the height of the building.

373. Find the exact value of  sin π6.

374. Compute sine of  240°.

375. State the domain of the sine and cosine functions.

376. State the range of the sine and cosine functions.

377. Find the exact value of  cot π4.

378. Find the exact value of  tan π3.

379. Use reference angles to evaluate  csc 7π
4 .

380. Use reference angles to evaluate  tan 210°.

381. If  csc t = 0.68, what is the  csc( − t)?

382. If  cos t = 3
2 , find  cos(t − 2π).

383. Find the missing angle:  cos⎛
⎝
π
6

⎞
⎠ = sin(___)
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8 | PERIODIC FUNCTIONS

Figure 8.1 (credit: "Maxxer_", Flickr)

Chapter Outline
8.1 Graphs of the Sine and Cosine Functions

8.2 Graphs of the Other Trigonometric Functions

8.3 Inverse Trigonometric Functions

Introduction
Each day, the sun rises in an easterly direction, approaches some maximum height relative to the celestial equator, and sets
in a westerly direction. The celestial equator is an imaginary line that divides the visible universe into two halves in much
the same way Earth’s equator is an imaginary line that divides the planet into two halves. The exact path the sun appears to
follow depends on the exact location on Earth, but each location observes a predictable pattern over time.

The pattern of the sun’s motion throughout the course of a year is a periodic function. Creating a visual representation of a
periodic function in the form of a graph can help us analyze the properties of the function. In this chapter, we will investigate
graphs of sine, cosine, and other trigonometric functions.
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8.1 | Graphs of the Sine and Cosine Functions

Learning Objectives

In this section, you will:

8.1.1 Graph variations of y=sin( x ) and y=cos( x ).
8.1.2 Use phase shifts of sine and cosine curves.

Figure 8.2 Light can be separated into colors because of its
wavelike properties. (credit: "wonderferret"/ Flickr)

White light, such as the light from the sun, is not actually white at all. Instead, it is a composition of all the colors of the
rainbow in the form of waves. The individual colors can be seen only when white light passes through an optical prism that
separates the waves according to their wavelengths to form a rainbow.

Light waves can be represented graphically by the sine function. In the chapter on Trigonometric Functions 
(https://cnx.org/content/m49369/latest/) , we examined trigonometric functions such as the sine function. In this 
section, we will interpret and create graphs of sine and cosine functions.

Graphing Sine and Cosine Functions
Recall that the sine and cosine functions relate real number values to the x- and y-coordinates of a point on the unit circle.
So what do they look like on a graph on a coordinate plane? Let’s start with the sine function. We can create a table of
values and use them to sketch a graph. Table 8.1 lists some of the values for the sine function on a unit circle.

x 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

sin(x) 0 1
2

2
2

3
2 1 3

2
2
2

1
2 0

Table 8.1

Plotting the points from the table and continuing along the x-axis gives the shape of the sine function. See Figure 8.3.
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Figure 8.3 The sine function

Notice how the sine values are positive between 0 and  π,  which correspond to the values of the sine function in quadrants
I and II on the unit circle, and the sine values are negative between  π  and  2π,  which correspond to the values of the sine
function in quadrants III and IV on the unit circle. See Figure 8.4.

Figure 8.4 Plotting values of the sine function

Now let’s take a similar look at the cosine function. Again, we can create a table of values and use them to sketch a graph.
Table 8.2 lists some of the values for the cosine function on a unit circle.

x 0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

cos(x) 1 3
2

2
2

1
2 0 −1

2 − 2
2 − 3

2 −1

Table 8.2

As with the sine function, we can plots points to create a graph of the cosine function as in Figure 8.5.

Figure 8.5 The cosine function

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all real numbers.
By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes clear that the range of both
functions must be the interval  [−1, 1].
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In both graphs, the shape of the graph repeats after  2π,  which means the functions are periodic with a period of  2π. A
periodic function is a function for which a specific horizontal shift, P, results in a function equal to the original function:
  f (x + P) = f (x)  for all values of  x  in the domain of   f . When this occurs, we call the smallest such horizontal shift with

 P > 0  the period of the function. Figure 8.6 shows several periods of the sine and cosine functions.

Figure 8.6

Looking again at the sine and cosine functions on a domain centered at the y-axis helps reveal symmetries. As we can see in
Figure 8.7, the sine function is symmetric about the origin. Recall from The Other Trigonometric Functions that we
determined from the unit circle that the sine function is an odd function because  sin(−x) = −sin x.  Now we can clearly
see this property from the graph.

Figure 8.7 Odd symmetry of the sine function

Figure 8.8 shows that the cosine function is symmetric about the y-axis. Again, we determined that the cosine function is
an even function. Now we can see from the graph that cos(−x) = cos x.

Figure 8.8 Even symmetry of the cosine function
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Characteristics of Sine and Cosine Functions

The sine and cosine functions have several distinct characteristics:

• They are periodic functions with a period of  2π.

• The domain of each function is  (−∞, ∞)  and the range is  [−1, 1].

• The graph of  y = sin x  is symmetric about the origin, because it is an odd function.

• The graph of  y = cos x  is symmetric about the  y- axis, because it is an even function.

Investigating Sinusoidal Functions
As we can see, sine and cosine functions have a regular period and range. If we watch ocean waves or ripples on a pond,
we will see that they resemble the sine or cosine functions. However, they are not necessarily identical. Some are taller
or longer than others. A function that has the same general shape as a sine or cosine function is known as a sinusoidal
function. The general forms of sinusoidal functions are

(8.1)y = Asin(Bx − C) + D
              and
y = Acos(Bx − C) + D

Determining the Period of Sinusoidal Functions
Looking at the forms of sinusoidal functions, we can see that they are transformations of the sine and cosine functions. We
can use what we know about transformations to determine the period.

In the general formula,  B  is related to the period by  P = 2π
|B| .  If  |B| > 1,   then the period is less than  2π  and the function

undergoes a horizontal compression, whereas if  |B| < 1,   then the period is greater than  2π  and the function undergoes
a horizontal stretch. For example,   f (x) = sin(x),  B = 1,  so the period is  2π, which we knew. If   f (x) = sin(2x),   then

 B = 2,  so the period is  π  and the graph is compressed. If   f (x) = sin⎛
⎝
x
2

⎞
⎠,   then  B = 1

2,   so the period is  4π  and the graph

is stretched. Notice in Figure 8.9 how the period is indirectly related to  |B|.

Figure 8.9

Period of Sinusoidal Functions

If we let  C = 0  and  D = 0  in the general form equations of the sine and cosine functions, we obtain the forms

y = Asin(Bx)
y = Acos(Bx)

The period is  2π
|B| .
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8.1

Example 8.1

Identifying the Period of a Sine or Cosine Function

Determine the period of the function   f (x) = sin⎛
⎝
π
6x⎞

⎠.

Solution
Let’s begin by comparing the equation to the general form  y = Asin(Bx).

In the given equation,  B = π
6,   so the period will be

P = 2π
|B|

= 2π
π
6

= 2π ⋅ 6
π

= 12

Determine the period of the function  g(x) = cos⎛
⎝
x
3

⎞
⎠.

Determining Amplitude
Returning to the general formula for a sinusoidal function, we have analyzed how the variable  B  relates to the period. Now
let’s turn to the variable  A  so we can analyze how it is related to the amplitude, or greatest distance from rest.  A  represents
the vertical stretch factor, and its absolute value  |A|  is the amplitude. The local maxima will be a distance  |A|  above the
vertical midline of the graph, which is the line  x = D;   because  D = 0  in this case, the midline is the x-axis. The local
minima will be the same distance below the midline. If  |A| > 1,   the function is stretched. For example, the amplitude of

f (x) = 4 sin x  is twice the amplitude of   f (x) = 2 sin x.  If  |A| < 1,   the function is compressed. Figure 8.10 compares

several sine functions with different amplitudes.

Figure 8.10

Amplitude of Sinusoidal Functions

If we let  C = 0  and  D = 0  in the general form equations of the sine and cosine functions, we obtain the forms
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8.2

y = Asin(Bx) and y = Acos(Bx)

The amplitude is  A,   and the vertical height from the midline is  |A|.  In addition, notice in the example that

|A| = amplitude = 12|maximum −  minimum|

Example 8.2

Identifying the Amplitude of a Sine or Cosine Function

What is the amplitude of the sinusoidal function   f (x) = −4sin(x)?   Is the function stretched or compressed

vertically?

Solution
Let’s begin by comparing the function to the simplified form  y = Asin(Bx).

In the given function,  A = −4,   so the amplitude is  |A| = |−4| = 4. The function is stretched.

Analysis
The negative value of  A  results in a reflection across the x-axis of the sine function, as shown in Figure 8.11.

Figure 8.11

What is the amplitude of the sinusoidal function   f (x) = 1
2sin(x)?   Is the function stretched or compressed

vertically?

Analyzing Graphs of Variations of y = sin x and y = cos x
Now that we understand how  A  and  B  relate to the general form equation for the sine and cosine functions, we will explore
the variables  C  and  D. Recall the general form:

y = Asin(Bx − C) + D and y = Acos(Bx − C) + D
or

y = Asin⎛
⎝B

⎛
⎝x − C

B
⎞
⎠
⎞
⎠ + D and y = Acos⎛

⎝B
⎛
⎝x − C

B
⎞
⎠
⎞
⎠ + D

The value  CB   for a sinusoidal function is called the phase shift, or the horizontal displacement of the basic sine or cosine

function. If  C > 0,   the graph shifts to the right. If  C < 0,   the graph shifts to the left. The greater the value of  |C|,   the
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more the graph is shifted. Figure 8.12 shows that the graph of   f (x) = sin(x − π)  shifts to the right by  π  units, which is

more than we see in the graph of   f (x) = sin⎛
⎝x − π

4
⎞
⎠,  which shifts to the right by  π4   units.

Figure 8.12

While  C  relates to the horizontal shift,  D  indicates the vertical shift from the midline in the general formula for a sinusoidal
function. See Figure 8.13. The function  y = cos(x) + D  has its midline at  y = D.

Figure 8.13

Any value of  D  other than zero shifts the graph up or down. Figure 8.14 compares   f (x) = sin x with   f (x) = sin x + 2,
which is shifted 2 units up on a graph.

Figure 8.14

Variations of Sine and Cosine Functions

Given an equation in the form   f (x) = Asin(Bx − C) + D  or   f (x) = Acos(Bx − C) + D, C
B is the phase shift and

 D  is the vertical shift.
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8.3

8.4

Example 8.3

Identifying the Phase Shift of a Function

Determine the direction and magnitude of the phase shift for   f (x) = sin⎛
⎝x + π

6
⎞
⎠ − 2.

Solution
Let’s begin by comparing the equation to the general form  y = Asin(Bx − C) + D.

In the given equation, notice that  B = 1  and  C = − π
6.  So the phase shift is

C
B = −

π
6
1

   = − π
6

or  π6   units to the left.

Analysis
We must pay attention to the sign in the equation for the general form of a sinusoidal function. The equation

shows a minus sign before  C. Therefore   f (x) = sin⎛
⎝x + π

6
⎞
⎠ − 2  can be rewritten as   f (x) = sin⎛

⎝x − ⎛
⎝−

π
6

⎞
⎠
⎞
⎠ − 2. 

If the value of  C  is negative, the shift is to the left.

Determine the direction and magnitude of the phase shift for   f (x) = 3cos⎛
⎝x − π

2
⎞
⎠.

Example 8.4

Identifying the Vertical Shift of a Function

Determine the direction and magnitude of the vertical shift for   f (x) = cos(x) − 3.

Solution
Let’s begin by comparing the equation to the general form  y = Acos(Bx − C) + D.

In the given equation,  D = −3  so the shift is 3 units downward.

Determine the direction and magnitude of the vertical shift for   f (x) = 3sin(x) + 2.
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8.5

Given a sinusoidal function in the form   f (x) = Asin(Bx − C) + D,   identify the midline, amplitude, period,
and phase shift.

1. Determine the amplitude as  |A|.

2. Determine the period as  P = 2π
|B| .

3. Determine the phase shift as  CB .

4. Determine the midline as  y = D.

Example 8.5

Identifying the Variations of a Sinusoidal Function from an Equation

Determine the midline, amplitude, period, and phase shift of the function  y = 3sin(2x) + 1.

Solution
Let’s begin by comparing the equation to the general form  y = Asin(Bx − C) + D.

A = 3,   so the amplitude is  |A| = 3.

Next,  B = 2,   so the period is  P = 2π
|B| = 2π

2 = π.

There is no added constant inside the parentheses, so  C = 0  and the phase shift is  CB = 0
2 = 0.

Finally,  D = 1,   so the midline is  y = 1.

Analysis
Inspecting the graph, we can determine that the period is  π,   the midline is  y = 1,   and the amplitude is 3. See

Figure 8.15.

Figure 8.15

Determine the midline, amplitude, period, and phase shift of the function  y = 1
2cos⎛

⎝
x
3 − π

3
⎞
⎠.
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8.6

Example 8.6

Identifying the Equation for a Sinusoidal Function from a Graph

Determine the formula for the cosine function in Figure 8.16.

Figure 8.16

Solution
To determine the equation, we need to identify each value in the general form of a sinusoidal function.

y = Asin(Bx − C) + D
y = Acos(Bx − C) + D

The graph could represent either a sine or a cosine function that is shifted and/or reflected. When  x = 0,   the
graph has an extreme point,  (0, 0).  Since the cosine function has an extreme point for  x = 0,   let us write our
equation in terms of a cosine function.

Let’s start with the midline. We can see that the graph rises and falls an equal distance above and below  y = 0.5. 
This value, which is the midline, is  D  in the equation, so  D = 0.5.

The greatest distance above and below the midline is the amplitude. The maxima are 0.5 units above the
midline and the minima are 0.5 units below the midline. So  |A| = 0.5. Another way we could have determined
the amplitude is by recognizing that the difference between the height of local maxima and minima is 1, so
 |A| = 1

2 = 0.5. Also, the graph is reflected about the x-axis so that  A = − 0.5.

The graph is not horizontally stretched or compressed, so  B = 1;  and the graph is not shifted horizontally, so
 C = 0.

Putting this all together,

g(x) = − 0.5cos(x) + 0.5

Determine the formula for the sine function in Figure 8.17.

Figure 8.17
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Example 8.7

Identifying the Equation for a Sinusoidal Function from a Graph

Determine the equation for the sinusoidal function in Figure 8.18.

Figure 8.18

Solution
With the highest value at 1 and the lowest value at  −5,   the midline will be halfway between at  −2.  So
 D = −2. 
The distance from the midline to the highest or lowest value gives an amplitude of  |A| = 3.

The period of the graph is 6, which can be measured from the peak at  x = 1  to the next peak at  x = 7, or from

the distance between the lowest points. Therefore, P = 2π
|B| = 6. Using the positive value for  B, we find that

B = 2π
P = 2π

6 = π
3

So far, our equation is either  y = 3sin⎛
⎝
π
3x − C⎞

⎠ − 2  or  y = 3cos⎛
⎝
π
3x − C⎞

⎠ − 2.  For the shape and shift, we have

more than one option. We could write this as any one of the following:

• a cosine shifted to the right

• a negative cosine shifted to the left

• a sine shifted to the left

• a negative sine shifted to the right

While any of these would be correct, the cosine shifts are easier to work with than the sine shifts in this case
because they involve integer values. So our function becomes
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8.7

y = 3cos⎛
⎝
π
3x − π

3
⎞
⎠ − 2 or y = − 3cos⎛

⎝
π
3x + 2π

3
⎞
⎠ − 2

Again, these functions are equivalent, so both yield the same graph.

Write a formula for the function graphed in Figure 8.19.

Figure 8.19

Graphing Variations of y = sin x and y = cos x
Throughout this section, we have learned about types of variations of sine and cosine functions and used that information
to write equations from graphs. Now we can use the same information to create graphs from equations.

Instead of focusing on the general form equations

y = Asin(Bx − C) + D and y = Acos(Bx − C) + D,

we will let  C = 0  and  D = 0  and work with a simplified form of the equations in the following examples.

Given the function  y = Asin(Bx),   sketch its graph.

1. Identify the amplitude,  |A|.

2. Identify the period,  P = 2π
|B| .

3. Start at the origin, with the function increasing to the right if  A  is positive or decreasing if  A  is negative.

4. At  x = π
2|B|   there is a local maximum for  A > 0  or a minimum for  A < 0,  with  y = A.

5. The curve returns to the x-axis at  x = π
|B|.

6. There is a local minimum for  A > 0  (maximum for  A < 0 ) at  x = 3π
2|B|  with  y = – A.

7. The curve returns again to the x-axis at  x = π
2|B|.
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8.8

Example 8.8

Graphing a Function and Identifying the Amplitude and Period

Sketch a graph of   f (x) = − 2sin⎛
⎝
πx
2

⎞
⎠.

Solution
Let’s begin by comparing the equation to the form  y = Asin(Bx).

Step 1. We can see from the equation that  A = − 2, so the amplitude is 2.

|A| = 2

Step 2. The equation shows that  B = π
2,   so the period is

P = 2π
π
2

= 2π ⋅ 2
π

  = 4
Step 3. Because  A  is negative, the graph descends as we move to the right of the origin.
Step 4–7. The x-intercepts are at the beginning of one period,  x = 0,   the horizontal midpoints are at  x = 2  and
at the end of one period at  x = 4.

The quarter points include the minimum at  x = 1  and the maximum at  x = 3. A local minimum will occur 2
units below the midline, at  x = 1,   and a local maximum will occur at 2 units above the midline, at  x = 3.
Figure 8.20 shows the graph of the function.

Figure 8.20

Sketch a graph of  g(x) = − 0.8cos(2x). Determine the midline, amplitude, period, and phase shift.
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Given a sinusoidal function with a phase shift and a vertical shift, sketch its graph.

1. Express the function in the general form  y = Asin(Bx − C) + D or y = Acos(Bx − C) + D.

2. Identify the amplitude,  |A|.

3. Identify the period,  P = 2π
|B| .

4. Identify the phase shift,  CB .

5. Draw the graph of   f (x) = Asin(Bx)  shifted to the right or left by  CB   and up or down by  D.

Example 8.9

Graphing a Transformed Sinusoid

Sketch a graph of   f (x) = 3sin⎛
⎝
π
4x − π

4
⎞
⎠.

Solution

Step 1. The function is already written in general form:   f (x) = 3sin⎛
⎝
π
4x − π

4
⎞
⎠. This graph will have the shape of

a sine function, starting at the midline and increasing to the right.
Step 2.  |A| = |3| = 3. The amplitude is 3.

Step 3. Since  |B| = |π4| = π
4,  we determine the period as follows.

P = 2π
|B| = 2π

π
4

= 2π ⋅ 4
π = 8

The period is 8.

Step 4. Since  C = π
4,   the phase shift is

C
B =

π
4
π
4

= 1.

The phase shift is 1 unit.

Step 5. Figure 8.21 shows the graph of the function.
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8.9

Figure 8.21 A horizontally compressed, vertically stretched,
and horizontally shifted sinusoid

Draw a graph of  g(x) = − 2cos⎛
⎝
π
3x + π

6
⎞
⎠. Determine the midline, amplitude, period, and phase shift.

Example 8.10

Identifying the Properties of a Sinusoidal Function

Given  y = − 2cos⎛
⎝
π
2x + π⎞

⎠ + 3,   determine the amplitude, period, phase shift, and horizontal shift. Then graph

the function.

Solution
Begin by comparing the equation to the general form and use the steps outlined in Example 8.9.

y = Acos(Bx − C) + D

Step 1. The function is already written in general form.
Step 2. Since  A = − 2,   the amplitude is  |A| = 2.

Step 3.  |B| = π
2,   so the period is  P = 2π

|B| = 2π
π
2

= 2π ⋅ 2
π = 4. The period is 4.

Step 4.  C = − π, so we calculate the phase shift as  CB = −π,
π
2

= − π ⋅ 2
π = − 2. The phase shift is  − 2.

Step 5. D = 3, so the midline is  y = 3,  and the vertical shift is up 3.

Since  A  is negative, the graph of the cosine function has been reflected about the x-axis.

Figure 8.22 shows one cycle of the graph of the function.
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Figure 8.22

Using Transformations of Sine and Cosine Functions
We can use the transformations of sine and cosine functions in numerous applications. As mentioned at the beginning of the
chapter, circular motion can be modeled using either the sine or cosine function.

Example 8.11

Finding the Vertical Component of Circular Motion

A point rotates around a circle of radius 3 centered at the origin. Sketch a graph of the y-coordinate of the point
as a function of the angle of rotation.

Solution
Recall that, for a point on a circle of radius r, the y-coordinate of the point is  y = r sin(x),   so in this case, we get

the equation  y(x) = 3 sin(x).  The constant 3 causes a vertical stretch of the y-values of the function by a factor

of 3, which we can see in the graph in Figure 8.23.

Figure 8.23

Analysis
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Notice that the period of the function is still  2π;   as we travel around the circle, we return to the point  (3, 0)  for
 x = 2π, 4π, 6π, .... Because the outputs of the graph will now oscillate between   – 3  and  3,   the amplitude of
the sine wave is  3.

What is the amplitude of the function   f (x) = 7cos(x)?   Sketch a graph of this function.

Example 8.12

Finding the Vertical Component of Circular Motion

A circle with radius 3 ft is mounted with its center 4 ft off the ground. The point closest to the ground is labeled
P, as shown in Figure 8.24. Sketch a graph of the height above the ground of the point  P  as the circle is rotated;
then find a function that gives the height in terms of the angle of rotation.

Figure 8.24

Solution
Sketching the height, we note that it will start 1 ft above the ground, then increase up to 7 ft above the ground,
and continue to oscillate 3 ft above and below the center value of 4 ft, as shown in Figure 8.25.
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Figure 8.25

Although we could use a transformation of either the sine or cosine function, we start by looking for
characteristics that would make one function easier to use than the other. Let’s use a cosine function because it
starts at the highest or lowest value, while a sine function starts at the middle value. A standard cosine starts at
the highest value, and this graph starts at the lowest value, so we need to incorporate a vertical reflection.

Second, we see that the graph oscillates 3 above and below the center, while a basic cosine has an amplitude of 1,
so this graph has been vertically stretched by 3, as in the last example.

Finally, to move the center of the circle up to a height of 4, the graph has been vertically shifted up by 4. Putting
these transformations together, we find that

y = − 3cos(x) + 4
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8.11 A weight is attached to a spring that is then hung from a board, as shown in Figure 8.26. As the spring
oscillates up and down, the position  y  of the weight relative to the board ranges from  –1  in. (at time  x = 0)  to
 –7  in. (at time  x = π)  below the board. Assume the position of  y  is given as a sinusoidal function of  x.  Sketch

a graph of the function, and then find a cosine function that gives the position  y  in terms of  x.

Figure 8.26

Example 8.13

Determining a Rider’s Height on a Ferris Wheel

The London Eye is a huge Ferris wheel with a diameter of 135 meters (443 feet). It completes one rotation every
30 minutes. Riders board from a platform 2 meters above the ground. Express a rider’s height above ground as a
function of time in minutes.

Solution
With a diameter of 135 m, the wheel has a radius of 67.5 m. The height will oscillate with amplitude 67.5 m above
and below the center.

Passengers board 2 m above ground level, so the center of the wheel must be located  67.5 + 2 = 69.5 m above
ground level. The midline of the oscillation will be at 69.5 m.

The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with a period of 30 minutes.

Lastly, because the rider boards at the lowest point, the height will start at the smallest value and increase,
following the shape of a vertically reflected cosine curve.

• Amplitude:  67.5,  so  A = 67.5

• Midline:  69.5,  so  D = 69.5

• Period:  30,  so  B = 2π
30 = π

15

• Shape:  −cos(t)

An equation for the rider’s height would be

y = − 67.5cos⎛
⎝

π
15t⎞⎠ + 69.5

where  t  is in minutes and  y  is measured in meters.
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Access these online resources for additional instruction and practice with graphs of sine and cosine functions.

• Amplitude and Period of Sine and Cosine (http://openstaxcollege.org/l/ampperiod)

• Translations of Sine and Cosine (http://openstaxcollege.org/l/translasincos)

• Graphing Sine and Cosine Transformations (http://openstaxcollege.org/l/
transformsincos)

• Graphing the Sine Function (http://openstaxcollege.org/l/graphsinefunc)
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23.
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8.1 EXERCISES
Verbal

Why are the sine and cosine functions called periodic
functions?

How does the graph of  y = sin x  compare with the

graph of  y = cos x?   Explain how you could horizontally

translate the graph of  y = sin x  to obtain  y = cos x.

For the equation  A cos(Bx + C) + D, what constants
affect the range of the function and how do they affect the
range?

How does the range of a translated sine function relate to
the equation  y = A sin(Bx + C) + D?

How can the unit circle be used to construct the graph of
  f (t) = sin t ?

Graphical
For the following exercises, graph two full periods of each
function and state the amplitude, period, and midline. State
the maximum and minimum y-values and their
corresponding x-values on one period for  x > 0. Round
answers to two decimal places if necessary.

f (x) = 2sin x

f (x) = 2
3cos x

f (x) = − 3sin x

f (x) = 4sin x

f (x) = 2cos x

f (x) = cos(2x)

f (x) = 2 sin⎛
⎝
1
2x⎞

⎠

f (x) = 4 cos(πx)

f (x) = 3 cos⎛
⎝
6
5x⎞

⎠

y = 3 sin(8(x + 4)) + 5

y = 2 sin(3x − 21) + 4

y = 5 sin(5x + 20) − 2

For the following exercises, graph one full period of each
function, starting at  x = 0.  For each function, state the
amplitude, period, and midline. State the maximum and
minimum y-values and their corresponding x-values on one
period for  x > 0.  State the phase shift and vertical
translation, if applicable. Round answers to two decimal
places if necessary.

f (t) = 2sin⎛
⎝t − 5π

6
⎞
⎠

f (t) = − cos⎛
⎝t + π

3
⎞
⎠ + 1

f (t) = 4cos⎛
⎝2

⎛
⎝t + π

4
⎞
⎠
⎞
⎠ − 3

f (t) = − sin⎛
⎝
1
2t + 5π

3
⎞
⎠

f (x) = 4sin⎛
⎝
π
2(x − 3)⎞

⎠ + 7

Determine the amplitude, midline, period, and an
equation involving the sine function for the graph shown in
Figure 8.27.

Figure 8.27

Determine the amplitude, period, midline, and an
equation involving cosine for the graph shown in Figure
8.28.
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25.

26.

27.

28.

29.

Figure 8.28

Determine the amplitude, period, midline, and an
equation involving cosine for the graph shown in Figure
8.29.

Figure 8.29

Determine the amplitude, period, midline, and an
equation involving sine for the graph shown in Figure
8.30.

Figure 8.30

Determine the amplitude, period, midline, and an
equation involving cosine for the graph shown in Figure
8.31.

Figure 8.31

Determine the amplitude, period, midline, and an
equation involving sine for the graph shown in Figure
8.32.

Figure 8.32
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30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Determine the amplitude, period, midline, and an equation
involving cosine for the graph shown in Figure 8.33.

Figure 8.33

Determine the amplitude, period, midline, and an
equation involving sine for the graph shown in Figure
8.34.

Figure 8.34

Algebraic
For the following exercises, let   f (x) = sin x.

On  ⎡⎣0, 2π), solve   f (x) = 0.

On  ⎡⎣0, 2π), solve   f (x) = 1
2.

Evaluate   f ⎛
⎝
π
2

⎞
⎠.

On  [0, 2π), f (x) = 2
2 .  Find all values of  x.

On  ⎡⎣0, 2π), the maximum value(s) of the function
occur(s) at what x-value(s)?

On  ⎡⎣0, 2π), the minimum value(s) of the function
occur(s) at what x-value(s)?

Show that   f (−x) = − f (x). This means that

  f (x) = sin x  is an odd function and possesses symmetry

with respect to ________________.

For the following exercises, let   f (x) = cos x.

On  ⎡⎣0, 2π), solve the equation   f (x) = cos x = 0.

On  ⎡⎣0, 2π), solve   f (x) = 1
2.

On  ⎡⎣0, 2π), find the x-intercepts of   f (x) = cos x.

On  ⎡⎣0, 2π), find the x-values at which the function has
a maximum or minimum value.

On  ⎡⎣0, 2π), solve the equation   f (x) = 3
2 .

Technology

Graph  h(x) = x + sin x  on  [0, 2π]. Explain why the
graph appears as it does.

Graph  h(x) = x + sin x  on  [−100, 100]. Did the
graph appear as predicted in the previous exercise?

Graph   f (x) = x sin x  on  [0, 2π]  and verbalize how

the graph varies from the graph of   f (x) = sin x.

Graph   f (x) = x sin x  on the window  [−10, 10]  and

explain what the graph shows.

Graph   f (x) = sin x
x   on the window  ⎡⎣−5π, 5π⎤

⎦  and

explain what the graph shows.

Real-World Applications

A Ferris wheel is 25 meters in diameter and boarded
from a platform that is 1 meter above the ground. The six
o’clock position on the Ferris wheel is level with the
loading platform. The wheel completes 1 full revolution in
10 minutes. The function  h(t)  gives a person’s height in
meters above the ground t minutes after the wheel begins to
turn.

a. Find the amplitude, midline, and period of  h(t).

b. Find a formula for the height function  h(t).

c. How high off the ground is a person after 5
minutes?
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8.2 | Graphs of the Other Trigonometric Functions

Learning Objectives

In this section, you will:

8.2.1 Analyze the graph of y=tan x.
8.2.2 Graph variations of y=tan x.
8.2.3 Analyze the graphs of y=sec x and y=csc x.
8.2.4 Graph variations of y=sec x and y=csc x.
8.2.5 Analyze the graph of y=cot x.
8.2.6 Graph variations of y=cot x.

We know the tangent function can be used to find distances, such as the height of a building, mountain, or flagpole. But what
if we want to measure repeated occurrences of distance? Imagine, for example, a police car parked next to a warehouse.
The rotating light from the police car would travel across the wall of the warehouse in regular intervals. If the input is time,
the output would be the distance the beam of light travels. The beam of light would repeat the distance at regular intervals.
The tangent function can be used to approximate this distance. Asymptotes would be needed to illustrate the repeated cycles
when the beam runs parallel to the wall because, seemingly, the beam of light could appear to extend forever. The graph of
the tangent function would clearly illustrate the repeated intervals. In this section, we will explore the graphs of the tangent
and other trigonometric functions.

Analyzing the Graph of y = tan x
We will begin with the graph of the tangent function, plotting points as we did for the sine and cosine functions. Recall that

tan x = sin x
cos x

The period of the tangent function is  π  because the graph repeats itself on intervals of  kπ where  k  is a constant. If we
graph the tangent function on  − π

2   to  
π
2,  we can see the behavior of the graph on one complete cycle. If we look at any

larger interval, we will see that the characteristics of the graph repeat.

We can determine whether tangent is an odd or even function by using the definition of tangent.

tan(−x) = sin(−x)
cos(−x) Definition of angent.

             = −sin x
cos x Sine is an odd function, cosine is even.

             = − sin x
cos x The quotient of an odd and an even function is odd.

             = − tan x Definition of angent.

Therefore, tangent is an odd function. We can further analyze the graphical behavior of the tangent function by looking at
values for some of the special angles, as listed in Table 8.3.

x −π
2 −π

3 −π
4 −π

6 0
π
6

π
4

π
3

π
2

tan(x) undefined − 3 –1 − 3
3 0 3

3 1 3 undefined

Table 8.3

These points will help us draw our graph, but we need to determine how the graph behaves where it is undefined. If we
look more closely at values when  π3 < x < π

2,  we can use a table to look for a trend. Because  π3 ≈ 1.05  and  π2 ≈ 1.57,  
we will evaluate  x  at radian measures  1.05 < x < 1.57  as shown in Table 8.4.
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x 1.3 1.5 1.55 1.56

tan  x 3.6 14.1 48.1 92.6

Table 8.4

As  x  approaches  π2,   the outputs of the function get larger and larger. Because  y = tan x  is an odd function, we see the

corresponding table of negative values in Table 8.5.

x −1.3 −1.5 −1.55 −1.56

tan x −3.6 −14.1 −48.1 −92.6

Table 8.5

We can see that, as  x  approaches  − π
2,   the outputs get smaller and smaller. Remember that there are some values of  x  for

which  cos x = 0.  For example,  cos⎛
⎝
π
2

⎞
⎠ = 0  and  cos⎛

⎝
3π
2

⎞
⎠ = 0. At these values, the tangent function is undefined, so the

graph of  y = tan x  has discontinuities at  x = π
2 and 3π

2 . At these values, the graph of the tangent has vertical asymptotes.

Figure 8.35 represents the graph of  y = tan x. The tangent is positive from 0 to  π2   and from  π  to  3π
2 ,   corresponding to

quadrants I and III of the unit circle.

Figure 8.35 Graph of the tangent function

Graphing Variations of y = tan x
As with the sine and cosine functions, the tangent function can be described by a general equation.

y = Atan(Bx)

We can identify horizontal and vertical stretches and compressions using values of  A  and  B. The horizontal stretch can
typically be determined from the period of the graph. With tangent graphs, it is often necessary to determine a vertical
stretch using a point on the graph.

Because there are no maximum or minimum values of a tangent function, the term amplitude cannot be interpreted as it
is for the sine and cosine functions. Instead, we will use the phrase stretching/compressing factor when referring to the
constant  A.
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Features of the Graph of y = Atan(Bx)

• The stretching factor is  |A|.

• The period is  P = π
|B|.

• The domain is all real numbers  x, where  x ≠ π
2|B| + π

|B|k  such that  k  is an integer.

• The range is  (−∞, ∞).

• The asymptotes occur at  x = π
2|B| + π

|B|k,  where  k  is an integer.

• y = Atan(Bx)  is an odd function.

Graphing One Period of a Stretched or Compressed Tangent Function
We can use what we know about the properties of the tangent function to quickly sketch a graph of any stretched and/
or compressed tangent function of the form   f (x) = Atan(Bx). We focus on a single period of the function including the

origin, because the periodic property enables us to extend the graph to the rest of the function’s domain if we wish. Our

limited domain is then the interval  ⎛⎝−P
2 , P

2
⎞
⎠  and the graph has vertical asymptotes at  ± P

2  where  P = π
B. On  ⎛⎝−π

2, π
2

⎞
⎠,  

the graph will come up from the left asymptote at  x = − π
2,   cross through the origin, and continue to increase as it

approaches the right asymptote at  x = π
2. To make the function approach the asymptotes at the correct rate, we also need to

set the vertical scale by actually evaluating the function for at least one point that the graph will pass through. For example,
we can use

f ⎛
⎝
P
4

⎞
⎠ = Atan⎛

⎝B
P
4

⎞
⎠ = Atan⎛

⎝B
π

4B
⎞
⎠ = A

because  tan⎛
⎝
π
4

⎞
⎠ = 1.

Given the function   f(x) = Atan(Bx),   graph one period.

1. Identify the stretching factor,  |A|.

2. Identify  B  and determine the period,  P = π
|B|.

3. Draw vertical asymptotes at  x = − P
2   and  x = P

2 .

4. For  A > 0,   the graph approaches the left asymptote at negative output values and the right asymptote at
positive output values (reverse for  A < 0 ).

5. Plot reference points at  ⎛⎝P
4 , A⎞

⎠,   (0, 0),   and  ⎛⎝−P
4 ,−A⎞

⎠,   and draw the graph through these points.

Example 8.14

Sketching a Compressed Tangent

Sketch a graph of one period of the function  y = 0.5tan⎛
⎝
π
2x⎞

⎠.
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(8.2)

8.12

Solution
First, we identify  A  and  B.

Because  A = 0.5  and  B = π
2,  we can find the stretching/compressing factor and period. The period is  ππ

2
= 2,

so the asymptotes are at  x = ± 1. At a quarter period from the origin, we have

f (0.5) = 0.5tan⎛
⎝
0.5π

2
⎞
⎠

= 0.5tan⎛
⎝
π
4

⎞
⎠

= 0.5

This means the curve must pass through the points  (0.5, 0.5), (0, 0), and  (−0.5, −0.5). The only inflection
point is at the origin. Figure 8.36 shows the graph of one period of the function.

Figure 8.36

Sketch a graph of   f (x) = 3tan⎛
⎝
π
6x⎞

⎠.

Graphing One Period of a Shifted Tangent Function
Now that we can graph a tangent function that is stretched or compressed, we will add a vertical and/or horizontal (or phase)
shift. In this case, we add  C  and  D  to the general form of the tangent function.

(8.3)f (x) = Atan(Bx − C) + D

The graph of a transformed tangent function is different from the basic tangent function  tan x  in several ways:

Features of the Graph of y = Atan(Bx−C)+D

• The stretching factor is  |A|.

• The period is   π
|B|.

• The domain is  x ≠ C
B + π

|B|k, where  k  is an integer.
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• The range is  (−∞, − |A|] ∪ [|A|, ∞).

• The vertical asymptotes occur at  x = C
B + π

2|B|k, where  k  is an odd integer.

• There is no amplitude.

• y = A tan(Bx)  is and odd function because it is the qoutient of odd and even functions(sin and cosine

perspectively).

Given the function  y = Atan(Bx − C) + D,   sketch the graph of one period.

1. Express the function given in the form  y = Atan(Bx − C) + D.

2. Identify the stretching/compressing factor,  |A|.

3. Identify  B  and determine the period,  P = π
|B|.

4. Identify  C  and determine the phase shift,  CB .

5. Draw the graph of  y = Atan(Bx)  shifted to the right by  CB   and up by  D.

6. Sketch the vertical asymptotes, which occur at  x = C
B + π

2|B|k, where  k is an odd integer.

7. Plot any three reference points and draw the graph through these points.

Example 8.15

Graphing One Period of a Shifted Tangent Function

Graph one period of the function  y = −2tan(πx + π) −1.

Solution
Step 1. The function is already written in the form  y = Atan(Bx − C) + D.

Step 2.  A = −2,   so the stretching factor is  |A| = 2.

Step 3.  B = π,   so the period is  P = π
|B| = π

π = 1.

Step 4.  C = − π,   so the phase shift is  CB = −π
π = −1.

Step 5-7. The asymptotes are at  x = − 3
2   and  x = − 1

2   and the three recommended reference points are

 (−1.25, 1),   (−1,−1),   and  (−0.75,−3). The graph is shown in Figure 8.37.
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Figure 8.37

Analysis
Note that this is a decreasing function because  A < 0.

How would the graph in Example 8.15 look different if we made  A = 2  instead of  −2?

Given the graph of a tangent function, identify horizontal and vertical stretches.

1. Find the period  P  from the spacing between successive vertical asymptotes or x-intercepts.

2. Write   f (x) = Atan⎛
⎝
π
Px⎞

⎠.

3. Determine a convenient point  (x, f (x))  on the given graph and use it to determine  A.

Example 8.16

Identifying the Graph of a Stretched Tangent

Find a formula for the function graphed in Figure 8.38.

Figure 8.38 A stretched tangent function

Solution
The graph has the shape of a tangent function.

Step 1. One cycle extends from –4 to 4, so the period is  P = 8.  Since  P = π
|B|,  we have  B = π

P = π
8.
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Step 2. The equation must have the form f (x) = Atan⎛
⎝
π
8x⎞

⎠.

Step 3. To find the vertical stretch  A, we can use the point  (2, 2).

2 = Atan⎛
⎝
π
8 ⋅ 2⎞

⎠ = Atan⎛
⎝
π
4

⎞
⎠

Because  tan⎛
⎝
π
4

⎞
⎠ = 1,   A = 2.

This function would have a formula   f (x) = 2tan⎛
⎝
π
8x⎞

⎠.

Find a formula for the function in Figure 8.39.

Figure 8.39

Analyzing the Graphs of y = sec x and y = cscx
The secant was defined by the reciprocal identity  sec x = 1

cos x. Notice that the function is undefined when the cosine is 0,

leading to vertical asymptotes at  π2,   3π
2 ,   etc. Because the cosine is never more than 1 in absolute value, the secant, being

the reciprocal, will never be less than 1 in absolute value.

We can graph  y = sec x  by observing the graph of the cosine function because these two functions are reciprocals of one

another. See Figure 8.40. The graph of the cosine is shown as a dashed orange wave so we can see the relationship. Where
the graph of the cosine function decreases, the graph of the secant function increases. Where the graph of the cosine function
increases, the graph of the secant function decreases. When the cosine function is zero, the secant is undefined.

The secant graph has vertical asymptotes at each value of  x where the cosine graph crosses the x-axis; we show these in
the graph below with dashed vertical lines, but will not show all the asymptotes explicitly on all later graphs involving the
secant and cosecant.

Note that, because cosine is an even function, secant is also an even function. That is,  sec(−x) = sec x.
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Figure 8.40 Graph of the secant function,

f (x) = secx = 1
cosx

As we did for the tangent function, we will again refer to the constant  |A|  as the stretching factor, not the amplitude.

Features of the Graph of y = Asec(Bx)

• The stretching factor is  |A|.

• The period is  2π
|B| .

• The domain is  x ≠ π
2|B|k,  where  k  is an odd integer.

• The range is  ( − ∞, − |A|] ∪ [|A|, ∞).

• The vertical asymptotes occur at  x = π
2|B|k,  where  k  is an odd integer.

• There is no amplitude.

• y = Asec(Bx)  is an even function because cosine is an even function.

Similar to the secant, the cosecant is defined by the reciprocal identity  csc x = 1
sin x. Notice that the function is undefined

when the sine is 0, leading to a vertical asymptote in the graph at  0,   π,   etc. Since the sine is never more than 1 in absolute
value, the cosecant, being the reciprocal, will never be less than 1 in absolute value.

We can graph  y = csc x  by observing the graph of the sine function because these two functions are reciprocals of one

another. See Figure 8.41. The graph of sine is shown as a dashed orange wave so we can see the relationship. Where the
graph of the sine function decreases, the graph of the cosecant function increases. Where the graph of the sine function
increases, the graph of the cosecant function decreases.

The cosecant graph has vertical asymptotes at each value of  x where the sine graph crosses the x-axis; we show these in the
graph below with dashed vertical lines.

Note that, since sine is an odd function, the cosecant function is also an odd function. That is,  csc(−x) = −cscx.

The graph of cosecant, which is shown in Figure 8.41, is similar to the graph of secant.
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Figure 8.41 The graph of the cosecant function,

  f (x) = cscx = 1
sinx

Features of the Graph of y = Acsc(Bx)

• The stretching factor is  |A|.

• The period is  2π
|B| .

• The domain is  x ≠ π
|B|k,  where  k  is an integer.

• The range is (−∞, − |A|] ∪ [|A|, ∞).

• The asymptotes occur at  x = π
|B|k,  where  k  is an integer.

• y = Acsc(Bx)  is an odd function because sine is an odd function.

Graphing Variations of y = sec x and y= csc x
For shifted, compressed, and/or stretched versions of the secant and cosecant functions, we can follow similar methods to
those we used for tangent and cotangent. That is, we locate the vertical asymptotes and also evaluate the functions for a few
points (specifically the local extrema). If we want to graph only a single period, we can choose the interval for the period
in more than one way. The procedure for secant is very similar, because the cofunction identity means that the secant graph
is the same as the cosecant graph shifted half a period to the left. Vertical and phase shifts may be applied to the cosecant
function in the same way as for the secant and other functions.The equations become the following.

(8.4)y = Asec(Bx − C) + D
(8.5)y = Acsc(Bx − C) + D

Features of the Graph of y = Asec(Bx−C)+D

• The stretching factor is  |A|.

• The period is  2π
|B| .

• The domain is  x ≠ C
B + π

2|B|k, where  k  is an odd integer.

• The range is  ( − ∞, − |A|] ∪ [|A|, ∞).

Chapter 8 Periodic Functions 933



• The vertical asymptotes occur at  x = C
B + π

2|B|k, where  k  is an odd integer.

• There is no amplitude.

• y = Asec(Bx)  is an even function because cosine is an even function.

Features of the Graph of y = Acsc(Bx−C)+D

• The stretching factor is  |A|.

• The period is  2π
|B| .

• The domain is  x ≠ C
B + π

2|B|k, where  k  is an integer.

• The range is  ( − ∞, − |A|] ∪ [|A|, ∞).

• The vertical asymptotes occur at  x = C
B + π

|B|k, where  k  is an integer.

• There is no amplitude.

• y = Acsc(Bx)  is an odd function because sine is an odd function.

Given a function of the form  y = Asec(Bx),   graph one period.

1. Express the function given in the form  y = Asec(Bx).

2. Identify the stretching/compressing factor,  |A|.

3. Identify  B  and determine the period,  P = 2π
|B| .

4. Sketch the graph of  y = Acos(Bx).

5. Use the reciprocal relationship between  y = cos x  and  y = sec x  to draw the graph of  y = Asec(Bx).

6. Sketch the asymptotes.

7. Plot any two reference points and draw the graph through these points.

Example 8.17

Graphing a Variation of the Secant Function

Graph one period of   f (x) = 2.5sec(0.4x).

Solution
Step 1. The given function is already written in the general form,  y = Asec(Bx).

Step 2.  A = 2.5  so the stretching factor is  2.5.

Step 3.  B = 0.4  so  P = 2π
0.4 = 5π. The period is  5π  units.

Step 4. Sketch the graph of the function  g(x) = 2.5cos(0.4x).
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8.15

Step 5. Use the reciprocal relationship of the cosine and secant functions to draw the cosecant function.
Steps 6–7. Sketch two asymptotes at  x = 1.25π  and  x = 3.75π. We can use two reference points, the local
minimum at  (0, 2.5)  and the local maximum at  (2.5π, −2.5). Figure 8.42 shows the graph.

Figure 8.42

Graph one period of   f (x) = − 2.5sec(0.4x).

Do the vertical shift and stretch/compression affect the secant’s range?

Yes. The range of   f (x) = Asec(Bx − C) + D  is (−∞, − |A| + D] ∪ [|A| + D, ∞).

Given a function of the form   f(x) = Asec(Bx − C) + D,   graph one period.

1. Express the function given in the form  y = A sec(Bx − C) + D.

2. Identify the stretching/compressing factor,  |A|.

3. Identify  B  and determine the period,  2π
|B| .

4. Identify  C  and determine the phase shift,  CB .

5. Draw the graph of  y = A sec(Bx) . but shift it to the right by  CB   and up by  D.

6. Sketch the vertical asymptotes, which occur at  x = C
B + π

2|B|k, where  k  is an odd integer.
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Example 8.18

Graphing a Variation of the Secant Function

Graph one period of  y = 4sec⎛
⎝
π
3x − π

2
⎞
⎠ + 1.

Solution

Step 1. Express the function given in the form  y = 4sec⎛
⎝
π
3x − π

2
⎞
⎠ + 1.

Step 2. The stretching/compressing factor is |A| = 4.
Step 3. The period is

2π
|B| = 2π

π
3

= 2π
1 ⋅ 3

π
= 6

Step 4. The phase shift is

C
B =

π
2
π
3

= π
2 ⋅ 3

π
   = 1.5

Step 5. Draw the graph of  y = Asec(Bx), but shift it to the right by  CB = 1.5  and up by  D = 6.

Step 6. Sketch the vertical asymptotes, which occur at  x = 0, x = 3, and  x = 6. There is a local minimum at
 (1.5, 5)  and a local maximum at  (4.5, − 3). Figure 8.43 shows the graph.

Figure 8.43

Graph one period of   f (x) = − 6sec(4x + 2) − 8.
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The domain of  csc x was given to be all  x  such that  x ≠ kπ  for any integer  k. Would the domain of

 y = Acsc(Bx − C) + D be x ≠ C + kπ
B ?

Yes. The excluded points of the domain follow the vertical asymptotes. Their locations show the horizontal shift
and compression or expansion implied by the transformation to the original function’s input.

Given a function of the form  y = Acsc(Bx),   graph one period.

1. Express the function given in the form  y = Acsc(Bx).

2.  |A|.

3. Identify  B  and determine the period,  P = 2π
|B| .

4. Draw the graph of  y = Asin(Bx).

5. Use the reciprocal relationship between  y = sin x  and  y = csc x  to draw the graph of  y = Acsc(Bx).

6. Sketch the asymptotes.

7. Plot any two reference points and draw the graph through these points.

Example 8.19

Graphing a Variation of the Cosecant Function

Graph one period of   f (x) = −3csc(4x).

Solution
Step 1. The given function is already written in the general form,  y = Acsc(Bx).

Step 2.  |A| = |−3| = 3, so the stretching factor is 3.

Step 3.  B = 4, so  P = 2π
4 = π

2. The period is  π2   units.

Step 4. Sketch the graph of the function  g(x) = −3sin(4x).

Step 5. Use the reciprocal relationship of the sine and cosecant functions to draw the cosecant function.
Steps 6–7. Sketch three asymptotes at  x = 0,  x = π

4,   and  x = π
2. We can use two reference points, the local

maximum at  ⎛⎝π
8, −3⎞

⎠  and the local minimum at  ⎛⎝3π
8 , 3⎞

⎠. Figure 8.44 shows the graph.
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Figure 8.44

Graph one period of   f (x) = 0.5csc(2x).

Given a function of the form   f(x) = Acsc(Bx − C) + D,   graph one period.

1. Express the function given in the form  y = Acsc(Bx − C) + D.

2. Identify the stretching/compressing factor,  |A|.

3. Identify  B  and determine the period,  2π
|B| .

4. Identify  C  and determine the phase shift,  CB .

5. Draw the graph of  y = Acsc(Bx)  but shift it to the right by and up by  D.

6. Sketch the vertical asymptotes, which occur at  x = C
B + π

|B|k, where  k  is an integer.
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Example 8.20

Graphing a Vertically Stretched, Horizontally Compressed, and Vertically Shifted
Cosecant

Sketch a graph of  y = 2csc⎛
⎝
π
2x⎞

⎠ + 1. What are the domain and range of this function?

Solution

Step 1. Express the function given in the form  y = 2csc⎛
⎝
π
2x⎞

⎠ + 1.

Step 2. Identify the stretching/compressing factor,  |A| = 2.

Step 3. The period is  2π
|B| = 2π

π
2

= 2π
1 ⋅ 2

π = 4.

Step 4. The phase shift is  0π
2

= 0.

Step 5. Draw the graph of  y = Acsc(Bx)  but shift it up  D = 1.

Step 6. Sketch the vertical asymptotes, which occur at  x = 0, x = 2, x = 4.
The graph for this function is shown in Figure 8.45.

Figure 8.45 A transformed cosecant function

Analysis
The vertical asymptotes shown on the graph mark off one period of the function, and the local extrema in
this interval are shown by dots. Notice how the graph of the transformed cosecant relates to the graph of

  f (x) = 2sin⎛
⎝
π
2x⎞

⎠ + 1, shown as the orange dashed wave.
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8.18 Given the graph of   f (x) = 2cos⎛
⎝
π
2x⎞

⎠ + 1  shown in Figure 8.46, sketch the graph of

 g(x) = 2sec⎛
⎝
π
2x⎞

⎠ + 1  on the same axes.

Figure 8.46

Analyzing the Graph of y = cot x
The last trigonometric function we need to explore is cotangent. The cotangent is defined by the reciprocal identity
 cot x = 1

tan x. Notice that the function is undefined when the tangent function is 0, leading to a vertical asymptote in the

graph at  0, π,   etc. Since the output of the tangent function is all real numbers, the output of the cotangent function is also
all real numbers.

We can graph  y = cot x  by observing the graph of the tangent function because these two functions are reciprocals of one

another. See Figure 8.47. Where the graph of the tangent function decreases, the graph of the cotangent function increases.
Where the graph of the tangent function increases, the graph of the cotangent function decreases.

The cotangent graph has vertical asymptotes at each value of  x where  tan x = 0;  we show these in the graph below with
dashed lines. Since the cotangent is the reciprocal of the tangent,  cot x  has vertical asymptotes at all values of  x where
 tan x = 0,   and  cot x = 0  at all values of  x where  tan x  has its vertical asymptotes.
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Figure 8.47 The cotangent function

Features of the Graph of y = Acot(Bx)

• The stretching factor is  |A|.

• The period is  P = π
|B|.

• The domain is  x ≠ π
|B|k,  where  k  is an integer.

• The range is  (−∞, ∞).

• The asymptotes occur at  x = π
|B|k,  where  k  is an integer.

• y = Acot(Bx)  is an odd function.

Graphing Variations of y = cot x
We can transform the graph of the cotangent in much the same way as we did for the tangent. The equation becomes the
following.

(8.6)y = Acot(Bx − C) + D

Properties of the Graph of y = Acot(Bx−C)+D

• The stretching factor is  |A|.

• The period is   π
|B|.

• The domain is  x ≠ C
B + π

|B|k, where  k  is an integer.

• The range is  (−∞, − |A|] ∪ [|A|, ∞).

• The vertical asymptotes occur at  x = C
B + π

|B|k, where  k  is an integer.

• There is no amplitude.
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• y = Acot(Bx)  is an odd function because it is the quotient of even and odd functions (cosine and sine,

respectively)

Given a modified cotangent function of the form   f(x) = Acot(Bx), graph one period.

1. Express the function in the form   f (x) = Acot(Bx).

2. Identify the stretching factor,  |A|.

3. Identify the period,  P = π
|B|.

4. Draw the graph of  y = Atan(Bx).

5. Plot any two reference points.

6. Use the reciprocal relationship between tangent and cotangent to draw the graph of  y = Acot(Bx).

7. Sketch the asymptotes.

Example 8.21

Graphing Variations of the Cotangent Function

Determine the stretching factor, period, and phase shift of  y = 3cot(4x),   and then sketch a graph.

Solution
Step 1. Expressing the function in the form   f (x) = Acot(Bx)  gives   f (x) = 3cot(4x).

Step 2. The stretching factor is  |A| = 3.

Step 3. The period is  P = π
4.

Step 4. Sketch the graph of  y = 3tan(4x).

Step 5. Plot two reference points. Two such points are  ⎛⎝ π
16, 3⎞

⎠  and  ⎛⎝3π
16, −3⎞

⎠.

Step 6. Use the reciprocal relationship to draw  y = 3cot(4x).

Step 7. Sketch the asymptotes,  x = 0,   x = π
4.

The orange graph in Figure 8.48 shows  y = 3tan(4x)  and the blue graph shows  y = 3cot(4x).
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Figure 8.48

Given a modified cotangent function of the form   f(x) = Acot(Bx − C) + D,   graph one period.

1. Express the function in the form   f (x) = Acot(Bx − C) + D.

2. Identify the stretching factor,  |A|.

3. Identify the period,  P = π
|B|.

4. Identify the phase shift,  CB .

5. Draw the graph of  y = Atan(Bx)  shifted to the right by  CB   and up by  D.

6. Sketch the asymptotes  x = C
B + π

|B|k, where  k  is an integer.

7. Plot any three reference points and draw the graph through these points.

Example 8.22

Graphing a Modified Cotangent

Sketch a graph of one period of the function   f (x) = 4cot⎛⎝
π
8x − π

2
⎞
⎠ − 2.
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Solution
Step 1. The function is already written in the general form   f (x) = Acot(Bx − C) + D.

Step 2.  A = 4, so the stretching factor is 4.

Step 3.  B = π
8, so the period is  P = π

|B| = π
π
8

= 8.

Step 4.  C = π
2, so the phase shift is  CB =

π
2
π
8

= 4.

Step 5. We draw   f (x) = 4tan⎛
⎝
π
8x − π

2
⎞
⎠ − 2.

Step 6-7. Three points we can use to guide the graph are  (6, 2), (8, − 2),   and  (10, − 6). We use the

reciprocal relationship of tangent and cotangent to draw   f (x) = 4cot⎛⎝
π
8x − π

2
⎞
⎠ − 2.

Step 8. The vertical asymptotes are  x = 4  and  x = 12.
The graph is shown in Figure 8.49.

Figure 8.49 One period of a modified cotangent function

Using the Graphs of Trigonometric Functions to Solve Real-World
Problems
Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an example,
let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating light on a
police car and wondered about the movement of the light beam itself across the wall? The periodic behavior of the distance
the light shines as a function of time is obvious, but how do we determine the distance? We can use the tangent function.

Example 8.23

Using Trigonometric Functions to Solve Real-World Scenarios

Suppose the function  y = 5tan⎛
⎝
π
4 t⎞⎠ marks the distance in the movement of a light beam from the top of a police

car across a wall where  t  is the time in seconds and  y  is the distance in feet from a point on the wall directly

across from the police car.

a. Find and interpret the stretching factor and period.
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b. Graph on the interval  ⎡⎣0, 5⎤
⎦.

c. Evaluate   f (1)  and discuss the function’s value at that input.

Solution
a. We know from the general form of  y = Atan(Bt)  that  |A|  is the stretching factor and  πB   is the period.

Figure 8.50

We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half the
period.

The period is  ππ
4

= π
1 ⋅ 4

π = 4. This means that every 4 seconds, the beam of light sweeps the wall. The

distance from the spot across from the police car grows larger as the police car approaches.

b. To graph the function, we draw an asymptote at  t = 2  and use the stretching factor and period. See
Figure 8.51

Figure 8.51

c. period:   f (1) = 5tan⎛
⎝
π
4(1)⎞

⎠ = 5(1) = 5;   after 1 second, the beam of has moved 5 ft from the spot across

from the police car.

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.

• Graphing the Tangent (http://openstaxcollege.org/l/graphtangent)

• Graphing Cosecant and Secant (http://openstaxcollege.org/l/graphcscsec)

• Graphing the Cotangent (http://openstaxcollege.org/l/graphcot)

Chapter 8 Periodic Functions 945

http://openstaxcollege.org/l/graphtangent
http://openstaxcollege.org/l/graphcscsec
http://openstaxcollege.org/l/graphcot


49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

8.2 EXERCISES
Verbal

Explain how the graph of the sine function can be used
to graph  y = csc x.

How can the graph of  y = cos x  be used to construct

the graph of  y = sec x?

Explain why the period of  tan x  is equal to  π.

Why are there no intercepts on the graph of
 y = csc x?

How does the period of  y = csc x  compare with the

period of  y = sin x?

Algebraic
For the following exercises, match each trigonometric
function with one of the following graphs.

f (x) = tan x

f (x) = sec x

f (x) = csc x

f (x) = cot x

For the following exercises, find the period and horizontal
shift of each of the functions.

f (x) = 2tan(4x − 32)

h(x) = 2sec⎛
⎝
π
4(x + 1)⎞

⎠

m(x) = 6csc⎛
⎝
π
3x + π⎞

⎠

If  tan x = −1.5,   find  tan(−x).

If  sec x = 2,   find  sec(−x).

If  csc x = −5,   find  csc(−x).
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64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

If  xsin x = 2,   find  (−x)sin(−x).

For the following exercises, rewrite each expression such
that the argument  x  is positive.

cot(−x)cos(−x) + sin(−x)

cos(−x) + tan(−x)sin(−x)

Graphical
For the following exercises, sketch two periods of the graph
for each of the following functions. Identify the stretching
factor, period, and asymptotes.

f (x) = 2tan(4x − 32)

 h(x) = 2sec⎛
⎝
π
4(x + 1)⎞

⎠ 

m(x) = 6csc⎛
⎝
π
3x + π⎞

⎠

j(x) = tan⎛
⎝
π
2x⎞

⎠

p(x) = tan⎛
⎝x − π

2
⎞
⎠

f (x) = 4tan(x)

f (x) = tan⎛
⎝x + π

4
⎞
⎠

f (x) = πtan(πx − π) − π

f (x) = 2csc(x)

f (x) = − 1
4csc(x)

f (x) = 4sec(3x)

f (x) = − 3cot(2x)

f (x) = 7sec(5x)

f (x) = 9
10csc(πx)

f (x) = 2csc⎛
⎝x + π

4
⎞
⎠ − 1

f (x) = − sec⎛
⎝x − π

3
⎞
⎠ − 2

f (x) = 7
5csc⎛

⎝x − π
4

⎞
⎠

f (x) = 5⎛
⎝cot⎛⎝x + π

2
⎞
⎠ − 3⎞

⎠

For the following exercises, find and graph two periods of
the periodic function with the given stretching factor,  |A|,  
period, and phase shift.

A tangent curve,  A = 1,   period of  π3;   and phase

shift  (h,  k) = ⎛
⎝
π
4, 2⎞

⎠

A tangent curve,  A = −2,   period of  π4,   and phase

shift  (h,  k) = ⎛
⎝−

π
4,  −2⎞

⎠

For the following exercises, find an equation for the graph
of each function.
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91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Technology
For the following exercises, use a graphing calculator to
graph two periods of the given function. Note: most
graphing calculators do not have a cosecant button;
therefore, you will need to input  csc x  as   1

sin x.

f (x) = |csc(x)|

f (x) = |cot(x)|

f (x) = 2csc(x)

f (x) = csc(x)
sec(x)

Graph   f (x) = 1 + sec2 (x) − tan2 (x). What is the

function shown in the graph?

f (x) = sec(0.001x)

f (x) = cot(100πx)

f (x) = sin2 x + cos2 x

Real-World Applications
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103.

104.

105.

The function   f (x) = 20tan⎛
⎝

π
10x⎞

⎠ marks the distance in the

movement of a light beam from a police car across a wall
for time  x,   in seconds, and distance   f (x), in feet.

a. Graph on the interval  ⎡⎣0,  5⎤
⎦.

b. Find and interpret the stretching factor, period, and
asymptote.

c. Evaluate   f (1)  and   f (2.5)  and discuss the

function’s values at those inputs.

Standing on the shore of a lake, a fisherman sights a
boat far in the distance to his left. Let  x,  measured in
radians, be the angle formed by the line of sight to the ship
and a line due north from his position. Assume due north is
0 and  x  is measured negative to the left and positive to the
right. (See Figure 8.52.) The boat travels from due west to
due east and, ignoring the curvature of the Earth, the
distance  d(x),   in kilometers, from the fisherman to the
boat is given by the function  d(x) = 1.5sec(x).

a. What is a reasonable domain for  d(x)?

b. Graph  d(x)  on this domain.

c. Find and discuss the meaning of any vertical
asymptotes on the graph of  d(x).

d. Calculate and interpret  d⎛
⎝−

π
3

⎞
⎠. Round to the

second decimal place.

e. Calculate and interpret  d⎛
⎝
π
6

⎞
⎠. Round to the second

decimal place.

f. What is the minimum distance between the
fisherman and the boat? When does this occur?

Figure 8.52

A laser rangefinder is locked on a comet approaching
Earth. The distance  g(x),   in kilometers, of the comet after

 x  days, for  x  in the interval 0 to 30 days, is given by

 g(x) = 250,000csc⎛
⎝

π
30x⎞

⎠.

a. Graph  g(x)  on the interval  ⎡⎣0,  35⎤
⎦.

b. Evaluate  g(5)  and interpret the information.

c. What is the minimum distance between the comet
and Earth? When does this occur? To which
constant in the equation does this correspond?

d. Find and discuss the meaning of any vertical
asymptotes.

A video camera is focused on a rocket on a launching
pad 2 miles from the camera. The angle of elevation from
the ground to the rocket after  x  seconds is   π

120x.

a. Write a function expressing the altitude  h(x),   in
miles, of the rocket above the ground after  x 
seconds. Ignore the curvature of the Earth.

b. Graph  h(x)  on the interval  (0,  60).

c. Evaluate and interpret the values  h(0)  and  h(30).

d. What happens to the values of  h(x)  as  x 
approaches 60 seconds? Interpret the meaning of
this in terms of the problem.

Chapter 8 Periodic Functions 949



8.3 | Inverse Trigonometric Functions

Learning Objectives

In this section, you will:

8.3.1 Understand and use the inverse sine, cosine, and tangent functions.
8.3.2 Find the exact value of expressions involving the inverse sine, cosine, and tangent
functions.
8.3.3 Use a calculator to evaluate inverse trigonometric functions.
8.3.4 Find exact values of composite functions with inverse trigonometric functions.

For any right triangle, given one other angle and the length of one side, we can figure out what the other angles and sides
are. But what if we are given only two sides of a right triangle? We need a procedure that leads us from a ratio of sides to
an angle. This is where the notion of an inverse to a trigonometric function comes into play. In this section, we will explore
the inverse trigonometric functions.

Understanding and Using the Inverse Sine, Cosine, and Tangent
Functions
In order to use inverse trigonometric functions, we need to understand that an inverse trigonometric function “undoes” what
the original trigonometric function “does,” as is the case with any other function and its inverse. In other words, the domain
of the inverse function is the range of the original function, and vice versa, as summarized in Figure 8.53.

Figure 8.53

For example, if   f (x) = sin x,   then we would write   f −1(x) = sin−1 x. Be aware that  sin−1 x  does not mean   1
sinx. The

following examples illustrate the inverse trigonometric functions:

• Since  sin⎛
⎝
π
6

⎞
⎠ = 1

2,   then  π6 = sin−1 ⎛
⎝
1
2

⎞
⎠.

• Since  cos(π) = − 1,   then  π = cos−1 (−1).

• Since  tan⎛
⎝
π
4

⎞
⎠ = 1,   then  π4 = tan−1 (1).

In previous sections, we evaluated the trigonometric functions at various angles, but at times we need to know what angle
would yield a specific sine, cosine, or tangent value. For this, we need inverse functions. Recall that, for a one-to-one
function, if   f (a) = b,   then an inverse function would satisfy   f −1(b) = a.

Bear in mind that the sine, cosine, and tangent functions are not one-to-one functions. The graph of each function would
fail the horizontal line test. In fact, no periodic function can be one-to-one because each output in its range corresponds to at
least one input in every period, and there are an infinite number of periods. As with other functions that are not one-to-one,
we will need to restrict the domain of each function to yield a new function that is one-to-one. We choose a domain for each

function that includes the number 0. Figure 8.54 shows the graph of the sine function limited to  ⎡⎣−π
2, π

2
⎤
⎦  and the graph

of the cosine function limited to  [0, π].
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Figure 8.54 (a) Sine function on a restricted domain of

 ⎡⎣−π
2, π

2
⎤
⎦;   (b) Cosine function on a restricted domain of

 [0, π]

Figure 8.55 shows the graph of the tangent function limited to  ⎛⎝−π
2, π

2
⎞
⎠.

Figure 8.55 Tangent function on a restricted domain of

 ⎛⎝−π
2, π

2
⎞
⎠

These conventional choices for the restricted domain are somewhat arbitrary, but they have important, helpful
characteristics. Each domain includes the origin and some positive values, and most importantly, each results in a one-to-
one function that is invertible. The conventional choice for the restricted domain of the tangent function also has the useful
property that it extends from one vertical asymptote to the next instead of being divided into two parts by an asymptote.

On these restricted domains, we can define the inverse trigonometric functions.

• The inverse sine function  y = sin−1 x means  x = sin y. The inverse sine function is sometimes called the arcsine
function, and notated  arcsinx.

y = sin−1 x has domain [−1, 1] and range ⎡⎣−π
2, π

2
⎤
⎦

• The inverse cosine function  y = cos−1 x means  x = cos y. The inverse cosine function is sometimes called the

arccosine function, and notated  arccos x.

y = cos−1 x has domain [−1, 1] and range [0, π]

• The inverse tangent function  y = tan−1 x means  x = tan y. The inverse tangent function is sometimes called the

arctangent function, and notated  arctan x.
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y = tan−1 x has domain (−∞, ∞) and range ⎛⎝−π
2, π

2
⎞
⎠

The graphs of the inverse functions are shown in Figure 8.56, Figure 8.57, and Figure 8.58. Notice that the output
of each of these inverse functions is a number, an angle in radian measure. We see that  sin−1 x  has domain  [−1, 1]  and

range  ⎡⎣−π
2, π

2
⎤
⎦, cos−1 x  has domain  [−1,1]  and range  [0, π],   and  tan−1 x  has domain of all real numbers and range

 ⎛⎝−π
2, π

2
⎞
⎠. To find the domain and range of inverse trigonometric functions, switch the domain and range of the original

functions. Each graph of the inverse trigonometric function is a reflection of the graph of the original function about the line
 y = x.

Figure 8.56 The sine function and inverse sine (or arcsine) function

Figure 8.57 The cosine function and inverse cosine (or
arccosine) function
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8.19

Figure 8.58 The tangent function and inverse tangent (or
arctangent) function

Relations for Inverse Sine, Cosine, and Tangent Functions

For angles in the interval  ⎡⎣−π
2, π

2
⎤
⎦,   if  sin y = x,   then  sin−1 x = y.

For angles in the interval  [0, π],   if  cos y = x,   then  cos−1 x = y.

For angles in the interval  ⎛⎝−π
2, π

2
⎞
⎠,   if  tan y = x,   then  tan−1 x = y.

Example 8.24

Writing a Relation for an Inverse Function

Given  sin⎛
⎝
5π
12

⎞
⎠ ≈ 0.96593,  write a relation involving the inverse sine.

Solution

Use the relation for the inverse sine. If  sin y = x,   then  sin−1 x = y .

In this problem,  x = 0.96593,   and  y = 5π
12.

sin−1(0.96593) ≈ 5π
12

Given  cos(0.5) ≈ 0.8776, write a relation involving the inverse cosine.
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Finding the Exact Value of Expressions Involving the Inverse Sine,
Cosine, and Tangent Functions
Now that we can identify inverse functions, we will learn to evaluate them. For most values in their domains, we must
evaluate the inverse trigonometric functions by using a calculator, interpolating from a table, or using some other numerical
technique. Just as we did with the original trigonometric functions, we can give exact values for the inverse functions when
we are using the special angles, specifically  π6   (30°),  π4   (45°), and  π3   (60°), and their reflections into other quadrants.

Given a “special” input value, evaluate an inverse trigonometric function.

1. Find angle  x  for which the original trigonometric function has an output equal to the given input for the
inverse trigonometric function.

2. If  x  is not in the defined range of the inverse, find another angle  y  that is in the defined range and has the

same sine, cosine, or tangent as  x, depending on which corresponds to the given inverse function.

Example 8.25

Evaluating Inverse Trigonometric Functions for Special Input Values

Evaluate each of the following.

a. sin−1 ⎛
⎝
1
2

⎞
⎠

b. sin−1 ⎛
⎝− 2

2
⎞
⎠

c. cos−1 ⎛
⎝− 3

2
⎞
⎠

d. tan−1 (1)

Solution

a. Evaluating  sin−1 ⎛
⎝
1
2

⎞
⎠  is the same as determining the angle that would have a sine value of  12.  In other

words, what angle  x would satisfy  sin(x) = 1
2 ?  There are multiple values that would satisfy this

relationship, such as  π6   and  5π
6 ,   but we know we need the angle in the interval  ⎡⎣−π

2, π
2

⎤
⎦,   so the answer

will be  sin−1 ⎛
⎝
1
2

⎞
⎠ = π

6. Remember that the inverse is a function, so for each input, we will get exactly

one output.

b. To evaluate  sin−1 ⎛
⎝− 2

2
⎞
⎠,  we know that  5π

4   and  7π
4   both have a sine value of  − 2

2 ,   but neither is in

the interval  ⎡⎣−π
2, π

2
⎤
⎦.  For that, we need the negative angle coterminal with  7π

4 : sin−1( − 2
2 ) = − π

4. 

c. To evaluate  cos−1 ⎛
⎝− 3

2
⎞
⎠,  we are looking for an angle in the interval  [0, π] with a cosine value of

 − 3
2 . The angle that satisfies this is  cos−1 ⎛

⎝− 3
2

⎞
⎠ = 5π

6 .
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8.21

d. Evaluating  tan−1 (1),  we are looking for an angle in the interval  ⎛⎝−π
2, π

2
⎞
⎠ with a tangent value of 1.

The correct angle is  tan−1 (1) = π
4.

Evaluate each of the following.

a. sin−1(−1)

b. tan−1 (−1)

c. cos−1 (−1)

d. cos−1 ⎛
⎝
1
2

⎞
⎠

Using a Calculator to Evaluate Inverse Trigonometric Functions
To evaluate inverse trigonometric functions that do not involve the special angles discussed previously, we will need to
use a calculator or other type of technology. Most scientific calculators and calculator-emulating applications have specific
keys or buttons for the inverse sine, cosine, and tangent functions. These may be labeled, for example, SIN-1, ARCSIN, or
ASIN.

In the previous chapter, we worked with trigonometry on a right triangle to solve for the sides of a triangle given one side
and an additional angle. Using the inverse trigonometric functions, we can solve for the angles of a right triangle given two
sides, and we can use a calculator to find the values to several decimal places.

In these examples and exercises, the answers will be interpreted as angles and we will use  θ  as the independent variable.
The value displayed on the calculator may be in degrees or radians, so be sure to set the mode appropriate to the application.

Example 8.26

Evaluating the Inverse Sine on a Calculator

Evaluate  sin−1(0.97)  using a calculator.

Solution
Because the output of the inverse function is an angle, the calculator will give us a degree value if in degree mode
and a radian value if in radian mode. Calculators also use the same domain restrictions on the angles as we are
using.

In radian mode,  sin−1(0.97) ≈ 1.3252.  In degree mode,  sin−1(0.97) ≈ 75.93°. Note that in calculus and
beyond we will use radians in almost all cases.

Evaluate  cos−1 (−0.4)  using a calculator.
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Given two sides of a right triangle like the one shown in Figure 8.59, find an angle.

Figure 8.59

1. If one given side is the hypotenuse of length  h  and the side of length  a  adjacent to the desired angle is

given, use the equation   θ = cos−1 ⎛
⎝
a
h

⎞
⎠.

2. If one given side is the hypotenuse of length  h  and the side of length  p  opposite to the desired angle is

given, use the equation  θ = sin−1 ⎛
⎝
p
h

⎞
⎠.

3. If the two legs (the sides adjacent to the right angle) are given, then use the equation  θ = tan−1 ⎛
⎝
p
a

⎞
⎠.

Example 8.27

Applying the Inverse Cosine to a Right Triangle

Solve the triangle in Figure 8.60 for the angle  θ.

Figure 8.60

Solution
Because we know the hypotenuse and the side adjacent to the angle, it makes sense for us to use the cosine
function.

cos θ = 9
12

θ = cos−1( 9
12) Apply definition of he inverse .

 θ ≈ 0.7227 or about 41.4096° Evaluate.
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8.22 Solve the triangle in Figure 8.61 for the angle  θ.

Figure 8.61

Finding Exact Values of Composite Functions with Inverse
Trigonometric Functions
There are times when we need to compose a trigonometric function with an inverse trigonometric function. In these cases,
we can usually find exact values for the resulting expressions without resorting to a calculator. Even when the input to
the composite function is a variable or an expression, we can often find an expression for the output. To help sort out
different cases, let   f (x)  and  g(x)  be two different trigonometric functions belonging to the set  {sin(x), cos(x), tan(x)} 
and let   f −1(y)  and  g−1(y) be their inverses.

Evaluating Compositions of the Form f(f−1(y)) and f−1(f(x))

For any trigonometric function,   f ⎛
⎝ f −1 (y)⎞

⎠ = y  for all  y  in the proper domain for the given function. This follows from the

definition of the inverse and from the fact that the range of   f  was defined to be identical to the domain of   f −1. However,

we have to be a little more careful with expressions of the form   f −1 ⎛
⎝ f (x)⎞

⎠.

Compositions of a trigonometric function and its inverse

  sin(sin−1 x) = x for − 1 ≤ x ≤ 1
cos(cos−1 x) = x for − 1 ≤ x ≤ 1
 tan(tan−1 x) = x for − ∞ < x < ∞

 sin−1(sin x) = x only for − π
2 ≤ x ≤ π

2
cos−1(cos x) = x only for 0 ≤ x ≤ π

 tan−1(tan x ) = x only for − π
2 < x < π

2

Is it correct that  sin−1(sin x) = x?

No. This equation is correct if  x  belongs to the restricted domain  ⎡⎣− π
2, π

2
⎤
⎦,   but sine is defined for all real

input values, and for  x  outside the restricted interval, the equation is not correct because its inverse always

returns a value in  ⎡⎣− π
2, π

2
⎤
⎦.  The situation is similar for cosine and tangent and their inverses. For example,

 sin−1 ⎛
⎝sin⎛

⎝
3π
4

⎞
⎠
⎞
⎠ = π

4.

Chapter 8 Periodic Functions 957



8.23

Given an expression of the form f−1(f(θ)) where   f(θ) = sin θ,  cos θ,  or tan θ,   evaluate.

1. If  θ  is in the restricted domain of   f ,  then f −1( f (θ)) = θ.

2. If not, then find an angle  ϕ within the restricted domain of   f   such that   f (ϕ) = f (θ). Then

  f −1 ⎛
⎝ f (θ)⎞

⎠ = ϕ.

Example 8.28

Using Inverse Trigonometric Functions

Evaluate the following:

1. sin−1 ⎛
⎝sin⎛

⎝
π
3

⎞
⎠
⎞
⎠

2. sin−1 ⎛
⎝sin⎛

⎝
2π
3

⎞
⎠
⎞
⎠

3. cos−1 ⎛
⎝cos⎛

⎝
2π
3

⎞
⎠
⎞
⎠

4. cos−1 ⎛
⎝cos⎛

⎝−
π
3

⎞
⎠
⎞
⎠

Solution

a. π
3 is in ⎡⎣−

π
2, π

2
⎤
⎦,   so  sin−1 ⎛

⎝sin⎛
⎝
π
3

⎞
⎠
⎞
⎠ = π

3.

b. 2π
3  is not in ⎡⎣−

π
2, π

2
⎤
⎦,   but  sin⎛

⎝
2π
3

⎞
⎠ = sin⎛

⎝
π
3

⎞
⎠,   so  sin−1 ⎛

⎝sin⎛
⎝
2π
3

⎞
⎠
⎞
⎠ = π

3.

c. 2π
3  is in [0, π],   so  cos−1 ⎛

⎝cos⎛
⎝
2π
3

⎞
⎠
⎞
⎠ = 2π

3 .

d. −π
3 is not in [0, π],   but  cos⎛

⎝−
π
3

⎞
⎠ = cos⎛

⎝
π
3

⎞
⎠  because cosine is an even function.

e. π
3 is in [0, π],   so  cos−1 ⎛

⎝cos⎛
⎝−

π
3

⎞
⎠
⎞
⎠ = π

3.

Evaluate  tan−1 ⎛
⎝tan⎛

⎝
π
8

⎞
⎠
⎞
⎠ and tan−1 ⎛

⎝tan⎛
⎝
11π

9
⎞
⎠
⎞
⎠.

Evaluating Compositions of the Form f−1(g(x))
Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a
trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form
  f −1 ⎛

⎝g(x)⎞
⎠.  For special values of  x, we can exactly evaluate the inner function and then the outer, inverse function.

However, we can find a more general approach by considering the relation between the two acute angles of a right triangle
where one is  θ,  making the other  π2 − θ. Consider the sine and cosine of each angle of the right triangle in Figure 8.62.
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Figure 8.62 Right triangle illustrating the cofunction
relationships

Because  cos θ = b
c = sin⎛

⎝
π
2 − θ⎞

⎠,  we have  sin−1 (cos θ) = π
2 − θ  if  0 ≤ θ ≤ π.  If  θ  is not in this domain, then we need

to find another angle that has the same cosine as  θ  and does belong to the restricted domain; we then subtract this angle

from  π2. Similarly,  sin θ = a
c = cos⎛

⎝
π
2 − θ⎞

⎠,   so  cos−1 (sin θ) = π
2 − θ  if  − π

2 ≤ θ ≤ π
2. These are just the function-

cofunction relationships presented in another way.

Given functions of the form  sin−1 (cos x)  and  cos−1 (sin x),   evaluate them.

1. If  x is in [0, π],   then  sin−1 (cos x) = π
2 − x.

2. If  x is not in [0, π],   then find another angle  y in [0, π]  such that  cos y = cos x.

sin−1 (cos x) = π
2 − y

3. If  x is in ⎡⎣−
π
2, π

2
⎤
⎦,   then  cos−1 (sin x) = π

2 − x.

4. If  x is not in ⎡⎣−π
2, π

2
⎤
⎦,   then find another angle  y in ⎡⎣−

π
2, π

2
⎤
⎦  such that  sin y = sin x.

cos−1 (sin x) = π
2 − y

Example 8.29

Evaluating the Composition of an Inverse Sine with a Cosine

Evaluate  sin−1 ⎛
⎝cos⎛

⎝
13π

6
⎞
⎠
⎞
⎠

a. by direct evaluation.

b. by the method described previously.

Solution
a. Here, we can directly evaluate the inside of the composition.

cos(13π
6 ) = cos(π

6 + 2π)

               = cos(π
6)

               = 3
2

Now, we can evaluate the inverse function as we did earlier.

Chapter 8 Periodic Functions 959



8.24

sin−1 ⎛
⎝

3
2

⎞
⎠ = π

3

b. We have  x = 13π
6 , y = π

6,   and

sin−1 ⎛
⎝cos⎛

⎝
13π

6
⎞
⎠
⎞
⎠ = π

2 − π
6

= π
3       

Evaluate  cos−1 ⎛
⎝sin⎛

⎝−
11π

4
⎞
⎠
⎞
⎠.

Evaluating Compositions of the Form f(g−1(x))

To evaluate compositions of the form   f ⎛
⎝g−1 (x)⎞

⎠,  where   f   and  g  are any two of the functions sine, cosine, or tangent and

 x  is any input in the domain of  g−1,  we have exact formulas, such as  sin⎛
⎝cos−1 x⎞

⎠ = 1 − x2. When we need to use

them, we can derive these formulas by using the trigonometric relations between the angles and sides of a right triangle,
together with the use of Pythagoras’s relation between the lengths of the sides. We can use the Pythagorean identity,
 sin2 x + cos2 x = 1,   to solve for one when given the other. We can also use the inverse trigonometric functions to find
compositions involving algebraic expressions.

Example 8.30

Evaluating the Composition of a Sine with an Inverse Cosine

Find an exact value for  sin⎛
⎝cos−1 ⎛

⎝
4
5

⎞
⎠
⎞
⎠.

Solution

Beginning with the inside, we can say there is some angle such that  θ = cos−1 ⎛
⎝
4
5

⎞
⎠,  which means  cos θ = 4

5,

and we are looking for  sin θ. We can use the Pythagorean identity to do this.

sin2 θ + cos2 θ = 1 Use our known value for cosine.

 sin2 θ + (4
5)

2
= 1 Solve for sine.

  sin2 θ = 1 − 16
25

  sin θ = ± 9
25 = ± 3

5

Since  θ = cos−1 ⎛
⎝
4
5

⎞
⎠  is in quadrant I,  sin θ must be positive, so the solution is  35.  See Figure 8.63.
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8.25

Figure 8.63 Right triangle illustrating that if  cos θ = 4
5,  

then  sin θ = 3
5  

We know that the inverse cosine always gives an angle on the interval  [0, π],   so we know that the sine of that

angle must be positive; therefore  sin⎛
⎝cos−1 ⎛

⎝
4
5

⎞
⎠
⎞
⎠ = sin θ = 3

5.

Evaluate  cos⎛
⎝tan−1 ⎛

⎝
5
12

⎞
⎠
⎞
⎠.

Example 8.31

Evaluating the Composition of a Sine with an Inverse Tangent

Find an exact value for  sin⎛
⎝tan−1 ⎛

⎝
7
4

⎞
⎠
⎞
⎠.

Solution
While we could use a similar technique as in Example 8.29, we will demonstrate a different technique here.
From the inside, we know there is an angle such that  tan θ = 7

4. We can envision this as the opposite and adjacent

sides on a right triangle, as shown in Figure 8.64.

Figure 8.64 A right triangle with two sides known

Using the Pythagorean Theorem, we can find the hypotenuse of this triangle.
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8.27

      42 + 72 = hypotenuse2

hypotenuse = 65

Now, we can evaluate the sine of the angle as the opposite side divided by the hypotenuse.

sin θ = 7
65

This gives us our desired composition.

sin⎛
⎝tan−1 ⎛

⎝
7
4

⎞
⎠
⎞
⎠ = sin θ

= 7
65

= 7 65
65

Evaluate  cos⎛
⎝sin−1 ⎛

⎝
7
9

⎞
⎠
⎞
⎠.

Example 8.32

Finding the Cosine of the Inverse Sine of an Algebraic Expression

Find a simplified expression for  cos⎛
⎝sin−1 ⎛

⎝
x
3

⎞
⎠
⎞
⎠  for  − 3 ≤ x ≤ 3.

Solution
We know there is an angle  θ  such that  sin θ = x

3.

sin2 θ + cos2 θ = 1 Use the Pythagorean Theorem.

⎛
⎝
x
3

⎞
⎠

2
+ cos2 θ = 1 Solve for cosine.

 cos2 θ = 1 − x2

9

  cosθ = ± 9 − x2

9 = ± 9 − x2

3

Because we know that the inverse sine must give an angle on the interval  ⎡⎣−π
2, π

2
⎤
⎦,  we can deduce that the

cosine of that angle must be positive.

cos⎛
⎝sin−1 ⎛

⎝
x
3

⎞
⎠
⎞
⎠ = 9 − x2

3

Find a simplified expression for  sin⎛
⎝tan−1 (4x)⎞

⎠  for  − 1
4 ≤ x ≤ 1

4.
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Access this online resource for additional instruction and practice with inverse trigonometric functions.

• Evaluate Expressions Involving Inverse Trigonometric Functions
(http://openstaxcollege.org/l/evalinverstrig)

Visit this website (http://openstaxcollege.org/l/PreCalcLPC06) for additional practice questions from
Learningpod.
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106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

8.3 EXERCISES
Verbal

Why do the functions   f (x) = sin−1 x  and

 g(x) = cos−1 x  have different ranges?

Since the functions  y = cos x  and  y = cos−1 x  are

inverse functions, why is  cos−1 ⎛
⎝cos⎛

⎝−
π
6

⎞
⎠
⎞
⎠  not equal to

− π
6 ?

Explain the meaning of  π6 = arcsin(0.5).

Most calculators do not have a key to evaluate
 sec−1 (2). Explain how this can be done using the cosine
function or the inverse cosine function.

Why must the domain of the sine function,  sin x,   be

restricted to  ⎡⎣−π
2, π

2
⎤
⎦  for the inverse sine function to exist?

Discuss why this statement is incorrect:
 arccos(cos x) = x  for all  x.

Determine whether the following statement is true or
false and explain your answer:
arccos(−x) = π − arccos x.

Algebraic
For the following exercises, evaluate the expressions.

sin−1 ⎛
⎝

2
2

⎞
⎠

sin−1 ⎛
⎝−

1
2

⎞
⎠

cos−1 ⎛
⎝
1
2

⎞
⎠

cos−1 ⎛
⎝− 2

2
⎞
⎠

tan−1 (1)

tan−1 ⎛
⎝− 3⎞

⎠

tan−1 (−1)

tan−1 ⎛
⎝ 3⎞

⎠

tan−1 ⎛
⎝
−1

3
⎞
⎠

For the following exercises, use a calculator to evaluate
each expression. Express answers to the nearest hundredth.

cos−1 (−0.4)

arcsin(0.23)

arccos⎛
⎝
3
5

⎞
⎠

cos−1 (0.8)

tan−1 (6)

For the following exercises, find the angle  θ  in the given
right triangle. Round answers to the nearest hundredth.

For the following exercises, find the exact value, if
possible, without a calculator. If it is not possible, explain
why.

sin−1 (cos(π))

tan−1 ⎛
⎝sin(π)⎞

⎠

cos−1 ⎛
⎝sin⎛

⎝
π
3

⎞
⎠
⎞
⎠

tan−1 ⎛
⎝sin⎛

⎝
π
3

⎞
⎠
⎞
⎠

sin−1 ⎛
⎝cos⎛

⎝
−π
2

⎞
⎠
⎞
⎠

tan−1 ⎛
⎝sin⎛

⎝
4π
3

⎞
⎠
⎞
⎠
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135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

sin−1 ⎛
⎝sin⎛

⎝
5π
6

⎞
⎠
⎞
⎠

tan−1 ⎛
⎝sin⎛

⎝
−5π

2
⎞
⎠
⎞
⎠

cos⎛
⎝sin−1 ⎛

⎝
4
5

⎞
⎠
⎞
⎠

sin⎛
⎝cos−1 ⎛

⎝
3
5

⎞
⎠
⎞
⎠

sin⎛
⎝tan−1 ⎛

⎝
4
3

⎞
⎠
⎞
⎠

cos⎛
⎝tan−1 ⎛

⎝
12
5

⎞
⎠
⎞
⎠

cos⎛
⎝sin−1 ⎛

⎝
1
2

⎞
⎠
⎞
⎠

For the following exercises, find the exact value of the
expression in terms of  x  with the help of a reference
triangle.

tan⎛
⎝sin−1 (x − 1)⎞

⎠

sin⎛
⎝cos−1 (1 − x)⎞

⎠

cos⎛
⎝sin−1 ⎛

⎝
1
x

⎞
⎠
⎞
⎠

cos⎛
⎝tan−1 (3x − 1)⎞

⎠

tan⎛
⎝sin−1 ⎛

⎝x + 1
2

⎞
⎠
⎞
⎠

Extensions
For the following exercises, evaluate the expression
without using a calculator. Give the exact value.

sin−1 ⎛
⎝
1
2

⎞
⎠ − cos−1 ⎛

⎝
2

2
⎞
⎠ + sin−1 ⎛

⎝
3
2

⎞
⎠ − cos−1 (1)

cos−1 ⎛
⎝

3
2

⎞
⎠ − sin−1 ⎛

⎝
2
2

⎞
⎠ + cos−1 ⎛

⎝
1
2

⎞
⎠ − sin−1 (0)

For the following exercises, find the function if
 sin t = x

x + 1.

cos t

sec t

cot t

cos⎛
⎝sin−1 ⎛

⎝
x

x + 1
⎞
⎠
⎞
⎠

tan−1 ⎛
⎝

x
2x + 1

⎞
⎠

Graphical

Graph  y = sin−1 x  and state the domain and range of

the function.

Graph  y = arccos x  and state the domain and range

of the function.

Graph one cycle of  y = tan−1 x  and state the domain

and range of the function.

For what value of  x  does  sin x = sin−1 x?  Use a
graphing calculator to approximate the answer.

For what value of  x  does  cos x = cos−1 x?  Use a
graphing calculator to approximate the answer.

Real-World Applications

Suppose a 13-foot ladder is leaning against a building,
reaching to the bottom of a second-floor window 12 feet
above the ground. What angle, in radians, does the ladder
make with the building?

Suppose you drive 0.6 miles on a road so that the
vertical distance changes from 0 to 150 feet. What is the
angle of elevation of the road?

An isosceles triangle has two congruent sides of
length 9 inches. The remaining side has a length of 8
inches. Find the angle that a side of 9 inches makes with the
8-inch side.

Without using a calculator, approximate the value of
 arctan(10,000). Explain why your answer is reasonable.

A truss for the roof of a house is constructed from two
identical right triangles. Each has a base of 12 feet and
height of 4 feet. Find the measure of the acute angle
adjacent to the 4-foot side.

The line  y = 3
5x  passes through the origin in the x,y-

plane. What is the measure of the angle that the line makes
with the positive x-axis?

The line  y = −3
7 x  passes through the origin in the

x,y-plane. What is the measure of the angle that the line
makes with the negative x-axis?

What percentage grade should a road have if the angle
of elevation of the road is 4 degrees? (The percentage grade
is defined as the change in the altitude of the road over a
100-foot horizontal distance. For example a 5% grade
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166.

167.

means that the road rises 5 feet for every 100 feet of
horizontal distance.)

A 20-foot ladder leans up against the side of a
building so that the foot of the ladder is 10 feet from the
base of the building. If specifications call for the ladder's
angle of elevation to be between 35 and 45 degrees, does
the placement of this ladder satisfy safety specifications?

Suppose a 15-foot ladder leans against the side of a
house so that the angle of elevation of the ladder is 42
degrees. How far is the foot of the ladder from the side of
the house?
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amplitude

arccosine

arcsine

arctangent

inverse cosine function

inverse sine function

inverse tangent function

midline

periodic function

phase shift

sinusoidal function

CHAPTER 8 REVIEW

KEY TERMS
the vertical height of a function; the constant  A  appearing in the definition of a sinusoidal function

another name for the inverse cosine;  arccos x = cos−1 x

another name for the inverse sine;  arcsin x = sin−1 x

another name for the inverse tangent;  arctan x = tan−1 x

the function  cos−1 x,  which is the inverse of the cosine function and the angle that has a
cosine equal to a given number

the function  sin−1 x,  which is the inverse of the sine function and the angle that has a sine equal
to a given number

the function  tan−1 x,  which is the inverse of the tangent function and the angle that has a
tangent equal to a given number

the horizontal line  y = D,  where  D  appears in the general form of a sinusoidal function

a function   f (x)  that satisfies   f (x + P) = f (x)  for a specific constant  P  and any value of  x

the horizontal displacement of the basic sine or cosine function; the constant  CB
any function that can be expressed in the form   f (x) = Asin(Bx − C) + D  or

  f (x) = Acos(Bx − C) + D

KEY EQUATIONS

Sinusoidal functions
f (x) = Asin(Bx − C) + D
f (x) = Acos(Bx − C) + D

Shifted, compressed, and/or stretched tangent function y = A tan(Bx − C) + D

Shifted, compressed, and/or stretched secant function y = A sec(Bx − C) + D

Shifted, compressed, and/or stretched cosecant function y = A csc(Bx − C) + D

Shifted, compressed, and/or stretched cotangent function y = A cot(Bx − C) + D

KEY CONCEPTS
8.1 Graphs of the Sine and Cosine Functions

• Periodic functions repeat after a given value. The smallest such value is the period. The basic sine and cosine
functions have a period of  2π.
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• The function sin x  is odd, so its graph is symmetric about the origin. The function  cos x  is even, so its graph is
symmetric about the y-axis.

• The graph of a sinusoidal function has the same general shape as a sine or cosine function.

• In the general formula for a sinusoidal function, the period is  P = 2π
|B| .  See Example 8.1.

• In the general formula for a sinusoidal function,  |A|  represents amplitude. If  |A| > 1,   the function is stretched,
whereas if  |A| < 1,   the function is compressed. See Example 8.2.

• The value  CB   in the general formula for a sinusoidal function indicates the phase shift. See Example 8.3.

• The value  D  in the general formula for a sinusoidal function indicates the vertical shift from the midline. See
Example 8.4.

• Combinations of variations of sinusoidal functions can be detected from an equation. See Example 8.5.

• The equation for a sinusoidal function can be determined from a graph. See Example 8.6 and Example 8.7.

• A function can be graphed by identifying its amplitude and period. See Example 8.8 and Example 8.9.

• A function can also be graphed by identifying its amplitude, period, phase shift, and horizontal shift. See Example
8.10.

• Sinusoidal functions can be used to solve real-world problems. See Example 8.11, Example 8.12, and Example
8.13.

8.2 Graphs of the Other Trigonometric Functions

• The tangent function has period  π.

• f (x) = Atan(Bx − C) + D  is a tangent with vertical and/or horizontal stretch/compression and shift. See

Example 8.14, Example 8.15, and Example 8.16.

• The secant and cosecant are both periodic functions with a period of  2π.  f (x) = Asec(Bx − C) + D  gives a

shifted, compressed, and/or stretched secant function graph. See Example 8.17 and Example 8.18.

• f (x) = Acsc(Bx − C) + D  gives a shifted, compressed, and/or stretched cosecant function graph. See Example
8.19 and Example 8.20.

• The cotangent function has period  π  and vertical asymptotes at  0, ± π, ± 2π, ....

• The range of cotangent is  (−∞, ∞),   and the function is decreasing at each point in its range.

• The cotangent is zero at  ± π
2, ± 3π

2 , ....

• f (x) = Acot(Bx − C) + D  is a cotangent with vertical and/or horizontal stretch/compression and shift. See

Example 8.21 and Example 8.22.

• Real-world scenarios can be solved using graphs of trigonometric functions. See Example 8.23.

8.3 Inverse Trigonometric Functions

• An inverse function is one that “undoes” another function. The domain of an inverse function is the range of the
original function and the range of an inverse function is the domain of the original function.

• Because the trigonometric functions are not one-to-one on their natural domains, inverse trigonometric functions
are defined for restricted domains.

• For any trigonometric function   f (x),   if  x = f −1(y),   then   f (x) = y. However,   f (x) = y  only implies

 x = f −1(y)  if  x  is in the restricted domain of   f .  See Example 8.24.
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• Special angles are the outputs of inverse trigonometric functions for special input values; for example,

 π4 = tan−1(1) and π6 = sin−1 ⎛
⎝
1
2

⎞
⎠. See Example 8.25.

• A calculator will return an angle within the restricted domain of the original trigonometric function. See Example
8.26.

• Inverse functions allow us to find an angle when given two sides of a right triangle. See Example 8.27.

• In function composition, if the inside function is an inverse trigonometric function, then there are exact expressions;

for example,  sin⎛
⎝cos−1 (x)⎞

⎠ = 1 − x2.  See Example 8.28.

• If the inside function is a trigonometric function, then the only possible combinations are  sin−1 (cos x) = π
2 − x  if

 0 ≤ x ≤ π  and  cos−1 (sin x) = π
2 − x  if  − π

2 ≤ x ≤ π
2. See Example 8.29 and Example 8.30.

• When evaluating the composition of a trigonometric function with an inverse trigonometric function, draw a
reference triangle to assist in determining the ratio of sides that represents the output of the trigonometric function.
See Example 8.31.

• When evaluating the composition of a trigonometric function with an inverse trigonometric function, you may use
trig identities to assist in determining the ratio of sides. See Example 8.32.

CHAPTER 8 REVIEW EXERCISES
Graphs of the Sine and Cosine Functions

For the following exercises, graph the functions for two
periods and determine the amplitude or stretching factor,
period, midline equation, and asymptotes.

168. f (x) = − 3cos x + 3

169. f (x) = 1
4sin x

170. f (x) = 3cos⎛
⎝x + π

6
⎞
⎠

171. f (x) = − 2sin⎛
⎝x − 2π

3
⎞
⎠

172. f (x) = 3sin⎛
⎝x − π

4
⎞
⎠ − 4

173. f (x) = 2⎛
⎝cos⎛

⎝x − 4π
3

⎞
⎠ + 1⎞

⎠

174. f (x) = 6sin⎛
⎝3x − π

6
⎞
⎠ − 1

175. f (x) = − 100sin(50x − 20)

Graphs of the Other Trigonometric Functions

For the following exercises, graph the functions for two
periods and determine the amplitude or stretching factor,
period, midline equation, and asymptotes.

176. f (x) = tan x − 4

177. f (x) = 2tan⎛
⎝x − π

6
⎞
⎠

178. f (x) = − 3tan(4x) − 2

179. f (x) = 0.2cos(0.1x) + 0.3

For the following exercises, graph two full periods. Identify
the period, the phase shift, the amplitude, and asymptotes.

180. f (x) = 1
3sec x

181. f (x) = 3cot x

182. f (x) = 4csc(5x)

183. f (x) = 8sec⎛
⎝
1
4x⎞

⎠

184. f (x) = 2
3csc⎛

⎝
1
2x⎞

⎠

185. f (x) = − csc(2x + π)

For the following exercises, use this scenario: The
population of a city has risen and fallen over a 20-year
interval. Its population may be modeled by the following
function:  y = 12,000 + 8,000sin⎛

⎝0.628x), where the
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domain is the years since 1980 and the range is the
population of the city.

186. What is the largest and smallest population the city
may have?

187. Graph the function on the domain of  [0, 40] .

188. What are the amplitude, period, and phase shift for
the function?

189. Over this domain, when does the population reach
18,000? 13,000?

190. What is the predicted population in 2007? 2010?

For the following exercises, suppose a weight is attached to
a spring and bobs up and down, exhibiting symmetry.

191. Suppose the graph of the displacement function is
shown in Figure 8.65, where the values on the x-axis
represent the time in seconds and the y-axis represents the
displacement in inches. Give the equation that models the
vertical displacement of the weight on the spring.

Figure 8.65

192. At time = 0, what is the displacement of the weight?

193. At what time does the displacement from the
equilibrium point equal zero?

194. What is the time required for the weight to return to
its initial height of 5 inches? In other words, what is the
period for the displacement function?

Inverse Trigonometric Functions

For the following exercises, find the exact value without the
aid of a calculator.

195. sin−1 (1)

196. cos−1 ⎛
⎝

3
2

⎞
⎠

197. tan−1 (−1)

198. cos−1 ⎛
⎝

1
2

⎞
⎠

199. sin−1 ⎛
⎝
− 3

2
⎞
⎠

200. sin−1 ⎛
⎝cos⎛

⎝
π
6

⎞
⎠
⎞
⎠

201. cos−1 ⎛
⎝tan⎛

⎝
3π
4

⎞
⎠
⎞
⎠

202. sin⎛
⎝sec−1 ⎛

⎝
3
5

⎞
⎠
⎞
⎠

203. cot⎛⎝sin−1 ⎛
⎝
3
5

⎞
⎠
⎞
⎠

204. tan⎛
⎝cos−1 ⎛

⎝
5
13

⎞
⎠
⎞
⎠

205. sin⎛
⎝cos−1 ⎛

⎝
x

x + 1
⎞
⎠
⎞
⎠

206. Graph   f (x) = cos x  and   f (x) = sec x  on the

interval  [0, 2π)  and explain any observations.

207. Graph   f (x) = sin x  and   f (x) = csc x  and explain

any observations.

208. Graph the function f  (x) = x
1 − x3

3! + x5

5! − x7

7!   on

the interval  [−1, 1]  and compare the graph to the graph
of   f (x) = sin x  on the same interval. Describe any

observations.
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CHAPTER 8 PRACTICE TEST
For the following exercises, sketch the graph of each
function for two full periods. Determine the amplitude, the
period, and the equation for the midline.

209. f (x) = 0.5sin x

210. f (x) = 5cos x

211. f (x) = 5sin x

212. f (x) = sin(3x)

213. f (x) = − cos⎛
⎝x + π

3
⎞
⎠ + 1

214. f (x) = 5sin⎛
⎝3

⎛
⎝x − π

6
⎞
⎠
⎞
⎠ + 4

215. f (x) = 3cos⎛
⎝
1
3x − 5π

6
⎞
⎠

216. f (x) = tan(4x)

217. f (x) = − 2tan⎛
⎝x − 7π

6
⎞
⎠ + 2

218. f (x) = πcos(3x + π)

219. f (x) = 5csc(3x)

220. f (x) = πsec⎛
⎝
π
2x⎞

⎠

221. f (x) = 2csc⎛
⎝x + π

4
⎞
⎠ − 3

For the following exercises, determine the amplitude,
period, and midline of the graph, and then find a formula
for the function.

222. Give in terms of a sine function.

223. Give in terms of a sine function.

224. Give in terms of a tangent function.

For the following exercises, find the amplitude, period,
phase shift, and midline.

225. y = sin⎛
⎝
π
6x + π⎞

⎠ − 3

226. y = 8sin⎛
⎝
7π
6 x + 7π

2
⎞
⎠ + 6
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227. The outside temperature over the course of a day can
be modeled as a sinusoidal function. Suppose you know
the temperature is 68°F at midnight and the high and low
temperatures during the day are 80°F and 56°F,
respectively. Assuming  t  is the number of hours since
midnight, find a function for the temperature,  D,   in terms
of  t.

228. Water is pumped into a storage bin and empties
according to a periodic rate. The depth of the water is 3 feet
at its lowest at 2:00 a.m. and 71 feet at its highest, which
occurs every 5 hours. Write a cosine function that models
the depth of the water as a function of time, and then graph
the function for one period.

For the following exercises, find the period and horizontal
shift of each function.

229. g(x) = 3tan(6x + 42)

230. n(x) = 4csc⎛
⎝
5π
3 x − 20π

3
⎞
⎠

231. Write the equation for the graph in Figure 8.66 in
terms of the secant function and give the period and phase
shift.

Figure 8.66

232. If  tan x = 3,   find  tan(−x).

233. If  sec x = 4,   find  sec(−x).

For the following exercises, graph the functions on the
specified window and answer the questions.

234. Graph  m(x) = sin(2x) + cos(3x)  on the viewing
window  [−10, 10]  by  [−3, 3]. Approximate the graph’s
period.

235. Graph  n(x) = 0.02sin(50πx)  on the following
domains in  x : [0, 1]  and  [0, 3].  Suppose this function
models sound waves. Why would these views look so
different?

236. Graph   f (x) = sin x
x   on  ⎡⎣−0.5, 0.5⎤

⎦  and explain any

observations.

For the following exercises, let   f (x) = 3
5cos(6x).

237. What is the largest possible value for   f (x)?

238. What is the smallest possible value for   f (x)?

239. Where is the function increasing on the interval
 [0, 2π]?

For the following exercises, find and graph one period of
the periodic function with the given amplitude, period, and
phase shift.

240. Sine curve with amplitude 3, period  π3,   and phase

shift  (h, k) = ⎛
⎝
π
4, 2⎞

⎠

241. Cosine curve with amplitude 2, period  π6,   and phase

shift  (h, k) = ⎛
⎝−

π
4, 3⎞

⎠

For the following exercises, graph the function. Describe
the graph and, wherever applicable, any periodic behavior,
amplitude, asymptotes, or undefined points.

242. f (x) = 5cos(3x) + 4sin(2x)

243. f (x) = esint

For the following exercises, find the exact value.

244. sin−1 ⎛
⎝

3
2

⎞
⎠

245. tan−1 ⎛
⎝ 3⎞

⎠

246. cos−1 ⎛
⎝− 3

2
⎞
⎠

247. cos−1 ⎛
⎝sin(π)⎞

⎠
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248. cos−1 ⎛
⎝tan⎛

⎝
7π
4

⎞
⎠
⎞
⎠

249. cos⎛
⎝sin−1 (1 − 2x)⎞

⎠

250. cos−1 (−0.4)

251. cos⎛
⎝tan−1 ⎛

⎝x2⎞
⎠
⎞
⎠

For the following exercises, suppose  sin t = x
x + 1.

252. tan t

253. csc t

254. Given Figure 8.67, find the measure of angle  θ  to
three decimal places. Answer in radians.

Figure 8.67

For the following exercises, determine whether the
equation is true or false.

255. arcsin⎛
⎝sin⎛

⎝
5π
6

⎞
⎠
⎞
⎠ = 5π

6

256. arccos⎛
⎝cos⎛

⎝
5π
6

⎞
⎠
⎞
⎠ = 5π

6

257. The grade of a road is 7%. This means that for every
horizontal distance of 100 feet on the road, the vertical rise
is 7 feet. Find the angle the road makes with the horizontal
in radians.
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9 | TRIGONOMETRIC
IDENTITIES AND
EQUATIONS

Figure 9.1 A sine wave models disturbance. (credit: modification of work by Mikael Altemark, Flickr).

Chapter Outline
9.1 Solving Trigonometric Equations with Identities

9.2 Sum and Difference Identities

9.3 Double-Angle, Half-Angle, and Reduction Formulas

9.4 Sum-to-Product and Product-to-Sum Formulas

9.5 Solving Trigonometric Equations

Introduction
Math is everywhere, even in places we might not immediately recognize. For example, mathematical relationships describe
the transmission of images, light, and sound. The sinusoidal graph in Figure 9.1 models music playing on a phone, radio,
or computer. Such graphs are described using trigonometric equations and functions. In this chapter, we discuss how to
manipulate trigonometric equations algebraically by applying various formulas and trigonometric identities. We will also
investigate some of the ways that trigonometric equations are used to model real-life phenomena.
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9.1 | Solving Trigonometric Equations with Identities

Learning Objectives

In this section, you will:

9.1.1 Verify the fundamental trigonometric identities.
9.1.2 Simplify trigonometric expressions using algebra and the identities.

Figure 9.2 International passports and travel documents

In espionage movies, we see international spies with multiple passports, each claiming a different identity. However, we
know that each of those passports represents the same person. The trigonometric identities act in a similar manner to
multiple passports—there are many ways to represent the same trigonometric expression. Just as a spy will choose an Italian
passport when traveling to Italy, we choose the identity that applies to the given scenario when solving a trigonometric
equation.

In this section, we will begin an examination of the fundamental trigonometric identities, including how we can verify them
and how we can use them to simplify trigonometric expressions.

Verifying the Fundamental Trigonometric Identities
Identities enable us to simplify complicated expressions. They are the basic tools of trigonometry used in solving
trigonometric equations, just as factoring, finding common denominators, and using special formulas are the basic tools of
solving algebraic equations. In fact, we use algebraic techniques constantly to simplify trigonometric expressions. Basic
properties and formulas of algebra, such as the difference of squares formula and the perfect squares formula, will simplify
the work involved with trigonometric expressions and equations. We already know that all of the trigonometric functions
are related because they all are defined in terms of the unit circle. Consequently, any trigonometric identity can be written
in many ways.

To verify the trigonometric identities, we usually start with the more complicated side of the equation and essentially rewrite
the expression until it has been transformed into the same expression as the other side of the equation. Sometimes we have
to factor expressions, expand expressions, find common denominators, or use other algebraic strategies to obtain the desired
result. In this first section, we will work with the fundamental identities: the Pythagorean identities, the even-odd identities,
the reciprocal identities, and the quotient identities.

We will begin with the Pythagorean identities (see Table 9.1), which are equations involving trigonometric functions
based on the properties of a right triangle. We have already seen and used the first of these identifies, but now we will also
use additional identities.
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Pythagorean Identities

sin2 θ + cos2 θ = 1 1 + cot2 θ = csc2 θ 1 + tan2 θ = sec2 θ

Table 9.1

The second and third identities can be obtained by manipulating the first. The identity  1 + cot2 θ = csc2 θ  is found by
rewriting the left side of the equation in terms of sine and cosine.

Prove:  1 + cot2 θ = csc2 θ

1 + cot2 θ = ⎛
⎝1 + cos2 θ

sin2 θ
⎞
⎠ Rewrite the left side.

= ⎛
⎝

sin2 θ
sin2 θ

⎞
⎠ + ⎛

⎝
cos2 θ
sin2 θ

⎞
⎠ Write both terms with the common denominator.

= sin2 θ + cos2 θ
sin2 θ

= 1
sin2 θ

= csc2 θ

Similarly,  1 + tan2 θ = sec2 θ  can be obtained by rewriting the left side of this identity in terms of sine and cosine. This
gives

1 + tan2 θ = 1 + ⎛
⎝
sin θ
cos θ

⎞
⎠

2
Rewrite left side.

= ⎛
⎝
cos θ
cos θ

⎞
⎠

2
+ ⎛

⎝
sin θ
cos θ

⎞
⎠

2
Write both terms with the common denominator.

= cos2  θ + sin2  θ
cos2  θ

= 1
cos2  θ

= sec2  θ
Recall that we determined which trigonometric functions are odd and which are even. The next set of fundamental identities
is the set of even-odd identities. The even-odd identities relate the value of a trigonometric function at a given angle to the
value of the function at the opposite angle. (See Table 9.2).

Even-Odd Identities

tan( − θ) = − tan θ
cot( − θ) = − cot θ

sin( − θ) = − sin θ
csc( − θ) = − csc θ

cos( − θ) = cos θ
sec( − θ) = sec θ

Table 9.2

Recall that an odd function is one in which   f (−x)= − f (x)  for all  x  in the domain of   f . The sine function is an odd

function because  sin(−θ) = − sin θ. The graph of an odd function is symmetric about the origin. For example, consider

corresponding inputs of  π2   and  − π
2. The output of  sin⎛

⎝
π
2

⎞
⎠  is opposite the output of  sin⎛

⎝−
π
2

⎞
⎠. Thus,
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sin⎛
⎝
π
2

⎞
⎠ = 1

and
sin⎛

⎝−
π
2

⎞
⎠ = −sin⎛

⎝
π
2

⎞
⎠

= −1

This is shown in Figure 9.3.

Figure 9.3 Graph of y = sin θ

Recall that an even function is one in which

f (−x) = f (x) for all x in the domain of f

The graph of an even function is symmetric about the y-axis. The cosine function is an even function because

 cos( − θ) = cos θ.  For example, consider corresponding inputs  π4   and  − π
4. The output of  cos⎛

⎝
π
4

⎞
⎠  is the same as the

output of  cos⎛
⎝−

π
4

⎞
⎠. Thus,

cos⎛
⎝−

π
4

⎞
⎠ = cos⎛

⎝
π
4

⎞
⎠

≈ 0.707

See Figure 9.4.

Figure 9.4 Graph of y = cos θ

For all  θ  in the domain of the sine and cosine functions, respectively, we can state the following:

• Since  sin(−θ⎞
⎠ = −sin θ, sine is an odd function.

• Since,  cos(−θ⎞
⎠ = cos θ, cosine is an even function.

The other even-odd identities follow from the even and odd nature of the sine and cosine functions. For example,
consider the tangent identity,  tan(−θ⎞

⎠ = −tan θ. We can interpret the tangent of a negative angle as

 tan(−θ⎞
⎠ = sin(−θ)

cos(−θ⎞
⎠

= −sin θ
cos θ = − tan θ. Tangent is therefore an odd function, which means that  tan(−θ) = − tan(θ) 

for all  θ  in the domain of the tangent function.
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The cotangent identity,  cot(−θ) = − cot θ, also follows from the sine and cosine identities. We can interpret the cotangent

of a negative angle as  cot(−θ) = cos(−θ)
sin(−θ) = cos θ

−sin θ = − cot θ. Cotangent is therefore an odd function, which means that

 cot(−θ) = − cot(θ)  for all  θ  in the domain of the cotangent function.

The cosecant function is the reciprocal of the sine function, which means that the cosecant of a negative angle will be
interpreted as  csc(−θ) = 1

sin(−θ) = 1
−sin θ = − csc θ. The cosecant function is therefore odd.

Finally, the secant function is the reciprocal of the cosine function, and the secant of a negative angle is interpreted as
 sec(−θ) = 1

cos(−θ) = 1
cos θ = sec θ. The secant function is therefore even.

To sum up, only two of the trigonometric functions, cosine and secant, are even. The other four functions are odd, verifying
the even-odd identities.

The next set of fundamental identities is the set of reciprocal identities, which, as their name implies, relate trigonometric
functions that are reciprocals of each other. See Table 9.3. Recall that we first encountered these identities when defining
trigonometric functions from right angles in Right Angle Trigonometry.

Reciprocal Identities

sin θ = 1
csc θ csc θ = 1

sin θ

cos θ = 1
sec θ sec θ = 1

cos θ

tan θ = 1
cot θ cot θ = 1

tan θ

Table 9.3

The final set of identities is the set of quotient identities, which define relationships among certain trigonometric functions
and can be very helpful in verifying other identities. See Table 9.4.

Quotient Identities

tan θ = sin θ
cos θ cot θ = cos θ

sin θ

Table 9.4

The reciprocal and quotient identities are derived from the definitions of the basic trigonometric functions.

Summarizing Trigonometric Identities

The Pythagorean identities are based on the properties of a right triangle.

(9.1)cos2 θ + sin2 θ = 1
(9.2)1 + cot2 θ = csc2 θ
(9.3)1 + tan2 θ = sec2 θ

The even-odd identities relate the value of a trigonometric function at a given angle to the value of the function at the
opposite angle.

(9.4)tan(−θ) = − tan θ
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(9.5)cot(−θ) = − cot θ
(9.6)sin(−θ) = − sin θ
(9.7)csc(−θ) = − csc θ
(9.8)cos(−θ) = cos θ
(9.9)sec(−θ) = sec θ

The reciprocal identities define reciprocals of the trigonometric functions.

(9.10)sin θ = 1
csc θ

(9.11)cos θ = 1
sec θ

(9.12)tan θ = 1
cot θ

(9.13)csc θ = 1
sin θ

(9.14)sec θ = 1
cos θ

(9.15)cot θ = 1
tan θ

The quotient identities define the relationship among the trigonometric functions.

(9.16)tan θ = sin θ
cos θ

(9.17)cot θ = cos θ
sin θ

Example 9.1

Graphing the Equations of an Identity

Graph both sides of the identity  cot θ = 1
tan θ .  In other words, on the graphing calculator, graph  y = cot θ  and

 y = 1
tan θ .

Solution
See Figure 9.5.
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Figure 9.5

Analysis
We see only one graph because both expressions generate the same image. One is on top of the other. This is a
good way to prove any identity. If both expressions give the same graph, then they must be identities.

Given a trigonometric identity, verify that it is true.

1. Work on one side of the equation. It is usually better to start with the more complex side, as it is easier to
simplify than to build.

2. Look for opportunities to factor expressions, square a binomial, or add fractions.

3. Noting which functions are in the final expression, look for opportunities to use the identities and make
the proper substitutions.

4. If these steps do not yield the desired result, try converting all terms to sines and cosines.

Example 9.2

Verifying a Trigonometric Identity

Verify  tan θcos θ = sin θ.

Solution
We will start on the left side, as it is the more complicated side:

tan θ cos θ = ⎛
⎝
sin θ
cos θ

⎞
⎠cos θ

= ⎛
⎝

sin θ
cos θ

⎞
⎠cos θ

= sin θ

Analysis
This identity was fairly simple to verify, as it only required writing  tan θ  in terms of  sin θ  and  cos θ.

Chapter 9 Trigonometric Identities and Equations 981



9.1 Verify the identity  csc θ cos θ tan θ = 1.

Example 9.3

Verifying the Equivalency Using the Even-Odd Identities

Verify the following equivalency using the even-odd identities:

(1 + sin x)⎡
⎣1 + sin(−x)⎤

⎦ = cos2 x

Solution
Working on the left side of the equation, we have

(1 + sin x)[1 + sin(−x)] = (1 + sin x)(1 − sin x) Since sin(−x)=−sin x
= 1 − sin2 x Diffe ence of squares

= cos2 x cos2 x = 1 − sin2 x

Example 9.4

Verifying a Trigonometric Identity Involving sec2θ

Verify the identity  sec2 θ − 1
sec2 θ

= sin2 θ

Solution
As the left side is more complicated, let’s begin there.

sec2 θ − 1
sec2 θ

=
⎛
⎝tan2 θ + 1⎞

⎠ − 1
sec2 θ

sec2 θ = tan2 θ + 1

= tan2 θ
sec2 θ

= tan2 θ⎛
⎝

1
sec2 θ

⎞
⎠

= tan2 θ⎛
⎝cos2 θ⎞

⎠ cos2 θ = 1
sec2 θ

= ⎛
⎝

sin2 θ
cos2 θ

⎞
⎠

⎛
⎝cos2 θ⎞

⎠ tan2 θ = sin2 θ
cos2 θ

=
⎛

⎝
⎜ sin2 θ

cos2 θ

⎞

⎠
⎟⎛
⎝cos2 θ ⎞

⎠

= sin2 θ

There is more than one way to verify an identity. Here is another possibility. Again, we can start with the left side.
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9.2

sec2 θ − 1
sec2 θ

= sec2 θ
sec2 θ

− 1
sec2 θ

= 1 − cos2 θ
= sin2 θ

Analysis
In the first method, we used the identity  sec2 θ = tan2 θ + 1  and continued to simplify. In the second method, we
split the fraction, putting both terms in the numerator over the common denominator. This problem illustrates that
there are multiple ways we can verify an identity. Employing some creativity can sometimes simplify a procedure.
As long as the substitutions are correct, the answer will be the same.

Show that  cot θ
csc θ = cos θ.

Example 9.5

Creating and Verifying an Identity

Create an identity for the expression  2 tan θ sec θ  by rewriting strictly in terms of sine.

Solution
There are a number of ways to begin, but here we will use the quotient and reciprocal identities to rewrite the
expression:

2 tan θ sec θ = 2⎛
⎝
sin θ
cos θ

⎞
⎠
⎛
⎝

1
cos θ

⎞
⎠

= 2 sin θ
cos2 θ

= 2 sin θ
1 − sin2 θ

Substitute 1 − sin2  θ for cos2  θ.

Thus,

2 tan θ sec θ = 2 sin θ
1 − sin2  θ

Example 9.6

Verifying an Identity Using Algebra and Even/Odd Identities

Verify the identity:

sin2 (−θ) − cos2 (−θ)
sin(−θ) − cos(−θ) = cos θ − sin θ

Solution
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9.3

Let’s start with the left side and simplify:

sin2(−θ) − cos2(−θ)
sin(−θ) − cos(−θ) = [sin(−θ)]2 − [cos(−θ)]2

sin(−θ) − cos(−θ)

= (−sin θ)2 − (cos θ)2

−sin θ − cos θ sin(−x) = −sin x and cos(−x) = cos x

= (sin θ)2 − (cos θ)2

−sin θ − cos θ Diffe ence of squares

= (sin θ − cos θ)(sin θ + cos θ)
−(sin θ + cos θ)

= (sin θ − cos θ)(sin θ + cos θ )
−(sin θ + cos θ )

= cos θ − sin θ

Verify the identity   sin2 θ − 1
tan θ sin θ − tan θ = sin θ + 1

tan θ .

Example 9.7

Verifying an Identity Involving Cosines and Cotangents

Verify the identity:  ⎛⎝1 − cos2 x⎞
⎠
⎛
⎝1 + cot2 x⎞

⎠ = 1.

Solution
We will work on the left side of the equation.

⎛
⎝1 − cos2 x⎞

⎠
⎛
⎝1 + cot2 x⎞

⎠ = ⎛
⎝1 − cos2 x⎞

⎠
⎛
⎝1 + cos2 x

sin2 x
⎞
⎠

= ⎛
⎝1 − cos2 x⎞

⎠
⎛
⎝

sin2 x
sin2 x

+ cos2 x
sin2 x

⎞
⎠  Find the common denominator.

= ⎛
⎝1 − cos2 x⎞

⎠
⎛
⎝

sin2 x + cos2 x
sin2 x

⎞
⎠

= ⎛
⎝sin2 x⎞

⎠
⎛
⎝

1
sin2 x

⎞
⎠

= 1

Using Algebra to Simplify Trigonometric Expressions
We have seen that algebra is very important in verifying trigonometric identities, but it is just as critical in simplifying
trigonometric expressions before solving. Being familiar with the basic properties and formulas of algebra, such as
the difference of squares formula, the perfect square formula, or substitution, will simplify the work involved with
trigonometric expressions and equations.

For example, the equation  (sin x + 1)(sin x − 1) = 0  resembles the equation  (x + 1)(x − 1) = 0, which uses the factored
form of the difference of squares. Using algebra makes finding a solution straightforward and familiar. We can set each
factor equal to zero and solve. This is one example of recognizing algebraic patterns in trigonometric expressions or
equations.
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9.4

Another example is the difference of squares formula,  a2 − b2 = (a − b)(a + b), which is widely used in many areas other
than mathematics, such as engineering, architecture, and physics. We can also create our own identities by continually
expanding an expression and making the appropriate substitutions. Using algebraic properties and formulas makes many
trigonometric equations easier to understand and solve.

Example 9.8

Writing the Trigonometric Expression as an Algebraic Expression

Write the following trigonometric expression as an algebraic expression:  2cos2 θ + cos θ − 1.

Solution

Notice that the pattern displayed has the same form as a standard quadratic expression,  ax2 + bx + c. Letting
 cos θ = x, we can rewrite the expression as follows:

2x2 + x − 1

This expression can be factored as  (2x + 1)(x − 1).  If it were set equal to zero and we wanted to solve the
equation, we would use the zero factor property and solve each factor for  x. At this point, we would replace  x 
with  cos θ  and solve for  θ.

Example 9.9

Rewriting a Trigonometric Expression Using the Difference of Squares

Rewrite the trigonometric expression using the difference of squares:  4 cos2 θ − 1.

Solution
Notice that both the coefficient and the trigonometric expression in the first term are squared, and the square of
the number 1 is 1. This is the difference of squares.

4 cos2 θ − 1 = (2 cos θ)2 − 1
= (2 cos θ − 1)(2 cos θ + 1)

Analysis
If this expression were written in the form of an equation set equal to zero, we could solve each factor using
the zero factor property. We could also use substitution like we did in the previous problem and let  cos θ = x,

rewrite the expression as  4x2 − 1, and factor  (2x − 1)(2x + 1). Then replace  x with  cos θ and solve for the
angle.

Rewrite the trigonometric expression using the difference of squares:  25 − 9 sin2  θ.

Example 9.10
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9.5

Simplify by Rewriting and Using Substitution

Simplify the expression by rewriting and using identities:

csc2 θ − cot2 θ

Solution
We can start with the Pythagorean identity.

1 + cot2 θ = csc2 θ

Now we can simplify by substituting  1 + cot2 θ  for  csc2 θ. We have

csc2 θ − cot2 θ = 1 + cot2 θ − cot2 θ
= 1

Use algebraic techniques to verify the identity:   cos θ
1 + sin θ = 1 − sin θ

cos θ .

(Hint: Multiply the numerator and denominator on the left side by  1 − sin θ.)

Access these online resources for additional instruction and practice with the fundamental trigonometric identities.

• Fundamental Trigonometric Identities (http://openstaxcollege.org/l/funtrigiden)

• Verifying Trigonometric Identities (http://openstaxcollege.org/l/verifytrigiden)
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9.1 EXERCISES
Verbal

We know  g(x) = cos x  is an even function, and

  f (x) = sin x  and  h(x) = tan x  are odd functions. What

about  G(x) = cos2 x, F(x) = sin2 x, and

 H(x) = tan2 x?  Are they even, odd, or neither? Why?

Examine the graph of   f (x) = sec x  on the interval

 [ − π, π]. How can we tell whether the function is even or
odd by only observing the graph of   f (x) = sec x?

After examining the reciprocal identity for  sec t,
explain why the function is undefined at certain points.

All of the Pythagorean identities are related. Describe
how to manipulate the equations to get from
 sin2 t + cos2 t = 1  to the other forms.

Algebraic
For the following exercises, use the fundamental identities
to fully simplify the expression.

sin x cos x sec x

sin(−x) cos(−x) csc(−x)

tan x sin x + sec x cos2 x

csc x + cos x cot(−x)

cot t + tan t
sec( − t)

3 sin3  t csc t + cos2  t + 2 cos( − t)cos t

−tan(−x)cot(−x)

−sin(−x)cos x sec x csc x tan x
cot x

1 + tan2 θ
csc2 θ

+ sin2 θ + 1
sec2 θ

⎛
⎝

tan x
csc2 x

+ tan x
sec2 x

⎞
⎠
⎛
⎝
1 + tan x
1 + cot x

⎞
⎠ − 1

cos2 x

1 − cos2  x
tan2  x

+ 2 sin2  x

For the following exercises, simplify the first trigonometric
expression by writing the simplified form in terms of the
second expression.

tan x + cot x
csc x ;  cos x

sec x + csc x
1 + tan x ;  sin x

cos x
1 + sin x + tan x;  cos x

1
sin xcos x − cot x;  cot x

1
1 − cos x − cos x

1 + cos x;  csc x

(sec x + csc x)(sin x + cos x) − 2 − cot x;  tan x

1
csc x − sin x;  sec x and tan x

1 − sin x
1 + sin x − 1 + sin x

1 − sin x;  sec x and tan x

tan x;  sec x

sec x;  cot x

sec x;  sin x

cot x;  sin x

cot x;  csc x

For the following exercises, verify the identity.

cos x − cos3 x = cos x sin2  x

cos x⎛
⎝tan x − sec(−x)⎞

⎠ = sin x − 1

1 + sin2 x
cos2 x

= 1
cos2 x

+ sin2 x
cos2 x

= 1 + 2 tan2 x

(sin x + cos x)2 = 1 + 2 sin xcos x

cos2 x − tan2 x = 2 − sin2 x − sec2 x

Extensions
For the following exercises, prove or disprove the identity.

1
1 + cos x − 1

1 − cos( − x) = − 2 cot x csc x
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35.

36.

37.

38.

39.

40.

41.

42.

csc2 x⎛
⎝1 + sin2 x⎞

⎠ = cot2 x

⎛
⎝

sec2( − x) − tan2 x
tan x

⎞
⎠

⎛
⎝
2 + 2 tan x
2 + 2 cot x

⎞
⎠ − 2 sin2 x = cos 2x

tan x
sec xsin(−x) = cos2 x

sec(−x)
tan x + cot x = − sin(−x)

1 + sin x
cos x = cos x

1 + sin(−x)

For the following exercises, determine whether the identity
is true or false. If false, find an appropriate equivalent
expression.

cos2 θ − sin2 θ
1 − tan2 θ

= sin2 θ

3 sin2 θ + 4 cos2 θ = 3 + cos2 θ

sec θ + tan θ
cot θ + cos θ = sec2 θ
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9.2 | Sum and Difference Identities

Learning Objectives

In this section, you will:

9.2.1 Use sum and difference formulas for cosine.
9.2.2 Use sum and difference formulas for sine.
9.2.3 Use sum and difference formulas for tangent.
9.2.4 Use sum and difference formulas for cofunctions.
9.2.5 Use sum and difference formulas to verify identities.

Figure 9.6 Mount McKinley, in Denali National Park, Alaska,
rises 20,237 feet (6,168 m) above sea level. It is the highest peak
in North America. (credit: Daniel A. Leifheit, Flickr)

How can the height of a mountain be measured? What about the distance from Earth to the sun? Like many seemingly
impossible problems, we rely on mathematical formulas to find the answers. The trigonometric identities, commonly used
in mathematical proofs, have had real-world applications for centuries, including their use in calculating long distances.

The trigonometric identities we will examine in this section can be traced to a Persian astronomer who lived around 950
AD, but the ancient Greeks discovered these same formulas much earlier and stated them in terms of chords. These are
special equations or postulates, true for all values input to the equations, and with innumerable applications.

In this section, we will learn techniques that will enable us to solve problems such as the ones presented above. The formulas
that follow will simplify many trigonometric expressions and equations. Keep in mind that, throughout this section, the term
formula is used synonymously with the word identity.

Using the Sum and Difference Formulas for Cosine
Finding the exact value of the sine, cosine, or tangent of an angle is often easier if we can rewrite the given angle in terms
of two angles that have known trigonometric values. We can use the special angles, which we can review in the unit circle
shown in Figure 9.7.
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Figure 9.7 The Unit Circle

We will begin with the sum and difference formulas for cosine, so that we can find the cosine of a given angle if we can
break it up into the sum or difference of two of the special angles. See Table 9.5.

Sum formula for cosine cos⎛
⎝α + β⎞

⎠ = cos α cos β − sin α sin β

Difference formula for cosine cos⎛
⎝α − β⎞

⎠ = cos α cos β + sin α sin β

Table 9.5

First, we will prove the difference formula for cosines. Let’s consider two points on the unit circle. See Figure 9.8.
Point  P  is at an angle  α  from the positive x-axis with coordinates  (cos α, sin α)  and point  Q  is at an angle of  β  from the

positive x-axis with coordinates  ⎛⎝cos β, sin β⎞
⎠. Note the measure of angle  POQ  is  α − β. 

Label two more points:  A  at an angle of  ⎛⎝α − β⎞
⎠  from the positive x-axis with coordinates  ⎛⎝cos⎛

⎝α − β⎞
⎠, sin⎛

⎝α − β⎞
⎠
⎞
⎠;   and

point  B with coordinates  (1, 0). Triangle  POQ  is a rotation of triangle  AOB  and thus the distance from  P  to  Q  is the
same as the distance from  A  to  B.
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Figure 9.8

We can find the distance from  P  to  Q  using the distance formula.

dPQ = (cos α − cos β)2 + (sin α − sin β)2

= cos2 α − 2 cos α cos β + cos2 β + sin2 α − 2 sin α sin β + sin2 β

Then we apply the Pythagorean identity and simplify.

= ⎛
⎝cos2 α + sin2 α⎞

⎠ + ⎛
⎝cos2 β + sin2 β⎞

⎠ − 2 cos α cos β − 2 sin α sin β
= 1 + 1 − 2 cos α cos β − 2 sin α sin β
= 2 − 2 cos α cos β − 2 sin α sin β

Similarly, using the distance formula we can find the distance from  A  to  B.

dAB = (cos(α − β) − 1)2 + (sin(α − β) − 0)2

= cos2(α − β) − 2 cos(α − β) + 1 + sin2(α − β)

Applying the Pythagorean identity and simplifying we get:

= ⎛
⎝cos2(α − β) + sin2(α − β)⎞

⎠ − 2 cos(α − β) + 1

= 1 − 2 cos(α − β) + 1
= 2 − 2 cos(α − β)

Because the two distances are the same, we set them equal to each other and simplify.

2 − 2 cos α cos β − 2 sin α sin β = 2 − 2 cos(α − β)
2 − 2 cos α cos β − 2 sin α sin β = 2 − 2 cos(α − β)

Finally we subtract  2  from both sides and divide both sides by  −2.

cos α cos β + sin α sin β = cos(α − β)  

Thus, we have the difference formula for cosine. We can use similar methods to derive the cosine of the sum of two angles.

Sum and Difference Formulas for Cosine

These formulas can be used to calculate the cosine of sums and differences of angles.

(9.18)cos(α + β) = cos α cos β − sin α sin β
(9.19)cos(α − β) = cos α cos β + sin α sin β

Chapter 9 Trigonometric Identities and Equations 991
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Given two angles, find the cosine of the difference between the angles.

1. Write the difference formula for cosine.

2. Substitute the values of the given angles into the formula.

3. Simplify.

Example 9.11

Finding the Exact Value Using the Formula for the Cosine of the Difference of Two
Angles

Using the formula for the cosine of the difference of two angles, find the exact value of  cos⎛
⎝
5π
4 − π

6
⎞
⎠.

Solution
Begin by writing the formula for the cosine of the difference of two angles. Then substitute the given values.

cos(α − β) = cos α cos β + sin α sin β
cos⎛

⎝
5π
4 − π

6
⎞
⎠ = cos⎛

⎝
5π
4

⎞
⎠cos⎛

⎝
π
6

⎞
⎠ + sin⎛

⎝
5π
4

⎞
⎠sin⎛

⎝
π
6

⎞
⎠

= ⎛
⎝− 2

2
⎞
⎠
⎛
⎝

3
2

⎞
⎠ − ⎛

⎝
2
2

⎞
⎠
⎛
⎝
1
2

⎞
⎠

= − 6
4 − 2

4

= − 6 − 2
4

Keep in mind that we can always check the answer using a graphing calculator in radian mode.

Find the exact value of  cos⎛
⎝
π
3 − π

4
⎞
⎠.

Example 9.12

Finding the Exact Value Using the Formula for the Sum of Two Angles for Cosine

Find the exact value of  cos(75°).

Solution
As  75° = 45° + 30°, we can evaluate  cos(75°)  as  cos(45° + 30°). 
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9.7

cos(α + β) = cos α cos β − sin α sin β
cos(45° + 30°) = cos(45°)cos(30°) − sin(45°)sin(30°)

= 2
2

⎛
⎝

3
2

⎞
⎠ − 2

2
⎛
⎝
1
2

⎞
⎠

= 6
4 − 2

4

= 6 − 2
4

Keep in mind that we can always check the answer using a graphing calculator in degree mode.

Analysis
Note that we could have also solved this problem using the fact that  75° = 135° − 60°.

cos(α − β) = cos α cos β + sin α sin β
cos(135° − 60°) = cos(135°)cos(60°) + sin(135°)sin(60°)

= ⎛
⎝− 2

2
⎞
⎠
⎛
⎝
1
2

⎞
⎠ + ⎛

⎝
2
2

⎞
⎠
⎛
⎝

3
2

⎞
⎠

= ⎛
⎝− 2

4
⎞
⎠ + ⎛

⎝
6

4
⎞
⎠

= ⎛
⎝

6 − 2
4

⎞
⎠

Find the exact value of  cos(105°).

Using the Sum and Difference Formulas for Sine
The sum and difference formulas for sine can be derived in the same manner as those for cosine, and they resemble the
cosine formulas.

Sum and Difference Formulas for Sine

These formulas can be used to calculate the sines of sums and differences of angles.

(9.20)sin⎛
⎝α + β⎞

⎠ = sin α cos β + cos α sin β
(9.21)sin⎛

⎝α − β⎞
⎠ = sin α cos β − cos α sin β

Given two angles, find the sine of the difference between the angles.

1. Write the difference formula for sine.

2. Substitute the given angles into the formula.

3. Simplify.

Example 9.13

Using Sum and Difference Identities to Evaluate the Difference of Angles
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Use the sum and difference identities to evaluate the difference of the angles and show that part a equals part b.

a. sin(45° − 30°)

b. sin(135° − 120°)

Solution
a. Let’s begin by writing the formula and substitute the given angles.

sin(α − β) = sin α cos β − cos α sin β
sin(45° − 30°) = sin(45°)cos(30°) − cos(45°)sin(30°)

Next, we need to find the values of the trigonometric expressions.

sin(45°) = 2
2 ,  cos(30°) = 3

2 ,  cos(45°) = 2
2 ,  sin(30°) = 1

2
Now we can substitute these values into the equation and simplify.

sin(45° − 30°) = 2
2

⎛
⎝

3
2

⎞
⎠ − 2

2
⎛
⎝
1
2

⎞
⎠

= 6 − 2
4

b. Again, we write the formula and substitute the given angles.
sin(α − β) = sin α cos β − cos α sin β

sin(135° − 120°) = sin(135°)cos(120°) − cos(135°)sin(120°)
Next, we find the values of the trigonometric expressions.

sin(135°) = 2
2 , cos(120°) = − 1

2, cos(135°) = 2
2 , sin(120°) = 3

2
Now we can substitute these values into the equation and simplify.

sin(135° − 120°) = 2
2

⎛
⎝−

1
2

⎞
⎠ − ⎛

⎝− 2
2

⎞
⎠
⎛
⎝

3
2

⎞
⎠

= − 2 + 6
4

= 6 − 2
4

sin(135° − 120°) = 2
2

⎛
⎝−

1
2

⎞
⎠ − ⎛

⎝− 2
2

⎞
⎠
⎛
⎝

3
2

⎞
⎠

= − 2 + 6
4

= 6 − 2
4

Example 9.14

Finding the Exact Value of an Expression Involving an Inverse Trigonometric
Function

Find the exact value of  sin⎛
⎝cos−1 1

2 + sin−1 3
5

⎞
⎠. Then check the answer with a graphing calculator.

Solution
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The pattern displayed in this problem is  sin⎛
⎝α + β⎞

⎠. Let  α = cos−1 1
2   and  β = sin−1 3

5. Then we can write

cos α = 1
2, 0 ≤ α ≤ π

sin β = 3
5, − π

2 ≤ β ≤ π
2

We will use the Pythagorean identities to find  sin α  and  cos β.

sin α = 1 − cos2 α

= 1 − 1
4

= 3
4

= 3
2

cos β = 1 − sin2 β

= 1 − 9
25

= 16
25

= 4
5

Using the sum formula for sine,

sin⎛
⎝cos−1 1

2 + sin−1 3
5

⎞
⎠ = sin(α + β)

= sin α cos β + cos α sin β
= 3

2 ⋅ 4
5 + 1

2 ⋅ 3
5

= 4 3 + 3
10

Using the Sum and Difference Formulas for Tangent
Finding exact values for the tangent of the sum or difference of two angles is a little more complicated, but again, it is a
matter of recognizing the pattern.

Finding the sum of two angles formula for tangent involves taking quotient of the sum formulas for sine and cosine and
simplifying. Recall,  tan x = sin x

cos x, cos x ≠ 0.

Let’s derive the sum formula for tangent.
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tan(α + β) = sin(α + β)
cos(α + β)

= sin α cos β + cos α sin β
cos α cos β − sin α sin β

=
sin α cos β + cos α sin β

cos α cos β
cos α cos β − sin α sin β

cos α cos β
Divide the numerator and denominator by cos α cos β.

=

sin α  cos β
cos α  cos β + cos α  sin β

cos α  cos β
cos α  cos β
cos α  cos β − sin α sin β

cos α cos β

=
sin α
cos α + sin β

cos β
1 − sin α sin β

cos α cos β

= tan α + tan β
1 − tan α tan β

We can derive the difference formula for tangent in a similar way.

Sum and Difference Formulas for Tangent

The sum and difference formulas for tangent are:

(9.22)tan⎛
⎝α + β⎞

⎠ = tan α + tan β
1 − tan α tan β

(9.23)tan⎛
⎝α − β⎞

⎠ = tan α − tan β
1 + tan α tan β

Given two angles, find the tangent of the sum of the angles.

1. Write the sum formula for tangent.

2. Substitute the given angles into the formula.

3. Simplify.

Example 9.15

Finding the Exact Value of an Expression Involving Tangent

Find the exact value of  tan⎛
⎝
π
6 + π

4
⎞
⎠.

Solution
Let’s first write the sum formula for tangent and then substitute the given angles into the formula.

tan(α + β) = tan α + tan β
1 − tan α tan β

tan⎛
⎝
π
6 + π

4
⎞
⎠ =

tan⎛
⎝
π
6

⎞
⎠ + tan⎛

⎝
π
4

⎞
⎠

1 − ⎛
⎝tan⎛

⎝
π
6

⎞
⎠
⎞
⎠
⎛
⎝tan⎛

⎝
π
4

⎞
⎠
⎞
⎠

Next, we determine the individual function values within the formula:
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9.8

tan⎛
⎝
π
6

⎞
⎠ = 1

3
, tan⎛

⎝
π
4

⎞
⎠ = 1

So we have

tan⎛
⎝
π
6 + π

4
⎞
⎠ =

1
3

+ 1

1 − ⎛
⎝

1
3

⎞
⎠(1)

=
1 + 3

3
3 − 1

3

= 1 + 3
3

⎛
⎝

3
3 − 1

⎞
⎠

= 3 + 1
3 − 1

Find the exact value of  tan⎛
⎝
2π
3 + π

4
⎞
⎠.

Example 9.16

Finding Multiple Sums and Differences of Angles

Given  sin α = 3
5, 0 < α < π

2, cos β = − 5
13, π < β < 3π

2 , find

a. sin⎛
⎝α + β⎞

⎠

b. cos⎛
⎝α + β⎞

⎠

c. tan⎛
⎝α + β⎞

⎠

d. tan⎛
⎝α − β⎞

⎠

Solution
We can use the sum and difference formulas to identify the sum or difference of angles when the ratio of sine,
cosine, or tangent is provided for each of the individual angles. To do so, we construct what is called a reference
triangle to help find each component of the sum and difference formulas.

a. To find  sin⎛
⎝α + β⎞

⎠, we begin with  sin α = 3
5   and  0 < α < π

2. The side opposite  α  has length 3, the

hypotenuse has length 5, and  α  is in the first quadrant. See Figure 9.9. Using the Pythagorean Theorem,
we can find the length of side  a:

a2 + 32 = 52

a2 = 16
a = 4
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Figure 9.9

Since  cos β = − 5
13   and  π < β < 3π

2 , the side adjacent to  β  is  −5, the hypotenuse is 13, and  β  is in

the third quadrant. See Figure 9.10. Again, using the Pythagorean Theorem, we have

(−5)2 + a2 = 132

25 + a2 = 169
a2 = 144
a = ±12

Since  β  is in the third quadrant,  a = –12.

Figure 9.10

The next step is finding the cosine of  α  and the sine of  β. The cosine of  α  is the adjacent side over the

hypotenuse. We can find it from the triangle in Figure 9.10:  cos α = 4
5. We can also find the sine of
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 β  from the triangle in Figure 9.10, as opposite side over the hypotenuse:  sin β = − 12
13. Now we are

ready to evaluate  sin⎛
⎝α + β⎞

⎠.

sin(α + β) = sin α cos β + cos α sin β
= ⎛

⎝
3
5

⎞
⎠
⎛
⎝−

5
13

⎞
⎠ + ⎛

⎝
4
5

⎞
⎠
⎛
⎝−

12
13

⎞
⎠

= −15
65 − 48

65
= −63

65
b. We can find  cos⎛

⎝α + β⎞
⎠  in a similar manner. We substitute the values according to the formula.

cos(α + β) = cos α cos β − sin α sin β
= ⎛

⎝
4
5

⎞
⎠
⎛
⎝−

5
13

⎞
⎠ − ⎛

⎝
3
5

⎞
⎠
⎛
⎝−

12
13

⎞
⎠

= −20
65 + 36

65
= 16

65

c. For  tan⎛
⎝α + β⎞

⎠, if  sin α = 3
5   and  cos α = 4

5, then

tan α =
3
5
4
5

= 3
4

If  sin β = − 12
13   and  cos β = − 5

13, then

tan β =
−12
13
−5
13

= 12
5

Then,

tan(α + β) = tan α + tan β
1 − tan α tan β

=
3
4 + 12

5
1 − 3

4
⎛
⎝
12
5

⎞
⎠

=
  63

20
− 16

20

= −63
16

d. To find  tan⎛
⎝α − β⎞

⎠, we have the values we need. We can substitute them in and evaluate.
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tan(α − β) = tan α − tan β
1 + tan α tan β

=
3
4 − 12

5
1 + 3

4
⎛
⎝
12
5

⎞
⎠

=
− 33

20
56
20

= −33
56

Analysis
A common mistake when addressing problems such as this one is that we may be tempted to think that  α  and  β 
are angles in the same triangle, which of course, they are not. Also note that

tan⎛
⎝α + β⎞

⎠ = sin⎛
⎝α + β⎞

⎠

cos⎛
⎝α + β⎞

⎠

Using Sum and Difference Formulas for Cofunctions
Now that we can find the sine, cosine, and tangent functions for the sums and differences of angles, we can use them to
do the same for their cofunctions. You may recall from Right Triangle Trigonometry that, if the sum of two positive
angles is  π2, those two angles are complements, and the sum of the two acute angles in a right triangle is  π2, so they are

also complements. In Figure 9.11, notice that if one of the acute angles is labeled as  θ, then the other acute angle must be

labeled  ⎛⎝π
2 − θ⎞

⎠.

Notice also that  sin θ = cos⎛
⎝
π
2 − θ⎞

⎠, which is opposite over hypotenuse. Thus, when two angles are complimentary, we

can say that the sine of  θ  equals the cofunction of the complement of  θ.  Similarly, tangent and cotangent are cofunctions,
and secant and cosecant are cofunctions.

Figure 9.11

From these relationships, the cofunction identities are formed. Recall that you first encountered these identities in The Unit
Circle: Sine and Cosine Functions.

Cofunction Identities

The cofunction identities are summarized in Table 9.6.
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9.9

sin θ = cos⎛
⎝
π
2 − θ⎞

⎠ cos θ = sin⎛
⎝
π
2 − θ⎞

⎠

tan θ = cot⎛⎝
π
2 − θ⎞

⎠ cot θ = tan⎛
⎝
π
2 − θ⎞

⎠

sec θ = csc⎛
⎝
π
2 − θ⎞

⎠ csc θ = sec⎛
⎝
π
2 − θ⎞

⎠

Table 9.6

Notice that the formulas in the table may also justified algebraically using the sum and difference formulas. For example,
using

cos⎛
⎝α − β⎞

⎠ = cos αcos β + sin αsin β,

we can write

cos⎛
⎝
π
2 − θ⎞

⎠ = cos π2  cos θ + sin π2  sin θ
= (0)cos θ + (1)sin θ
= sin θ

Example 9.17

Finding a Cofunction with the Same Value as the Given Expression

Write  tan π9   in terms of its cofunction.

Solution

The cofunction of  tan θ = cot⎛⎝
π
2 − θ⎞

⎠. Thus,

tan⎛
⎝
π
9

⎞
⎠ = cot⎛⎝

π
2 − π

9
⎞
⎠

= cot⎛⎝
9π
18 − 2π

18
⎞
⎠

= cot⎛⎝
7π
18

⎞
⎠

Write  sin π7   in terms of its cofunction.

Using the Sum and Difference Formulas to Verify Identities
Verifying an identity means demonstrating that the equation holds for all values of the variable. It helps to be very familiar
with the identities or to have a list of them accessible while working the problems. Reviewing the general rules presented
earlier may help simplify the process of verifying an identity.
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Given an identity, verify using sum and difference formulas.

1. Begin with the expression on the side of the equal sign that appears most complex. Rewrite that expression
until it matches the other side of the equal sign. Occasionally, we might have to alter both sides, but
working on only one side is the most efficient.

2. Look for opportunities to use the sum and difference formulas.

3. Rewrite sums or differences of quotients as single quotients.

4. If the process becomes cumbersome, rewrite the expression in terms of sines and cosines.

Example 9.18

Verifying an Identity Involving Sine

Verify the identity  sin(α + β) + sin(α − β) = 2 sin α cos β.

Solution
We see that the left side of the equation includes the sines of the sum and the difference of angles.

sin(α + β) = sin α cos β + cos α sin β
sin(α − β) = sin α cos β − cos α sin β

We can rewrite each using the sum and difference formulas.

sin(α + β) + sin(α − β) = sin α cos β + cos α sin β + sin α cos β − cos α sin β
= 2 sin α cos β

We see that the identity is verified.

Example 9.19

Verifying an Identity Involving Tangent

Verify the following identity.

sin(α − β)
cos α cos β = tan α − tan β

Solution
We can begin by rewriting the numerator on the left side of the equation.

sin(α − β)
cos α cos β = sin α cos β − cos αsin β

cos αcos β

= sin α  cos β
cos α  cos β − cos α  sin β

cos α  cos β Rewrite using a common denominator.

= sin α
cos α − sin β

cos β Cancel.

= tan α − tan β Rewrite in terms of tangent.

We see that the identity is verified. In many cases, verifying tangent identities can successfully be accomplished
by writing the tangent in terms of sine and cosine.
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9.10 Verify the identity:  tan(π − θ) = − tan θ.

Example 9.20

Using Sum and Difference Formulas to Solve an Application Problem

Let  L1   and  L2   denote two non-vertical intersecting lines, and let  θ  denote the acute angle between  L1   and

 L2.  See Figure 9.12. Show that

tan θ = m2 − m1
1 + m1 m2

where  m1   and  m2   are the slopes of  L1   and  L2   respectively. (Hint: Use the fact that  tan θ1 = m1   and

 tan θ2 = m2. )

Figure 9.12

Solution
Using the difference formula for tangent, this problem does not seem as daunting as it might.

tan θ = tan⎛
⎝θ2 − θ1

⎞
⎠

= tan θ2 − tan θ1
1 + tan θ1 tan θ2

= m2 − m1
1 + m1 m2

Example 9.21

Investigating a Guy-wire Problem

For a climbing wall, a guy-wire  R  is attached 47 feet high on a vertical pole. Added support is provided by
another guy-wire  S  attached 40 feet above ground on the same pole. If the wires are attached to the ground 50
feet from the pole, find the angle  α  between the wires. See Figure 9.13.
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Figure 9.13

Solution
Let’s first summarize the information we can gather from the diagram. As only the sides adjacent to the right
angle are known, we can use the tangent function. Notice that  tan β = 47

50, and  tan⎛
⎝β − α⎞

⎠ = 40
50 = 4

5. We can

then use difference formula for tangent.

tan⎛
⎝β − α⎞

⎠ = tan β − tan α
1 + tan βtan α

Now, substituting the values we know into the formula, we have

4
5 =

47
50 − tan α

1 + 47
50tan α

4⎛
⎝1 + 47

50tan α⎞
⎠ = 5⎛

⎝
47
50 − tan α⎞

⎠

Use the distributive property, and then simplify the functions.

4(1) + 4⎛
⎝
47
50

⎞
⎠tan α = 5⎛

⎝
47
50

⎞
⎠ − 5 tan α

4 + 3.76 tan α = 4.7 − 5 tan α
5 tan α + 3.76 tan α = 0.7

8.76 tan α = 0.7
tan α ≈ 0.07991

tan−1(0.07991) ≈ .079741

Now we can calculate the angle in degrees.

α ≈ 0.079741⎛
⎝
180
π

⎞
⎠ ≈ 4.57°

Analysis
Occasionally, when an application appears that includes a right triangle, we may think that solving is a matter of
applying the Pythagorean Theorem. That may be partially true, but it depends on what the problem is asking and
what information is given.

Access these online resources for additional instruction and practice with sum and difference identities.

• Sum and Difference Identities for Cosine (http://openstaxcollege.org/l/sumdifcos)

• Sum and Difference Identities for Sine (http://openstaxcollege.org/l/sumdifsin)

• Sum and Difference Identities for Tangent (http://openstaxcollege.org/l/sumdiftan)

1004 Chapter 9 Trigonometric Identities and Equations

This content is available for free at https://cnx.org/content/col11758/1.5

http://openstaxcollege.org/l/sumdifcos
http://openstaxcollege.org/l/sumdifsin
http://openstaxcollege.org/l/sumdiftan


43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

9.2 EXERCISES
Verbal

Explain the basis for the cofunction identities and
when they apply.

Is there only one way to evaluate  cos⎛
⎝
5π
4

⎞
⎠?  Explain

how to set up the solution in two different ways, and then
compute to make sure they give the same answer.

Explain to someone who has forgotten the even-odd
properties of sinusoidal functions how the addition and
subtraction formulas can determine this characteristic for
  f (x) = sin(x)  and  g(x) = cos(x).  (Hint:  0 − x = − x )

Algebraic
For the following exercises, find the exact value.

cos⎛
⎝
7π
12

⎞
⎠

cos⎛
⎝

π
12

⎞
⎠

sin⎛
⎝
5π
12

⎞
⎠

sin⎛
⎝
11π
12

⎞
⎠

tan⎛
⎝−

π
12

⎞
⎠

tan⎛
⎝
19π
12

⎞
⎠

For the following exercises, rewrite in terms of  sin x  and
 cos x.

sin⎛
⎝x + 11π

6
⎞
⎠

sin⎛
⎝x − 3π

4
⎞
⎠

cos⎛
⎝x − 5π

6
⎞
⎠

cos⎛
⎝x + 2π

3
⎞
⎠

For the following exercises, simplify the given expression.

csc⎛
⎝
π
2 − t⎞⎠

sec⎛
⎝
π
2 − θ⎞

⎠

cot⎛⎝
π
2 − x⎞

⎠

tan⎛
⎝
π
2 − x⎞

⎠

sin(2x) cos(5x) − sin(5x) cos(2x)

tan⎛
⎝
3
2x⎞

⎠ − tan⎛
⎝
7
5x⎞

⎠

1 + tan⎛
⎝
3
2x⎞

⎠tan⎛
⎝
7
5x⎞

⎠

For the following exercises, find the requested information.

Given that  sin a = 2
3   and  cos b = − 1

4, with  a  and

 b  both in the interval  ⎡⎣π
2, π⎞

⎠, find  sin(a + b)  and

 cos(a − b).

Given that  sin a = 4
5, and  cos b = 1

3, with  a  and  b 

both in the interval  ⎡⎣0, π
2

⎞
⎠, find  sin(a − b)  and

 cos(a + b).

For the following exercises, find the exact value of each
expression.

sin⎛
⎝cos−1(0) − cos−1 ⎛

⎝
1
2

⎞
⎠
⎞
⎠

cos⎛
⎝cos−1 ⎛

⎝
2
2

⎞
⎠ + sin−1 ⎛

⎝
3
2

⎞
⎠
⎞
⎠

tan⎛
⎝sin−1 ⎛

⎝
1
2

⎞
⎠ − cos−1 ⎛

⎝
1
2

⎞
⎠
⎞
⎠

Graphical
For the following exercises, simplify the expression, and
then graph both expressions as functions to verify the
graphs are identical. Confirm your answer using a graphing
calculator.

cos⎛
⎝
π
2 − x⎞

⎠

sin(π − x)

tan⎛
⎝
π
3 + x⎞

⎠

sin⎛
⎝
π
3 + x⎞

⎠
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72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

tan⎛
⎝
π
4 − x⎞

⎠

cos⎛
⎝
7π
6 + x⎞

⎠

sin⎛
⎝
π
4 + x⎞

⎠

cos⎛
⎝
5π
4 + x⎞

⎠

For the following exercises, use a graph to determine
whether the functions are the same or different. If they
are the same, show why. If they are different, replace the
second function with one that is identical to the first. (Hint:
think  2x = x + x. )

f (x) = sin(4x) − sin(3x)cos x, g(x) = sin x cos(3x)

f (x) = cos(4x) + sin x sin(3x), g(x) = − cos x cos(3x)

f (x) = sin(3x)cos(6x), g(x) = − sin(3x)cos(6x)

f (x) = sin(4x), g(x) = sin(5x)cos x − cos(5x)sin x

f (x) = sin(2x), g(x) = 2 sin x cos x

f (θ) = cos(2θ), g(θ) = cos2 θ − sin2 θ

f (θ) = tan(2θ), g(θ) = tan θ
1 + tan2 θ

f (x) = sin(3x)sin x, g(x) = sin2(2x)cos2 x − cos2(2x)sin2 x

f (x) = tan( − x), g(x) = tan x − tan(2x)
1 − tan x tan(2x)

Technology
For the following exercises, find the exact value
algebraically, and then confirm the answer with a calculator
to the fourth decimal point.

sin(75°)

sin(195°)

cos(165°)

cos(345°)

tan(−15°)

Extensions
For the following exercises, prove the identities provided.

tan(x + π
4) = tan x + 1

1 − tan x

tan(a + b)
tan(a − b) = sin a cos a + sin b cos b

sin a cos a − sin b cos b

cos(a + b)
cos a cos b = 1 − tan a tan b

cos(x + y)cos(x − y) = cos2 x − sin2 y

cos(x + h) − cos x
h = cos xcos h − 1

h − sin xsin h
h

For the following exercises, prove or disprove the
statements.

tan(u + v) = tan u + tan v
1 − tan u tan v

tan(u − v) = tan u − tan v
1 + tan u tan v

tan(x + y)
1 + tan x tan x = tan x + tan y

1 − tan2 x tan2 y

If  α, β, and  γ  are angles in the same triangle, then

prove or disprove  sin⎛
⎝α + β⎞

⎠ = sin γ.

If  α, β, and  y  are angles in the same triangle, then

prove or disprove  tan α + tan β + tan γ = tan α tan β tan γ
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9.3 | Double-Angle, Half-Angle, and Reduction Formulas

Learning Objectives

In this section, you will:

9.3.1 Use double-angle formulas to find exact values.
9.3.2 Use double-angle formulas to verify identities.
9.3.3 Use reduction formulas to simplify an expression.
9.3.4 Use half-angle formulas to find exact values.

Figure 9.14 Bicycle ramps for advanced riders have a steeper incline than those designed for novices.

Bicycle ramps made for competition (see Figure 9.14) must vary in height depending on the skill level of the competitors.
For advanced competitors, the angle formed by the ramp and the ground should be  θ  such that  tan θ = 5

3. The angle is

divided in half for novices. What is the steepness of the ramp for novices? In this section, we will investigate three additional
categories of identities that we can use to answer questions such as this one.

Using Double-Angle Formulas to Find Exact Values
In the previous section, we used addition and subtraction formulas for trigonometric functions. Now, we take another look
at those same formulas. The double-angle formulas are a special case of the sum formulas, where  α = β. Deriving the

double-angle formula for sine begins with the sum formula,

sin⎛
⎝α + β⎞

⎠ = sin α cos β + cos α sin β

If we let  α = β = θ, then we have

sin(θ + θ) = sin θ cos θ + cos θ sin θ
sin(2θ) = 2sin θ cos θ

Deriving the double-angle for cosine gives us three options. First, starting from the sum formula,
 cos⎛

⎝α + β⎞
⎠ = cos α cos β − sin α sin β, and letting  α = β = θ, we have

cos(θ + θ) = cos θ cos θ − sin θ sin θ
cos(2θ) = cos2 θ − sin2 θ

Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more variations. The
first variation is:

cos(2θ) = cos2 θ − sin2 θ
= ⎛

⎝1 − sin2 θ⎞
⎠ − sin2 θ

= 1 − 2sin2 θ
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The second variation is:

cos(2θ) = cos2 θ − sin2 θ
= cos2 θ − ⎛

⎝1 − cos2 θ⎞
⎠

= 2 cos2 θ − 1

Similarly, to derive the double-angle formula for tangent, replacing  α = β = θ  in the sum formula gives

tan(α + β) = tan α + tan β
1 − tan α tan β

tan(θ + θ) = tan θ + tan θ
1 − tan θ tan θ

tan(2θ) = 2tan θ
1 − tan2 θ

Double-Angle Formulas

The double-angle formulas are summarized as follows:

(9.24)sin(2θ) = 2 sin θ cos θ
(9.25)cos(2θ) = cos2 θ − sin2 θ

= 1 − 2 sin2 θ
= 2 cos2 θ − 1

(9.26)tan(2θ) = 2 tan θ
1 − tan2 θ

Given the tangent of an angle and the quadrant in which it is located, use the double-angle formulas to find
the exact value.

1. Draw a triangle to reflect the given information.

2. Determine the correct double-angle formula.

3. Substitute values into the formula based on the triangle.

4. Simplify.

Example 9.22

Using a Double-Angle Formula to Find the Exact Value Involving Tangent

Given that  tan θ = − 3
4   and  θ  is in quadrant II, find the following:

a. sin(2θ)

b. cos(2θ)

c. tan(2θ)

Solution
If we draw a triangle to reflect the information given, we can find the values needed to solve the problems on the
image. We are given  tan θ = − 3

4, such that  θ  is in quadrant II. The tangent of an angle is equal to the opposite
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side over the adjacent side, and because  θ  is in the second quadrant, the adjacent side is on the x-axis and is
negative. Use the Pythagorean Theorem to find the length of the hypotenuse:

(−4)2 + (3)2 = c2

16 + 9 = c2

25 = c2

c = 5

Now we can draw a triangle similar to the one shown in Figure 9.15.

Figure 9.15

a. Let’s begin by writing the double-angle formula for sine.
sin(2θ) = 2 sin θ cos θ

We see that we to need to find  sin θ  and  cos θ. Based on Figure 9.15, we see that the hypotenuse equals

5, so  sin θ = 3
5, and  cos θ = − 4

5.  Substitute these values into the equation, and simplify.

Thus,

sin(2θ) = 2⎛
⎝
3
5

⎞
⎠
⎛
⎝−

4
5

⎞
⎠

= −24
25

b. Write the double-angle formula for cosine.
cos(2θ) = cos2 θ − sin2 θ

Again, substitute the values of the sine and cosine into the equation, and simplify.

cos(2θ) = ⎛
⎝−

4
5

⎞
⎠

2
− ⎛

⎝
3
5

⎞
⎠

2

= 16
25 − 9

25
= 7

25
c. Write the double-angle formula for tangent.

tan(2θ) = 2 tan θ
1 − tan2 θ

In this formula, we need the tangent, which we were given as  tan θ = − 3
4.  Substitute this value into the

equation, and simplify.
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9.11

tan(2θ) =
2⎛

⎝− 3
4

⎞
⎠

1 − ⎛
⎝− 3

4
⎞
⎠
2

=
− 3

2
1 − 9

16

= −3
2

⎛
⎝
16
7

⎞
⎠

= −24
7

Given  sin α = 5
8, with  θ  in quadrant I, find  cos(2α).

Example 9.23

Using the Double-Angle Formula for Cosine without Exact Values

Use the double-angle formula for cosine to write  cos(6x)  in terms of  cos(3x).

Solution
cos(6x) = cos(3x + 3x)

= cos 3x cos 3x − sin 3x sin 3x
= cos2 3x − sin2 3x

Analysis
This example illustrates that we can use the double-angle formula without having exact values. It emphasizes
that the pattern is what we need to remember and that identities are true for all values in the domain of the
trigonometric function.

Using Double-Angle Formulas to Verify Identities
Establishing identities using the double-angle formulas is performed using the same steps we used to derive the sum and
difference formulas. Choose the more complicated side of the equation and rewrite it until it matches the other side.

Example 9.24

Using the Double-Angle Formulas to Verify an Identity

Verify the following identity using double-angle formulas:

1 + sin(2θ) = (sin θ + cos θ)2

Solution
We will work on the right side of the equal sign and rewrite the expression until it matches the left side.
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(sin θ + cos θ)2 = sin2 θ + 2 sin θ cos θ + cos2 θ
= ⎛

⎝sin2 θ + cos2 θ⎞
⎠ + 2 sin θ cos θ

= 1 + 2 sin θ cos θ
= 1 + sin(2θ)

Analysis
This process is not complicated, as long as we recall the perfect square formula from algebra:

(a ± b)2 = a2 ± 2ab + b2

where  a = sin θ  and  b = cos θ.  Part of being successful in mathematics is the ability to recognize patterns.
While the terms or symbols may change, the algebra remains consistent.

Verify the identity:  cos4 θ − sin4 θ = cos(2θ).

Example 9.25

Verifying a Double-Angle Identity for Tangent

Verify the identity:

tan(2θ) = 2
cot θ − tan θ

Solution
In this case, we will work with the left side of the equation and simplify or rewrite until it equals the right side of
the equation.

tan(2θ) = 2 tan θ
1 − tan2 θ

Double-angle formula

=
2 tan θ⎛

⎝
1

tan θ
⎞
⎠

(1 − tan2 θ)⎛
⎝

1
tan θ

⎞
⎠

Multiply by a term that results in desired numerator.

= 2
1

tan θ − tan2 θ
tan θ

= 2
cot θ − tan θ Use reciprocal identity for  1

tan θ .

Analysis
Here is a case where the more complicated side of the initial equation appeared on the right, but we chose to work
the left side. However, if we had chosen the left side to rewrite, we would have been working backwards to arrive
at the equivalency. For example, suppose that we wanted to show

2tan θ
1 − tan2 θ

= 2
cot θ − tan θ

Let’s work on the right side.
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2
cot θ − tan θ = 2

1
tan θ − tan θ

⎛
⎝
tan θ
tan θ

⎞
⎠

= 2 tan θ
1

tan θ ( tan θ ) − tan θ(tan θ)

= 2 tan θ
1 − tan2 θ

When using the identities to simplify a trigonometric expression or solve a trigonometric equation, there are
usually several paths to a desired result. There is no set rule as to what side should be manipulated. However, we
should begin with the guidelines set forth earlier.

Verify the identity:  cos(2θ)cos θ = cos3 θ − cos θ sin2 θ.

Use Reduction Formulas to Simplify an Expression
The double-angle formulas can be used to derive the reduction formulas, which are formulas we can use to reduce the
power of a given expression involving even powers of sine or cosine. They allow us to rewrite the even powers of sine or
cosine in terms of the first power of cosine. These formulas are especially important in higher-level math courses, calculus
in particular. Also called the power-reducing formulas, three identities are included and are easily derived from the double-
angle formulas.

We can use two of the three double-angle formulas for cosine to derive the reduction formulas for sine and cosine. Let’s
begin with  cos(2θ) = 1 − 2 sin2 θ.  Solve for  sin2 θ :

cos(2θ) = 1 − 2 sin2 θ
2 sin2 θ = 1 − cos(2θ)

sin2 θ = 1 − cos(2θ)
2

Next, we use the formula  cos(2θ) = 2 cos2 θ − 1.  Solve for  cos2 θ :

cos(2θ) =  2 cos2 θ − 1
1 + cos(2θ) = 2 cos2 θ
1 + cos(2θ)

2 = cos2 θ

The last reduction formula is derived by writing tangent in terms of sine and cosine:

tan2 θ = sin2 θ
cos2 θ

=
1 − cos(2θ)

2
1 + cos(2θ)

2

Substitute the reduction formulas.

= ⎛
⎝
1 − cos(2θ)

2
⎞
⎠
⎛
⎝

2
1 + cos(2θ)

⎞
⎠

= 1 − cos(2θ)
1 + cos(2θ)

Reduction Formulas

The reduction formulas are summarized as follows:
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(9.27)sin2 θ = 1 − cos(2θ)
2

(9.28)cos2 θ = 1 + cos(2θ)
2

(9.29)tan2 θ = 1 − cos(2θ)
1 + cos(2θ)

Example 9.26

Writing an Equivalent Expression Not Containing Powers Greater Than 1

Write an equivalent expression for  cos4 x  that does not involve any powers of sine or cosine greater than 1.

Solution
We will apply the reduction formula for cosine twice.

cos4 x = ⎛
⎝cos2 x⎞

⎠
2

= ⎛
⎝
1 + cos(2x)

2
⎞
⎠

2
Substitute reduction formula for cos2 x.

= 1
4

⎛
⎝1 + 2cos(2x) + cos2(2x)⎞

⎠

= 1
4 + 1

2  cos(2x) + 1
4

⎛
⎝
1 + cos2(2x)

2
⎞
⎠ Substitute reduction formula for cos2 x.

= 1
4 + 1

2  cos(2x) + 1
8 + 1

8  cos(4x)

= 3
8 + 1

2  cos(2x) + 1
8  cos(4x)

Analysis
The solution is found by using the reduction formula twice, as noted, and the perfect square formula from algebra.

Example 9.27

Using the Power-Reducing Formulas to Prove an Identity

Use the power-reducing formulas to prove

sin3 (2x) = ⎡
⎣
1
2  sin(2x)⎤

⎦ ⎡⎣1 − cos(4x)⎤
⎦

Solution
We will work on simplifying the left side of the equation:

sin3(2x) = [sin(2x)]⎡
⎣sin2(2x)⎤

⎦

= sin(2x)⎡⎣
1 − cos(4x)

2
⎤
⎦ Substitute the power-reduction formula.

= sin(2x)⎛
⎝
1
2

⎞
⎠[1 − cos(4x)]

= 1
2[sin(2x)][1 − cos(4x)]
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Analysis
Note that in this example, we substituted

1 − cos(4x)
2

for  sin2 (2x). The formula states

sin2 θ = 1 − cos(2θ)
2

We let  θ = 2x, so  2θ = 4x.

Use the power-reducing formulas to prove that  10 cos4 x = 15
4 + 5 cos(2x) + 5

4  cos(4x).

Using Half-Angle Formulas to Find Exact Values
The next set of identities is the set of half-angle formulas, which can be derived from the reduction formulas and we can
use when we have an angle that is half the size of a special angle. If we replace  θ with  α2, the half-angle formula for sine

is found by simplifying the equation and solving for  sin⎛
⎝
α
2

⎞
⎠. Note that the half-angle formulas are preceded by a  ±   sign.

This does not mean that both the positive and negative expressions are valid. Rather, it depends on the quadrant in which
α
2   terminates.

The half-angle formula for sine is derived as follows:

sin2 θ = 1 − cos(2θ)
2

sin2 ⎛
⎝
α
2

⎞
⎠ =

1 − ⎛
⎝cos2 ⋅ α

2
⎞
⎠

2
= 1 − cos α

2

sin⎛
⎝
α
2

⎞
⎠ = ± 1 − cos α

2

To derive the half-angle formula for cosine, we have

cos2 θ = 1 + cos(2θ)
2

cos2 ⎛
⎝
α
2

⎞
⎠ =

1 + cos⎛
⎝2 ⋅ α

2
⎞
⎠

2
= 1 + cos α

2

cos⎛
⎝
α
2

⎞
⎠ = ± 1 + cos α

2

For the tangent identity, we have
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tan2 θ = 1 − cos(2θ)
1 + cos(2θ)

tan2⎛
⎝
α
2

⎞
⎠ =

1 − cos⎛
⎝2 ⋅ α

2
⎞
⎠

1 + cos⎛
⎝2 ⋅ α

2
⎞
⎠

= 1 − cos α
1 + cos α

tan⎛
⎝
α
2

⎞
⎠ = ± 1 − cos α

1 + cos α

Half-Angle Formulas

The half-angle formulas are as follows:

(9.30)sin⎛
⎝
α
2

⎞
⎠ = ± 1 − cos α

2
(9.31)cos⎛

⎝
α
2

⎞
⎠ = ± 1 + cos α

2
(9.32)tan⎛

⎝
α
2

⎞
⎠ = ± 1 − cos α

1 + cos α
                        = sin α

1 + cos α
                        = 1 − cos α

sin α

Example 9.28

Using a Half-Angle Formula to Find the Exact Value of a Sine Function

Find  sin(15°)  using a half-angle formula.

Solution

Since  15° = 30°
2 , we use the half-angle formula for sine:

sin 30°
2 = 1 − cos30°

2

=
1 − 3

2
2

=
2 − 3

2
2

= 2 − 3
4

= 2 − 3
2

Remember that we can check the answer with a graphing calculator.

Analysis
Notice that we used only the positive root because  sin(15°)  is positive.
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Given the tangent of an angle and the quadrant in which the angle lies, find the exact values of
trigonometric functions of half of the angle.

1. Draw a triangle to represent the given information.

2. Determine the correct half-angle formula.

3. Substitute values into the formula based on the triangle.

4. Simplify.

Example 9.29

Finding Exact Values Using Half-Angle Identities

Given that  tan α = 8
15 and  α  lies in quadrant III, find the exact value of the following:

a. sin⎛
⎝
α
2

⎞
⎠

b. cos⎛
⎝
α
2

⎞
⎠

c. tan⎛
⎝
α
2

⎞
⎠

Solution
Using the given information, we can draw the triangle shown in Figure 9.16. Using the Pythagorean Theorem,
we find the hypotenuse to be 17. Therefore, we can calculate  sin α = − 8

17   and  cos α = − 15
17.

Figure 9.16

a. Before we start, we must remember that if  α  is in quadrant III, then  180° < α < 270°, so
180°

2 < α
2 < 270°

2 . This means that the terminal side of  α2   is in quadrant II, since  90° < α
2 < 135°.

To find  sin α2, we begin by writing the half-angle formula for sine. Then we substitute the value of the

cosine we found from the triangle in Figure 9.16 and simplify.
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sin α2 = ± 1 − cos α
2

= ±
1 − ⎛

⎝− 15
17

⎞
⎠

2

= ±
32
17
2

= ± 32
17 ⋅ 1

2

= ± 16
17

= ± 4
17

= 4 17
17

We choose the positive value of  sin α2   because the angle terminates in quadrant II and sine is positive in

quadrant II.

b. To find  cos α2, we will write the half-angle formula for cosine, substitute the value of the cosine we found

from the triangle in Figure 9.16, and simplify.

cos α2 = ± 1 + cos α
2

= ±
1 + ⎛

⎝− 15
17

⎞
⎠

2

= ±
2
17
2

= ± 2
17 ⋅ 1

2

= ± 1
17

= − 17
17

We choose the negative value of  cos α2   because the angle is in quadrant II because cosine is negative in

quadrant II.

c. To find  tan α2, we write the half-angle formula for tangent. Again, we substitute the value of the cosine

we found from the triangle in Figure 9.16 and simplify.

tan α2 = ± 1 − cos α
1 + cos α

= ±
1 − ( − 15

17)
1 + ( − 15

17)

= ±
32
17
2
17

= ± 32
2

= − 16
= −4
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We choose the negative value of  tan α2   because  α2   lies in quadrant II, and tangent is negative in quadrant

II.

Given that  sin α = − 4
5   and  α  lies in quadrant IV, find the exact value of  cos ⎛⎝α

2
⎞
⎠.

Example 9.30

Finding the Measurement of a Half Angle

Now, we will return to the problem posed at the beginning of the section. A bicycle ramp is constructed for high-
level competition with an angle of  θ  formed by the ramp and the ground. Another ramp is to be constructed half

as steep for novice competition. If  tan θ = 5
3   for higher-level competition, what is the measurement of the angle

for novice competition?

Solution
Since the angle for novice competition measures half the steepness of the angle for the high level competition,
and  tan θ = 5

3   for high competition, we can find  cos θ  from the right triangle and the Pythagorean theorem so

that we can use the half-angle identities. See Figure 9.17.

32 + 52 = 34
c = 34

Figure 9.17

We see that  cos θ = 3
34

= 3 34
34 . We can use the half-angle formula for tangent:  tan θ2 = 1 − cos θ

1 + cos θ .  Since

 tan θ  is in the first quadrant, so is  tan θ2. 
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tan θ2 =
1 − 3 34

34

1 + 3 34
34

=
34 − 3 34

34
34 + 3 34

34

= 34 − 3 34
34 + 3 34

≈ 0.57

We can take the inverse tangent to find the angle:  tan−1(0.57) ≈ 29.7°.  So the angle of the ramp for novice
competition is   ≈ 29.7°.

Access these online resources for additional instruction and practice with double-angle, half-angle, and reduction
formulas.

• Double-Angle Identities (http://openstaxcollege.org/l/doubleangiden)

• Half-Angle Identities (http://openstaxcollege.org/l/halfangleident)
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9.3 EXERCISES
Verbal

Explain how to determine the reduction identities from
the double-angle identity  cos(2x) = cos2 x − sin2 x.

Explain how to determine the double-angle formula
for  tan(2x)  using the double-angle formulas for  cos(2x) 
and  sin(2x).

We can determine the half-angle formula for

 tan⎛
⎝
x
2

⎞
⎠ = 1 − cos x

1 + cos x   by dividing the formula for  sin⎛
⎝
x
2

⎞
⎠ 

by  cos⎛
⎝
x
2

⎞
⎠. Explain how to determine two formulas for

 tan⎛
⎝
x
2

⎞
⎠  that do not involve any square roots.

For the half-angle formula given in the previous

exercise for  tan⎛
⎝
x
2

⎞
⎠, explain why dividing by 0 is not a

concern. (Hint: examine the values of  cos x  necessary for
the denominator to be 0.)

Algebraic
For the following exercises, find the exact values of a)
 sin(2x), b)  cos(2x), and c)  tan(2x) without solving for
 x.

If  sin x = 1
8, and  x  is in quadrant I.

If  cos x = 2
3, and  x  is in quadrant I.

If  cos x = − 1
2, and  x  is in quadrant III.

If  tan x = −8, and  x  is in quadrant IV.

For the following exercises, find the values of the six
trigonometric functions if the conditions provided hold.

cos(2θ) = 3
5   and  90° ≤ θ ≤ 180°

cos(2θ) = 1
2
  and  180° ≤ θ ≤ 270°

For the following exercises, simplify to one trigonometric
expression.

2 sin⎛
⎝
π
4

⎞
⎠ 2 cos⎛

⎝
π
4

⎞
⎠

4 sin⎛
⎝
π
8

⎞
⎠ cos⎛

⎝
π
8

⎞
⎠

For the following exercises, find the exact value using half-
angle formulas.

 sin⎛
⎝
π
8

⎞
⎠ 

cos⎛
⎝−

11π
12

⎞
⎠

sin⎛
⎝
11π
12

⎞
⎠

cos⎛
⎝
7π
8

⎞
⎠

tan⎛
⎝
5π
12

⎞
⎠

tan⎛
⎝−

3π
12

⎞
⎠

tan⎛
⎝−

3π
8

⎞
⎠

For the following exercises, find the exact values of a)

 sin⎛
⎝
x
2

⎞
⎠, b)  cos⎛

⎝
x
2

⎞
⎠, and c)  tan⎛

⎝
x
2

⎞
⎠ without solving for  x.

If  tan x = − 4
3, and  x  is in quadrant IV.

If  sin x = − 12
13, and  x  is in quadrant III.

If  csc x = 7, and  x  is in quadrant II.

If  sec x = − 4, and  x  is in quadrant II.

For the following exercises, use Figure 9.18 to find the
requested half and double angles.

Figure 9.18

Find  sin(2θ), cos(2θ), and  tan(2θ).

Find  sin(2α), cos(2α), and  tan(2α).

Find  sin⎛
⎝
θ
2

⎞
⎠, cos⎛

⎝
θ
2

⎞
⎠, and  tan⎛

⎝
θ
2

⎞
⎠.
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127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

Find  sin⎛
⎝
α
2

⎞
⎠, cos⎛

⎝
α
2

⎞
⎠, and  tan⎛

⎝
α
2

⎞
⎠.

For the following exercises, simplify each expression. Do
not evaluate.

cos2(28°) − sin2(28°)

2cos2(37°) − 1

1 − 2 sin2(17°)

cos2(9x) − sin2(9x)

4 sin(8x) cos(8x)

6 sin(5x) cos(5x)

For the following exercises, prove the given identity.

(sin t − cos t)2 = 1 − sin(2t)

sin(2x) = − 2 sin(−x) cos(−x)

cot x − tan x = 2 cot(2x)

sin(2θ)
1 + cos(2θ)tan2 θ = tan θ

For the following exercises, rewrite the expression with an
exponent no higher than 1.

cos2(5x)

cos2(6x)

sin4(8x)

sin4(3x)

cos2 x sin4 x

cos4 x sin2 x

tan2 x sin2 x

Technology
For the following exercises, reduce the equations to powers
of one, and then check the answer graphically.

tan4 x

sin2(2x)

sin2 x cos2 x

tan2 x sin x

tan4 x cos2 x

cos2 x sin(2x)

cos2 (2x)sin x

tan2 ⎛
⎝
x
2

⎞
⎠ sin x

For the following exercises, algebraically find an
equivalent function, only in terms of  sin x  and/or  cos x,
and then check the answer by graphing both functions.

sin(4x)

cos(4x)

Extensions
For the following exercises, prove the identities.

sin(2x) = 2 tan x
1 + tan2 x

cos(2α) = 1 − tan2 α
1 + tan2 α

tan(2x) = 2 sin x cos x
2cos2 x − 1

⎛
⎝sin2 x − 1⎞

⎠
2

= cos(2x) + sin4 x

sin(3x) = 3 sin x cos2 x − sin3 x

cos(3x) = cos3 x − 3sin2 x cos x

1 + cos(2t)
sin(2t) − cos t = 2 cos t

2 sin t − 1

sin(16x) = 16 sin x cos x cos(2x)cos(4x)cos(8x)

cos(16x) = ⎛
⎝cos2 (4x) − sin2 (4x) − sin(8x)⎞

⎠
⎛
⎝cos2 (4x) − sin2 (4x) + sin(8x)⎞

⎠
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9.4 | Sum-to-Product and Product-to-Sum Formulas

Learning Objectives

In this section, you will:

9.4.1 Express products as sums.
9.4.2 Express sums as products.

Figure 9.19 The UCLA marching band (credit: Eric Chan, Flickr).

A band marches down the field creating an amazing sound that bolsters the crowd. That sound travels as a wave that can
be interpreted using trigonometric functions. For example, Figure 9.20 represents a sound wave for the musical note A.
In this section, we will investigate trigonometric identities that are the foundation of everyday phenomena such as sound
waves.

Figure 9.20

Expressing Products as Sums
We have already learned a number of formulas useful for expanding or simplifying trigonometric expressions, but
sometimes we may need to express the product of cosine and sine as a sum. We can use the product-to-sum formulas, which
express products of trigonometric functions as sums. Let’s investigate the cosine identity first and then the sine identity.

Expressing Products as Sums for Cosine
We can derive the product-to-sum formula from the sum and difference identities for cosine. If we add the two equations,
we get:
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9.16

cos α cos β + sin α sin β = cos(α − β)
+  cos α cos β − sin α sin β = cos(α + β)___________________________________

2 cos α cos β = cos(α − β) + cos(α + β)

Then, we divide by  2  to isolate the product of cosines:

cos α cos β = 1
2[cos(α − β) + cos(α + β)]

Given a product of cosines, express as a sum.

1. Write the formula for the product of cosines.

2. Substitute the given angles into the formula.

3. Simplify.

Example 9.31

Writing the Product as a Sum Using the Product-to-Sum Formula for Cosine

Write the following product of cosines as a sum:  2 cos⎛
⎝
7x
2

⎞
⎠ cos 3x

2 .

Solution
We begin by writing the formula for the product of cosines:

cos α cos β = 1
2

⎡
⎣cos⎛

⎝α − β⎞
⎠ + cos⎛

⎝α + β⎞
⎠
⎤
⎦

We can then substitute the given angles into the formula and simplify.

2 cos⎛
⎝
7x
2

⎞
⎠cos⎛

⎝
3x
2

⎞
⎠ = (2)⎛

⎝
1
2

⎞
⎠
⎡
⎣cos⎛

⎝
7x
2 − 3x

2
⎞
⎠) + cos⎛

⎝
7x
2 + 3x

2
⎞
⎠
⎤
⎦

= ⎡
⎣cos⎛

⎝
4x
2

⎞
⎠ + cos⎛

⎝
10x
2

⎞
⎠
⎤
⎦

= cos 2x + cos 5x

Use the product-to-sum formula to write the product as a sum or difference:  cos(2θ)cos(4θ).

Expressing the Product of Sine and Cosine as a Sum
Next, we will derive the product-to-sum formula for sine and cosine from the sum and difference formulas for sine. If we
add the sum and difference identities, we get:

 sin(α + β) = sin α cos β + cos α sin β
+ sin(α − β) = sin α cos β − cos α sin β_________________________________________
sin(α + β) + sin(α − β) = 2 sin α cos β

Then, we divide by 2 to isolate the product of cosine and sine:

sin α cos β = 1
2

⎡
⎣sin⎛

⎝α + β⎞
⎠ + sin⎛

⎝α − β⎞
⎠
⎤
⎦
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Example 9.32

Writing the Product as a Sum Containing only Sine or Cosine

Express the following product as a sum containing only sine or cosine and no products:  sin(4θ)cos(2θ).

Solution
Write the formula for the product of sine and cosine. Then substitute the given values into the formula and
simplify.

sin α cos β = 1
2[sin(α + β) + sin(α − β)]

sin(4θ)cos(2θ) = 1
2[sin(4θ + 2θ) + sin(4θ − 2θ)]

= 1
2[sin(6θ) + sin(2θ)]

Use the product-to-sum formula to write the product as a sum:  sin(x + y)cos(x − y).

Expressing Products of Sines in Terms of Cosine
Expressing the product of sines in terms of cosine is also derived from the sum and difference identities for cosine. In this
case, we will first subtract the two cosine formulas:

cos⎛
⎝α − β⎞

⎠ = cos α cos β + sin α sin β
−                   cos⎛

⎝α + β⎞
⎠ = − ⎛

⎝cos α cos β − sin α sin β⎞
⎠____________________________________________________

cos⎛
⎝α − β⎞

⎠ − cos⎛
⎝α + β⎞

⎠ = 2 sin α sin β

Then, we divide by 2 to isolate the product of sines:

sin α sin β = 1
2

⎡
⎣cos⎛

⎝α − β⎞
⎠ − cos⎛

⎝α + β⎞
⎠
⎤
⎦

Similarly we could express the product of cosines in terms of sine or derive other product-to-sum formulas.

The Product-to-Sum Formulas

The product-to-sum formulas are as follows:

(9.33)cos α cos β = 1
2[cos(α − β) + cos(α + β)]

(9.34)sin α cos β = 1
2[sin(α + β) + sin(α − β)]

(9.35)sin α sin β = 1
2[cos(α − β) − cos(α + β)]

(9.36)cos α sin β = 1
2[sin(α + β) − sin(α − β)]

Example 9.33

Express the Product as a Sum or Difference
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Write  cos(3θ) cos(5θ)  as a sum or difference.

Solution
We have the product of cosines, so we begin by writing the related formula. Then we substitute the given angles
and simplify.

cos α cos β = 1
2[cos(α − β) + cos(α + β)]

cos(3θ)cos(5θ) = 1
2[cos(3θ − 5θ) + cos(3θ + 5θ)]

= 1
2[cos(2θ) + cos(8θ)] Use even-odd identity.

Use the product-to-sum formula to evaluate  cos 11π
12  cos  π

12.

Expressing Sums as Products
Some problems require the reverse of the process we just used. The sum-to-product formulas allow us to express sums
of sine or cosine as products. These formulas can be derived from the product-to-sum identities. For example, with a few
substitutions, we can derive the sum-to-product identity for sine. Let  u + v

2 = α  and  u − v
2 = β.

Then,

α + β = u + v
2 + u − v

2
= 2u

2
= u

α − β = u + v
2 − u − v

2
= 2v

2
= v

Thus, replacing  α  and  β  in the product-to-sum formula with the substitute expressions, we have

sin α cos β = 1
2[sin(α + β) + sin(α − β)]

sin⎛
⎝
u + v

2
⎞
⎠cos⎛

⎝
u − v

2
⎞
⎠ = 1

2[sin u + sin v] Substitute for(α + β) and (α − β)

2 sin⎛
⎝
u + v

2
⎞
⎠cos⎛

⎝
u − v

2
⎞
⎠ = sin u + sin v

The other sum-to-product identities are derived similarly.

Sum-to-Product Formulas

The sum-to-product formulas are as follows:

(9.37)sin α + sin β = 2sin⎛
⎝
α + β

2
⎞
⎠cos⎛

⎝
α − β

2
⎞
⎠

(9.38)sin α − sin β = 2sin⎛
⎝
α − β

2
⎞
⎠cos⎛

⎝
α + β

2
⎞
⎠

(9.39)cos α − cos β = −2sin⎛
⎝
α + β

2
⎞
⎠sin⎛

⎝
α − β

2
⎞
⎠
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(9.40)cos α + cos β = 2cos⎛
⎝
α + β

2
⎞
⎠cos⎛

⎝
α − β

2
⎞
⎠

Example 9.34

Writing the Difference of Sines as a Product

Write the following difference of sines expression as a product:  sin(4θ) − sin(2θ).

Solution
We begin by writing the formula for the difference of sines.

sin α − sin β = 2sin⎛
⎝
α − β

2
⎞
⎠cos⎛

⎝
α + β

2
⎞
⎠

Substitute the values into the formula, and simplify.

sin(4θ) − sin(2θ) = 2sin⎛
⎝
4θ − 2θ

2
⎞
⎠ cos⎛

⎝
4θ + 2θ

2
⎞
⎠

= 2sin⎛
⎝
2θ
2

⎞
⎠ cos⎛

⎝
6θ
2

⎞
⎠

= 2 sin θ cos(3θ)

Use the sum-to-product formula to write the sum as a product:  sin(3θ) + sin(θ).

Example 9.35

Evaluating Using the Sum-to-Product Formula

Evaluate  cos(15°) − cos(75°). Check the answer with a graphing calculator.

Solution
We begin by writing the formula for the difference of cosines.

cos α − cos β = − 2 sin⎛
⎝
α + β

2
⎞
⎠ sin⎛

⎝
α − β

2
⎞
⎠

Then we substitute the given angles and simplify.

cos(15°) − cos(75°) = −2sin⎛
⎝
15° + 75°

2
⎞
⎠ sin⎛

⎝
15° − 75°

2
⎞
⎠

= −2sin(45°) sin(−30°)

= −2⎛
⎝

2
2

⎞
⎠
⎛
⎝−

1
2

⎞
⎠

= 2
2
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Example 9.36

Proving an Identity

Prove the identity:

cos(4t) − cos(2t)
sin(4t) + sin(2t) = − tan t

Solution
We will start with the left side, the more complicated side of the equation, and rewrite the expression until it
matches the right side.

cos(4t) − cos(2t)
sin(4t) + sin(2t) =

−2 sin⎛
⎝
4t + 2t

2
⎞
⎠ sin⎛

⎝
4t − 2t

2
⎞
⎠

2 sin⎛
⎝
4t + 2t

2
⎞
⎠ cos⎛

⎝
4t − 2t

2
⎞
⎠

= −2 sin(3t)sin t
2 sin(3t)cos t

= − 2 sin(3t)sin t
2 sin(3t)cos t

= − sin t
cos t

= −tan t

Analysis
Recall that verifying trigonometric identities has its own set of rules. The procedures for solving an equation are
not the same as the procedures for verifying an identity. When we prove an identity, we pick one side to work on
and make substitutions until that side is transformed into the other side.

Example 9.37

Verifying the Identity Using Double-Angle Formulas and Reciprocal Identities

Verify the identity  csc2 θ − 2 = cos(2θ)
sin2 θ

.

Solution
For verifying this equation, we are bringing together several of the identities. We will use the double-angle
formula and the reciprocal identities. We will work with the right side of the equation and rewrite it until it
matches the left side.

cos(2θ)
sin2 θ

= 1 − 2 sin2 θ
sin2 θ

= 1
sin2 θ

− 2 sin2 θ
sin2 θ

= csc2 θ − 2

Verify the identity  tan θ cot θ − cos2 θ = sin2 θ.
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Access these online resources for additional instruction and practice with the product-to-sum and sum-to-product
identities.

• Sum to Product Identities (http://openstaxcollege.org/l/sumtoprod)

• Sum to Product and Product to Sum Identities (http://openstaxcollege.org/l/sumtpptsum)
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9.4 EXERCISES
Verbal

Starting with the product to sum formula
 sin α cos β = 1

2[sin(α + β) + sin(α − β)], explain how

to determine the formula for  cos α sin β.

Provide two different methods of calculating
 cos(195°)cos(105°), one of which uses the product to
sum. Which method is easier?

Describe a situation where we would convert an
equation from a sum to a product and give an example.

Describe a situation where we would convert an
equation from a product to a sum, and give an example.

Algebraic
For the following exercises, rewrite the product as a sum or
difference.

16 sin(16x)sin(11x)

20 cos(36t)cos(6t)

2 sin(5x)cos(3x)

10 cos(5x)sin(10x)

sin(−x)sin(5x)

sin(3x)cos(5x)

For the following exercises, rewrite the sum or difference
as a product.

cos(6t) + cos(4t)

sin(3x) + sin(7x)

cos(7x) + cos(−7x)

sin(3x) − sin(−3x)

cos(3x) + cos(9x)

sin h − sin(3h)

For the following exercises, evaluate the product for the
following using a sum or difference of two functions.
Evaluate exactly.

cos(45°)cos(15°)

cos(45°)sin(15°)

sin(−345°)sin(−15°)

sin(195°)cos(15°)

sin(−45°)sin(−15°)

For the following exercises, evaluate the product using a
sum or difference of two functions. Leave in terms of sine
and cosine.

cos(23°)sin(17°)

2 sin(100°)sin(20°)

2 sin(−100°)sin(−20°)

sin(213°)cos(8°)

2 cos(56°)cos(47°)

For the following exercises, rewrite the sum as a product of
two functions. Leave in terms of sine and cosine.

sin(76°) + sin(14°)

cos(58°) − cos(12°)

sin(101°) − sin(32°)

cos(100°) + cos(200°)

sin(−1°) + sin(−2°)

For the following exercises, prove the identity.

cos(a + b)
cos(a − b) = 1 − tan a tan b

1 + tan a tan b

4 sin(3x)cos(4x) = 2 sin(7x) − 2 sinx

6 cos(8x)sin(2x)
sin(−6x) = −3 sin(10x)csc(6x) + 3

sin x + sin(3x) = 4 sin x cos2 x

2⎛
⎝cos3 x − cos x sin2 x⎞

⎠ = cos(3x) + cos x

2 tan x cos(3x) = sec x⎛
⎝sin(4x) − sin(2x)⎞

⎠

cos(a + b) + cos(a − b) = 2 cos a cos b
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212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

Numeric
For the following exercises, rewrite the sum as a product
of two functions or the product as a sum of two functions.
Give your answer in terms of sines and cosines. Then
evaluate the final answer numerically, rounded to four
decimal places.

cos(58°) + cos(12°)

sin(2°) − sin(3°)

cos(44°) − cos(22°)

cos(176°)sin(9°)

sin(−14°)sin(85°)

Technology
For the following exercises, algebraically determine
whether each of the given equation is an identity. If it is not
an identity, replace the right-hand side with an expression
equivalent to the left side. Verify the results by graphing
both expressions on a calculator.

2 sin(2x)sin(3x) = cos x − cos(5x)

cos(10θ) + cos(6θ)
cos(6θ) − cos(10θ) = cot(2θ)cot(8θ)

sin(3x) − sin(5x)
cos(3x) + cos(5x) = tan x

2 cos(2x)cos x + sin(2x)sin x = 2 sin x

sin(2x) + sin(4x)
sin(2x) − sin(4x) = − tan(3x)cot x

For the following exercises, simplify the expression to one
term, then graph the original function and your simplified
version to verify they are identical.

sin(9t) − sin(3t)
cos(9t) + cos(3t)

2 sin(8x)cos(6x) − sin(2x)

sin(3x) − sin x
sin x

cos(5x) + cos(3x)
sin(5x) + sin(3x)

sin x cos(15x) − cos x sin(15x)

Extensions
For the following exercises, prove the following sum-to-
product formulas.

sin x − sin y = 2 sin⎛
⎝
x − y

2
⎞
⎠cos⎛

⎝
x + y

2
⎞
⎠

cos x + cos y = 2 cos⎛
⎝
x + y

2
⎞
⎠cos⎛

⎝
x − y

2
⎞
⎠

For the following exercises, prove the identity.

sin(6x) + sin(4x)
sin(6x) − sin(4x) = tan (5x)cot x

cos(3x) + cos x
cos(3x) − cos x = − cot (2x)cot x

cos(6y) + cos(8y)
sin(6y) − sin(4y) = cot y cos (7y)sec (5y)

cos⎛
⎝2y⎞

⎠ − cos⎛
⎝4y⎞

⎠

sin⎛
⎝2y⎞

⎠ + sin⎛
⎝4y⎞

⎠
= tan y

sin(10x) − sin(2x)
cos(10x) + cos(2x) = tan(4x)

cos x − cos(3x) = 4 sin2 xcos x

(cos(2x) − cos(4x))2 + (sin(4x) + sin(2x))2 = 4 sin2(3x)

tan⎛
⎝
π
4 − t⎞⎠ = 1 − tan t

1 + tan t
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9.5 | Solving Trigonometric Equations

Learning Objectives

In this section, you will:

9.5.1 Solve linear trigonometric equations in sine and cosine.
9.5.2 Solve equations involving a single trigonometric function.
9.5.3 Solve trigonometric equations using a calculator.
9.5.4 Solve trigonometric equations that are quadratic in form.
9.5.5 Solve trigonometric equations using fundamental identities.
9.5.6 Solve trigonometric equations with multiple angles.
9.5.7 Solve right triangle problems.

Figure 9.21 Egyptian pyramids standing near a modern city. (credit: Oisin Mulvihill)

Thales of Miletus (circa 625–547 BC) is known as the founder of geometry. The legend is that he calculated the height of
the Great Pyramid of Giza in Egypt using the theory of similar triangles, which he developed by measuring the shadow of
his staff. Based on proportions, this theory has applications in a number of areas, including fractal geometry, engineering,
and architecture. Often, the angle of elevation and the angle of depression are found using similar triangles.

In earlier sections of this chapter, we looked at trigonometric identities. Identities are true for all values in the domain of the
variable. In this section, we begin our study of trigonometric equations to study real-world scenarios such as the finding the
dimensions of the pyramids.

Solving Linear Trigonometric Equations in Sine and Cosine
Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Similar in many ways
to solving polynomial equations or rational equations, only specific values of the variable will be solutions, if there are
solutions at all. Often we will solve a trigonometric equation over a specified interval. However, just as often, we will be
asked to find all possible solutions, and as trigonometric functions are periodic, solutions are repeated within each period.
In other words, trigonometric equations may have an infinite number of solutions. Additionally, like rational equations, the
domain of the function must be considered before we assume that any solution is valid. The period of both the sine function
and the cosine function is  2π. In other words, every  2π  units, the y-values repeat. If we need to find all possible solutions,
then we must add  2πk, where  k  is an integer, to the initial solution. Recall the rule that gives the format for stating all
possible solutions for a function where the period is  2π:

sin θ = sin(θ ± 2kπ)

There are similar rules for indicating all possible solutions for the other trigonometric functions. Solving trigonometric
equations requires the same techniques as solving algebraic equations. We read the equation from left to right, horizontally,
like a sentence. We look for known patterns, factor, find common denominators, and substitute certain expressions with
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a variable to make solving a more straightforward process. However, with trigonometric equations, we also have the
advantage of using the identities we developed in the previous sections.

Example 9.38

Solving a Linear Trigonometric Equation Involving the Cosine Function

Find all possible exact solutions for the equation  cos θ = 1
2.

Solution
From the unit circle, we know that

cos θ = 1
2

θ = π
3, 5π

3

These are the solutions in the interval  [0, 2π]. All possible solutions are given by

θ = π
3 ± 2kπ  and  θ = 5π

3 ± 2kπ

where  k  is an integer.

Example 9.39

Solving a Linear Equation Involving the Sine Function

Find all possible exact solutions for the equation  sin t = 1
2.

Solution
Solving for all possible values of t means that solutions include angles beyond the period of  2π.  From Figure

9.7, we can see that the solutions are  t = π
6   and  t = 5π

6 . But the problem is asking for all possible values that

solve the equation. Therefore, the answer is

t = π
6 ± 2πk  and  t = 5π

6 ± 2πk

where  k  is an integer.

Given a trigonometric equation, solve using algebra.

1. Look for a pattern that suggests an algebraic property, such as the difference of squares or a factoring
opportunity.

2. Substitute the trigonometric expression with a single variable, such as  x  or  u.

3. Solve the equation the same way an algebraic equation would be solved.

4. Substitute the trigonometric expression back in for the variable in the resulting expressions.

5. Solve for the angle.
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Example 9.40

Solve the Linear Trigonometric Equation

Solve the equation exactly:  2 cos θ − 3 = − 5, 0 ≤ θ < 2π.

Solution
Use algebraic techniques to solve the equation.

2 cos θ − 3 = −5
2 cos θ = −2

cos θ = −1
θ = π

Solve exactly the following linear equation on the interval  [0, 2π) :  2 sin x + 1 = 0.

Solving Equations Involving a Single Trigonometric Function
When we are given equations that involve only one of the six trigonometric functions, their solutions involve using
algebraic techniques and the unit circle (see Figure 9.7). We need to make several considerations when the equation
involves trigonometric functions other than sine and cosine. Problems involving the reciprocals of the primary trigonometric
functions need to be viewed from an algebraic perspective. In other words, we will write the reciprocal function, and solve
for the angles using the function. Also, an equation involving the tangent function is slightly different from one containing
a sine or cosine function. First, as we know, the period of tangent is  π, not  2π.  Further, the domain of tangent is all real

numbers with the exception of odd integer multiples of  π2, unless, of course, a problem places its own restrictions on the

domain.

Example 9.41

Solving a Problem Involving a Single Trigonometric Function

Solve the problem exactly:  2 sin2 θ − 1 = 0, 0 ≤ θ < 2π.

Solution
As this problem is not easily factored, we will solve using the square root property. First, we use algebra to isolate
 sin θ. Then we will find the angles.

2 sin2 θ − 1 = 0
 2 sin2 θ = 1

sin2 θ = 1
2

sin2 θ = ± 1
2

sin θ = ± 1
2

= ± 2
2

θ = π
4, 3π

4 , 5π
4 , 7π

4
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Example 9.42

Solving a Trigonometric Equation Involving Cosecant

Solve the following equation exactly:  csc θ = − 2, 0 ≤ θ < 4π.

Solution
We want all values of  θ  for which  csc θ = − 2  over the interval  0 ≤ θ < 4π.

csc θ = −2
1

sin θ = −2

sin θ = −1
2

θ = 7π
6 , 11π

6 , 19π
6 , 23π

6

Analysis
As  sin θ = − 1

2, notice that all four solutions are in the third and fourth quadrants.

Example 9.43

Solving an Equation Involving Tangent

Solve the equation exactly:  tan⎛
⎝θ − π

2
⎞
⎠ = 1, 0 ≤ θ < 2π.

Solution
Recall that the tangent function has a period of  π. On the interval  [0, π), and at the angle of  π4, the tangent has

a value of 1. However, the angle we want is  ⎛⎝θ − π
2

⎞
⎠. Thus, if  tan⎛

⎝
π
4

⎞
⎠ = 1, then

θ − π
2 = π

4
θ = 3π

4 ± kπ

Over the interval  [0, 2π), we have two solutions:

θ = 3π
4   and θ = 3π

4 + π = 7π
4

Find all solutions for  tan x = 3.

Example 9.44
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Identify all Solutions to the Equation Involving Tangent

Identify all exact solutions to the equation  2(tan x + 3) = 5 + tan x, 0 ≤ x < 2π.

Solution
We can solve this equation using only algebra. Isolate the expression  tan x  on the left side of the equals sign.

2(tan x) + 2(3) = 5 + tan x
2tan x + 6 = 5 + tan x

 2tan x − tan x = 5 − 6
tan x = −1

There are two angles on the unit circle that have a tangent value of  −1:θ = 3π
4   and  θ = 7π

4 .

Solve Trigonometric Equations Using a Calculator
Not all functions can be solved exactly using only the unit circle. When we must solve an equation involving an angle other
than one of the special angles, we will need to use a calculator. Make sure it is set to the proper mode, either degrees or
radians, depending on the criteria of the given problem.

Example 9.45

Using a Calculator to Solve a Trigonometric Equation Involving Sine

Use a calculator to solve the equation  sin θ = 0.8, where  θ  is in radians.

Solution
Make sure mode is set to radians. To find  θ, use the inverse sine function. On most calculators, you will need

to push the 2ND button and then the SIN button to bring up the  sin−1   function. What is shown on the screen is

sin−1( . The calculator is ready for the input within the parentheses. For this problem, we enter  sin−1 (0.8), and
press ENTER. Thus, to four decimals places,

sin−1(0.8) ≈ 0.9273

The solution is

θ ≈ 0.9273 ± 2πk

The angle measurement in degrees is

θ ≈ 53.1°
θ ≈ 180° − 53.1°

≈ 126.9°

Analysis
Note that a calculator will only return an angle in quadrants I or IV for the sine function, since that is the range of
the inverse sine. The other angle is obtained by using  π − θ.
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Example 9.46

Using a Calculator to Solve a Trigonometric Equation Involving Secant

Use a calculator to solve the equation  sec θ = −4, giving your answer in radians.

Solution
We can begin with some algebra.

sec θ = −4
1

cos θ = −4

cos θ = −1
4

Check that the MODE is in radians. Now use the inverse cosine function.

cos−1 ⎛
⎝−

1
4

⎞
⎠ ≈ 1.8235

θ ≈ 1.8235 + 2πk

Since  π2 ≈ 1.57  and  π ≈ 3.14, 1.8235 is between these two numbers, thus  θ ≈ 1.8235  is in quadrant II. Cosine

is also negative in quadrant III. Note that a calculator will only return an angle in quadrants I or II for the cosine
function, since that is the range of the inverse cosine. See Figure 9.22.

Figure 9.22

So, we also need to find the measure of the angle in quadrant III. In quadrant III, the reference angle is
 θ ' ≈ π − 1.8235 ≈ 1.3181. The other solution in quadrant III is  θ ' ≈ π + 1.3181 ≈ 4.4597.

The solutions are  θ ≈ 1.8235 ± 2πk  and  θ ≈ 4.4597 ± 2πk.

Solve  cos θ = − 0.2.
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Solving Trigonometric Equations in Quadratic Form
Solving a quadratic equation may be more complicated, but once again, we can use algebra as we would for any quadratic
equation. Look at the pattern of the equation. Is there more than one trigonometric function in the equation, or is there
only one? Which trigonometric function is squared? If there is only one function represented and one of the terms is
squared, think about the standard form of a quadratic. Replace the trigonometric function with a variable such as  x  or  u.  If
substitution makes the equation look like a quadratic equation, then we can use the same methods for solving quadratics to
solve the trigonometric equations.

Example 9.47

Solving a Trigonometric Equation in Quadratic Form

Solve the equation exactly:  cos2 θ + 3 cos θ − 1 = 0, 0 ≤ θ < 2π.

Solution
We begin by using substitution and replacing cos θ with  x.  It is not necessary to use substitution, but it may make
the problem easier to solve visually. Let  cos θ = x. We have

x2 + 3x − 1 = 0

The equation cannot be factored, so we will use the quadratic formula  x = −b ± b2 − 4ac
2a .

x = −3 ± ( − 3)2 − 4(1)( − 1)
2

= −3 ± 13
2

Replace  x with  cos θ, and solve.

cos θ = −3 ± 13
2

θ = cos−1 ⎛
⎝
−3 + 13

2
⎞
⎠

Note that only the + sign is used. This is because we get an error when we solve  θ = cos−1 ⎛
⎝
−3 − 13

2
⎞
⎠  on a

calculator, since the domain of the inverse cosine function is  [−1, 1]. However, there is a second solution:

θ = cos−1 ⎛
⎝
−3 + 13

2
⎞
⎠

≈ 1.26

This terminal side of the angle lies in quadrant I. Since cosine is also positive in quadrant IV, the second solution
is

θ = 2π − cos−1 ⎛
⎝
−3 + 13

2
⎞
⎠

≈  5.02

Example 9.48
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Solving a Trigonometric Equation in Quadratic Form by Factoring

Solve the equation exactly:  2 sin2 θ − 5 sin θ + 3 = 0, 0 ≤ θ ≤ 2π.

Solution
Using grouping, this quadratic can be factored. Either make the real substitution,  sin θ = u, or imagine it, as we
factor:

 2 sin2 θ − 5 sin θ + 3 = 0
(2 sin θ − 3)(sin θ − 1) = 0

Now set each factor equal to zero.

2 sin θ − 3 = 0
2 sin θ = 3

sin θ = 3
2

sin θ − 1 = 0
sin θ = 1

Next solve for  θ : sin θ ≠ 3
2, as the range of the sine function is  [−1, 1]. However,  sin θ = 1, giving the

solution  θ = π
2.

Analysis
Make sure to check all solutions on the given domain as some factors have no solution.

Solve  sin2 θ = 2 cos θ + 2, 0 ≤ θ ≤ 2π.  [Hint: Make a substitution to express the equation only in terms
of cosine.]

Example 9.49

Solving a Trigonometric Equation Using Algebra

Solve exactly:

2 sin2 θ + sin θ = 0; 0 ≤ θ < 2π

Solution
This problem should appear familiar as it is similar to a quadratic. Let  sin θ = x. The equation becomes

 2x2 + x = 0. We begin by factoring:

2x2 + x = 0
x(2x + 1) = 0

Set each factor equal to zero.
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x = 0
(2x + 1) = 0

x = −1
2

Then, substitute back into the equation the original expression  sin θ  for  x. Thus,

sin θ = 0
θ = 0, π

sin θ = −1
2

θ = 7π
6 , 11π

6

The solutions within the domain  0 ≤ θ < 2π  are  θ = 0, π, 7π
6 , 11π

6 .

If we prefer not to substitute, we can solve the equation by following the same pattern of factoring and setting
each factor equal to zero.

2 sin2 θ + sin θ = 0
sin θ(2sin θ + 1) = 0

sin θ = 0
θ = 0, π

 2 sin θ + 1 = 0
2sin θ = −1
sin θ = −1

2
θ = 7π

6 , 11π
6

Analysis
We can see the solutions on the graph in Figure 9.23. On the interval  0 ≤ θ < 2π, the graph crosses the x-axis
four times, at the solutions noted. Notice that trigonometric equations that are in quadratic form can yield up to
four solutions instead of the expected two that are found with quadratic equations. In this example, each solution
(angle) corresponding to a positive sine value will yield two angles that would result in that value.

Figure 9.23

We can verify the solutions on the unit circle in Figure 9.7 as well.

Example 9.50
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Solving a Trigonometric Equation Quadratic in Form

Solve the equation quadratic in form exactly:  2 sin2 θ − 3 sin θ + 1 = 0, 0 ≤ θ < 2π.

Solution
We can factor using grouping. Solution values of  θ  can be found on the unit circle.

(2 sin θ − 1)(sin θ − 1) = 0
 2 sin θ − 1 = 0

sin θ = 1
2

θ = π
6, 5π

6

sin θ = 1
θ = π

2

Solve the quadratic equation  2 cos2 θ + cos θ = 0.

Solving Trigonometric Equations Using Fundamental Identities
While algebra can be used to solve a number of trigonometric equations, we can also use the fundamental identities because
they make solving equations simpler. Remember that the techniques we use for solving are not the same as those for
verifying identities. The basic rules of algebra apply here, as opposed to rewriting one side of the identity to match the other
side. In the next example, we use two identities to simplify the equation.

Example 9.51

Use Identities to Solve an Equation

Use identities to solve exactly the trigonometric equation over the interval  0 ≤ x < 2π.

cos x cos(2x) + sin x sin(2x) = 3
2

Solution
Notice that the left side of the equation is the difference formula for cosine.

cos x cos(2x) + sin x sin(2x) = 3
2

cos(x − 2x) = 3
2 Diffe ence formula for cosine

cos( − x) = 3
2 Use the negative angle identity.

cos x = 3
2

From the unit circle in Figure 9.7, we see that  cos x = 3
2  when  x = π

6, 11π
6 .
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Example 9.52

Solving the Equation Using a Double-Angle Formula

Solve the equation exactly using a double-angle formula:  cos(2 θ) = cos θ.

Solution
We have three choices of expressions to substitute for the double-angle of cosine. As it is simpler to solve for one
trigonometric function at a time, we will choose the double-angle identity involving only cosine:

cos(2θ) = cos θ
2cos2 θ − 1 = cos θ

2 cos2 θ − cos θ − 1 = 0
(2 cos θ + 1)(cos θ − 1) = 0

2 cos θ + 1 = 0
cos θ = −1

2

cos θ − 1 = 0
cos θ = 1

So, if  cos θ = − 1
2, then  θ = 2π

3 ± 2πk  and  θ = 4π
3 ± 2πk;   if  cos θ = 1, then  θ = 0 ± 2πk.

Example 9.53

Solving an Equation Using an Identity

Solve the equation exactly using an identity:  3 cos θ + 3 = 2 sin2 θ, 0 ≤ θ < 2π.

Solution
If we rewrite the right side, we can write the equation in terms of cosine:

3 cos θ + 3 = 2sin2 θ
3 cos θ + 3 = 2⎛

⎝1 − cos2 θ⎞
⎠

3 cos θ + 3 = 2 − 2cos2 θ
2 cos2 θ + 3 cos θ + 1 = 0

(2 cos θ + 1)(cos θ + 1) = 0
2 cos θ + 1 = 0

cos θ = −1
2

θ = 2π
3 , 4π

3
cos θ + 1 = 0

cos θ = −1
θ = π

Our solutions are  θ = 2π
3 , 4π

3 , π.
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Solving Trigonometric Equations with Multiple Angles
Sometimes it is not possible to solve a trigonometric equation with identities that have a multiple angle, such as  sin(2x)  or
 cos(3x). When confronted with these equations, recall that  y = sin(2x)  is a horizontal compression by a factor of 2 of the

function  y = sin x. On an interval of  2π, we can graph two periods of  y = sin(2x), as opposed to one cycle of  y = sin x. 
This compression of the graph leads us to believe there may be twice as many x-intercepts or solutions to  sin(2x) = 0 
compared to  sin x = 0. This information will help us solve the equation.

Example 9.54

Solving a Multiple Angle Trigonometric Equation

Solve exactly:  cos(2x) = 1
2   on  [0, 2π).

Solution

We can see that this equation is the standard equation with a multiple of an angle. If  cos(α) = 1
2, we know  α 

is in quadrants I and IV. While  θ = cos−1 1
2  will only yield solutions in quadrants I and II, we recognize that the

solutions to the equation  cos θ = 1
2  will be in quadrants I and IV.

Therefore, the possible angles are  θ = π
3   and  θ = 5π

3 .  So, 2x = π
3   or  2x = 5π

3 , which means that  x = π
6   or

 x = 5π
6 . Does this make sense? Yes, because  cos⎛

⎝2
⎛
⎝
π
6

⎞
⎠
⎞
⎠ = cos⎛

⎝
π
3

⎞
⎠ = 1

2.

Are there any other possible answers? Let us return to our first step.

In quadrant I,  2x = π
3, so  x = π

6   as noted. Let us revolve around the circle again:

2x = π
3 + 2π

= π
3 + 6π

3
= 7π

3

so  x = 7π
6 .

One more rotation yields

2x = π
3 + 4π

= π
3 + 12π

3
= 13π

3

x = 13π
6 > 2π, so this value for  x  is larger than  2π, so it is not a solution on  [0, 2π).

In quadrant IV,  2x = 5π
3 , so  x = 5π

6   as noted. Let us revolve around the circle again:
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2x = 5π
3 + 2π

= 5π
3 + 6π

3
= 11π

3

so  x = 11π
6 .

One more rotation yields

2x = 5π
3 + 4π

= 5π
3 + 12π

3
= 17π

3

x = 17π
6 > 2π, so this value for  x  is larger than  2π, so it is not a solution on  [0, 2π).

Our solutions are  x = π
6, 5π

6 , 7π
6 , and 11π

6 . Note that whenever we solve a problem in the form of

 sin(nx) = c, we must go around the unit circle  n  times.

Solving Right Triangle Problems
We can now use all of the methods we have learned to solve problems that involve applying the properties of right triangles
and the Pythagorean Theorem. We begin with the familiar Pythagorean Theorem,  a2 + b2 = c2, and model an equation to
fit a situation.
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Example 9.55

Using the Pythagorean Theorem to Model an Equation

Use the Pythagorean Theorem, and the properties of right triangles to model an equation that fits the problem.

One of the cables that anchors the center of the London Eye Ferris wheel to the ground must be replaced. The
center of the Ferris wheel is 69.5 meters above the ground, and the second anchor on the ground is 23 meters
from the base of the Ferris wheel. Approximately how long is the cable, and what is the angle of elevation (from
ground up to the center of the Ferris wheel)? See Figure 9.24.

Figure 9.24

Solution
Using the information given, we can draw a right triangle. We can find the length of the cable with the
Pythagorean Theorem.

a2 + b2 = c2

(23)2 + (69.5)2 ≈ 5359
5359 ≈ 73.2 m

The angle of elevation is  θ, formed by the second anchor on the ground and the cable reaching to the center of
the wheel. We can use the tangent function to find its measure. Round to two decimal places.

tan θ = 69.5
23

tan−1 ⎛
⎝
69.5
23

⎞
⎠ ≈ 1.2522

≈ 71.69°

The angle of elevation is approximately  71.7°, and the length of the cable is 73.2 meters.

Example 9.56

Using the Pythagorean Theorem to Model an Abstract Problem

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall for every 4 feet of ladder
length. Find the angle that a ladder of any length forms with the ground and the height at which the ladder touches
the wall.
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Solution
For any length of ladder, the base needs to be a distance from the wall equal to one fourth of the ladder’s length.
Equivalently, if the base of the ladder is “a” feet from the wall, the length of the ladder will be 4a feet. See Figure
9.25.

Figure 9.25

The side adjacent to  θ  is a and the hypotenuse is  4a. Thus,

cos θ = a
4a = 1

4
cos−1 ⎛

⎝
1
4

⎞
⎠ ≈ 75.5°

The elevation of the ladder forms an angle of  75.5° with the ground. The height at which the ladder touches the
wall can be found using the Pythagorean Theorem:

a2 + b2 = (4a)2

b2 = (4a)2 − a2

b2 = 16a2 − a2

b2 = 15a2

b = a 15

Thus, the ladder touches the wall at  a 15  feet from the ground.

Access these online resources for additional instruction and practice with solving trigonometric equations.

• Solving Trigonometric Equations I (http://openstaxcollege.org/l/solvetrigeqI)

• Solving Trigonometric Equations II (http://openstaxcollege.org/l/solvetrigeqII)

• Solving Trigonometric Equations III (http://openstaxcollege.org/l/solvetrigeqIII)

• Solving Trigonometric Equations IV (http://openstaxcollege.org/l/solvetrigeqIV)

• Solving Trigonometric Equations V (http://openstaxcollege.org/l/solvetrigeqV)

• Solving Trigonometric Equations VI (http://openstaxcollege.org/l/solvetrigeqVI)
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9.5 EXERCISES
Verbal

Will there always be solutions to trigonometric
function equations? If not, describe an equation that would
not have a solution. Explain why or why not.

When solving a trigonometric equation involving
more than one trig function, do we always want to try to
rewrite the equation so it is expressed in terms of one
trigonometric function? Why or why not?

When solving linear trig equations in terms of only
sine or cosine, how do we know whether there will be
solutions?

Algebraic
For the following exercises, find all solutions exactly on the
interval  0 ≤ θ < 2π.

2 sin θ = − 2

2 sin θ = 3

2 cos θ = 1

2 cos θ = − 2

tan θ = −1

tan x = 1

cot x + 1 = 0

4 sin2 x − 2 = 0

csc2 x − 4 = 0

For the following exercises, solve exactly on  [0, 2π).

2 cos θ = 2

2 cos θ = −1

2 sin θ = −1

2 sin θ = − 3

2 sin(3θ) = 1

2 sin(2θ) = 3

2 cos(3θ) = − 2

cos(2θ) = − 3
2

2 sin(πθ) = 1

2 cos⎛
⎝
π
5θ⎞

⎠ = 3

For the following exercises, find all exact solutions on
 [0, 2π).

sec(x)sin(x) − 2 sin(x) = 0

tan(x) − 2 sin(x)tan(x) = 0

2 cos2 t + cos(t) = 1

2 tan2(t) = 3 sec(t)

2 sin(x)cos(x) − sin(x) + 2 cos(x) − 1 = 0

cos2 θ = 1
2

sec2 x = 1

tan2 (x) = −1 + 2 tan(−x)

8 sin2(x) + 6 sin(x) + 1 = 0

tan5(x) = tan(x)

For the following exercises, solve with the methods shown
in this section exactly on the interval  [0, 2π).

sin(3x)cos(6x) − cos(3x)sin(6x) = −0.9

sin(6x)cos(11x) − cos(6x)sin(11x) = −0.1

cos(2x)cos x + sin(2x)sin x = 1

6 sin(2t) + 9 sin t = 0

9 cos(2θ) = 9 cos2 θ − 4

sin(2t) = cos t

cos(2t) = sin t

cos(6x) − cos(3x) = 0

1046 Chapter 9 Trigonometric Identities and Equations

This content is available for free at https://cnx.org/content/col11758/1.5



265.

266.

267.

268.

269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

305.

306.

For the following exercises, solve exactly on the interval
 [0, 2π). Use the quadratic formula if the equations do not
factor.

tan2 x − 3 tan x = 0

sin2 x + sin x − 2 = 0

sin2 x − 2 sin x − 4 = 0

5 cos2 x + 3 cos x − 1 = 0

3 cos2 x − 2 cos x − 2 = 0

5 sin2 x + 2 sin x − 1 = 0

tan2 x + 5tan x − 1 = 0

cot2 x = − cot x

−tan2 x − tan x − 2 = 0

For the following exercises, find exact solutions on the
interval  [0, 2π). Look for opportunities to use
trigonometric identities.

sin2 x − cos2 x − sin x = 0

sin2 x + cos2 x = 0

sin(2x) − sin x = 0

cos(2x) − cos x = 0

2 tan x
2 − sec2 x

− sin2 x = cos2 x

1 − cos(2x) = 1 + cos(2x)

sec2 x = 7

10 sin x cos x = 6 cos x

−3 sin t = 15 cos t sin t

4 cos2 x − 4 = 15 cos x

8 sin2 x + 6 sin x + 1 = 0

8 cos2 θ = 3 − 2 cos θ

6 cos2 x + 7 sin x − 8 = 0

12 sin2 t + cos t − 6 = 0

tan x = 3 sin x

cos3 t = cos t

Graphical
For the following exercises, algebraically determine all
solutions of the trigonometric equation exactly, then verify
the results by graphing the equation and finding the zeros.

6 sin2 x − 5 sin x + 1 = 0

8 cos2 x − 2 cos x − 1 = 0

100 tan2 x + 20 tan x − 3 = 0

2 cos2 x − cos x + 15 = 0

20 sin2 x − 27 sin x + 7 = 0

2 tan2 x + 7 tan x + 6 = 0

130 tan2 x + 69 tan x − 130 = 0

Technology
For the following exercises, use a calculator to find all
solutions to four decimal places.

sin x = 0.27

sin x = −0.55

tan x = −0.34

cos x = 0.71

For the following exercises, solve the equations
algebraically, and then use a calculator to find the values on
the interval  [0, 2π). Round to four decimal places.

tan2 x + 3 tan x − 3 = 0

6 tan2 x + 13 tan x = −6

tan2 x − sec x = 1

sin2 x − 2 cos2 x = 0

2 tan2 x + 9 tan x − 6 = 0

4 sin2 x + sin(2x)sec x − 3 = 0
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Extensions
For the following exercises, find all solutions exactly to the
equations on the interval  [0, 2π).

csc2 x − 3 csc x − 4 = 0

sin2 x − cos2 x − 1 = 0

sin2 x⎛
⎝1 − sin2 x⎞

⎠ + cos2 x⎛
⎝1 − sin2 x⎞

⎠ = 0

3 sec2 x + 2 + sin2 x − tan2 x + cos2 x = 0

sin2 x − 1 + 2 cos(2x) − cos2 x = 1

tan2 x − 1 − sec3 x cos x = 0

sin(2x)
sec2 x

= 0

sin(2x)
2csc2 x

= 0

2 cos2 x − sin2 x − cos x − 5 = 0

1
sec2 x

+ 2 + sin2 x + 4 cos2 x = 4

Real-World Applications

An airplane has only enough gas to fly to a city 200
miles northeast of its current location. If the pilot knows
that the city is 25 miles north, how many degrees north of
east should the airplane fly?

If a loading ramp is placed next to a truck, at a height
of 4 feet, and the ramp is 15 feet long, what angle does the
ramp make with the ground?

If a loading ramp is placed next to a truck, at a height
of 2 feet, and the ramp is 20 feet long, what angle does the
ramp make with the ground?

A woman is watching a launched rocket currently 11
miles in altitude. If she is standing 4 miles from the launch
pad, at what angle is she looking up from horizontal?

An astronaut is in a launched rocket currently 15
miles in altitude. If a man is standing 2 miles from the
launch pad, at what angle is she looking down at him from
horizontal? (Hint: this is called the angle of depression.)

A woman is standing 8 meters away from a 10-meter
tall building. At what angle is she looking to the top of the
building?

A man is standing 10 meters away from a 6-meter tall
building. Someone at the top of the building is looking
down at him. At what angle is the person looking at him?

A 20-foot tall building has a shadow that is 55 feet
long. What is the angle of elevation of the sun?

A 90-foot tall building has a shadow that is 2 feet
long. What is the angle of elevation of the sun?

A spotlight on the ground 3 meters from a 2-meter tall
man casts a 6 meter shadow on a wall 6 meters from the
man. At what angle is the light?

A spotlight on the ground 3 feet from a 5-foot tall
woman casts a 15-foot tall shadow on a wall 6 feet from the
woman. At what angle is the light?

For the following exercises, find a solution to the following
word problem algebraically. Then use a calculator to verify
the result. Round the answer to the nearest tenth of a
degree.

A person does a handstand with his feet touching a
wall and his hands 1.5 feet away from the wall. If the
person is 6 feet tall, what angle do his feet make with the
wall?

A person does a handstand with her feet touching a
wall and her hands 3 feet away from the wall. If the person
is 5 feet tall, what angle do her feet make with the wall?

A 23-foot ladder is positioned next to a house. If the
ladder slips at 7 feet from the house when there is not
enough traction, what angle should the ladder make with
the ground to avoid slipping?
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double-angle formulas

even-odd identities

half-angle formulas

product-to-sum formula

Pythagorean identities

quotient identities

reciprocal identities

reduction formulas

sum-to-product formula

CHAPTER 9 REVIEW

KEY TERMS
identities derived from the sum formulas for sine, cosine, and tangent in which the angles are

equal

set of equations involving trigonometric functions such that if   f (−x) = − f (x), the identity is

odd, and if   f (−x) = f (x), the identity is even

identities derived from the reduction formulas and used to determine half-angle values of
trigonometric functions

a trigonometric identity that allows the writing of a product of trigonometric functions as a
sum or difference of trigonometric functions

set of equations involving trigonometric functions based on the right triangle properties

pair of identities based on the fact that tangent is the ratio of sine and cosine, and cotangent is the ratio
of cosine and sine

set of equations involving the reciprocals of basic trigonometric definitions

identities derived from the double-angle formulas and used to reduce the power of a trigonometric
function

a trigonometric identity that allows, by using substitution, the writing of a sum of
trigonometric functions as a product of trigonometric functions

KEY EQUATIONS
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Pythagorean identities

cos2 θ + sin2 θ = 1
1 + cot2 θ = csc2 θ
1 + tan2 θ = sec2 θ

Even-odd identities

tan( − θ) = −tan θ
cot( − θ) = −cot θ
sin( − θ) = −sin θ
csc( − θ) = −csc θ
cos( − θ) = cos θ
sec( − θ) = sec θ

Reciprocal identities

sin θ = 1
csc θ

cos θ = 1
sec θ

tan θ = 1
cot θ

csc θ = 1
sin θ

sec θ = 1
cos θ

cot θ = 1
tan θ

Quotient identities
tan θ = sin θ

cos θ
cot θ = cos θ

sin θ
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Sum Formula for Cosine cos⎛
⎝α + β⎞

⎠ = cos α cos β − sin αsin β

Difference Formula for Cosine cos⎛
⎝α − β⎞

⎠ = cos α cos β + sin α sin β

Sum Formula for Sine sin⎛
⎝α + β⎞

⎠ = sin α cos β + cos α sin β

Difference Formula for Sine sin⎛
⎝α − β⎞

⎠ = sin α cos β − cos α sin β

Sum Formula for Tangent tan⎛
⎝α + β⎞

⎠ = tan α + tan β
1 − tan α tan β

Difference Formula for Tangent tan⎛
⎝α − β⎞

⎠ = tan α − tan β
1 + tan α tan β

Cofunction identities

sin θ = cos⎛
⎝
π
2 − θ⎞

⎠

cos θ = sin⎛
⎝
π
2 − θ⎞

⎠

tan θ = cot⎛⎝
π
2 − θ⎞

⎠

cot θ = tan⎛
⎝
π
2 − θ⎞

⎠

sec θ = csc⎛
⎝
π
2 − θ⎞

⎠

csc θ = sec⎛
⎝
π
2 − θ⎞

⎠

Chapter 9 Trigonometric Identities and Equations 1051



Double-angle formulas

sin(2θ) = 2sin θ cos θ
cos(2θ) = cos2 θ − sin2 θ

= 1 − 2sin2 θ
= 2cos2 θ − 1

tan(2θ) = 2tan θ
1 − tan2 θ

Reduction formulas

sin2 θ = 1 − cos(2θ)
2

cos2 θ = 1 + cos(2θ)
2

tan2 θ = 1 − cos(2θ)
1 + cos(2θ)

Half-angle formulas

sin α2 = ± 1 − cos α
2

cos α2 = ± 1 + cos α
2

tan α2 = ± 1 − cos α
1 + cos α

= sin α
1 + cos α

= 1 − cos α
sin α

Product-to-sum Formulas

cos α cos β = 1
2[cos(α − β) + cos(α + β)]

sin α cos β = 1
2[sin(α + β) + sin(α − β)]

sin α sin β = 1
2[cos(α − β) − cos(α + β)]

cos α sin β = 1
2[sin(α + β) − sin(α − β)]

Sum-to-product Formulas

sin α + sin β = 2 sin⎛
⎝
α + β

2
⎞
⎠cos⎛

⎝
α − β

2
⎞
⎠

sin α − sin β = 2 sin⎛
⎝
α − β

2
⎞
⎠cos⎛

⎝
α + β

2
⎞
⎠

cos α − cos β = −2 sin⎛
⎝
α + β

2
⎞
⎠sin⎛

⎝
α − β

2
⎞
⎠

cos α + cos β = 2 cos⎛
⎝
α + β

2
⎞
⎠cos⎛

⎝
α − β

2
⎞
⎠

KEY CONCEPTS
9.1 Solving Trigonometric Equations with Identities

• There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how expressions
can be rewritten to simplify a problem.

• Graphing both sides of an identity will verify it. See Example 9.1.
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• Simplifying one side of the equation to equal the other side is another method for verifying an identity. See
Example 9.2 and Example 9.3.

• The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on the more
complex side of the equation. See Example 9.4.

• We can create an identity and then verify it. See Example 9.5.

• Verifying an identity may involve algebra with the fundamental identities. See Example 9.6 and Example 9.7.

• Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques throughout
this text, as they consist of the fundamental rules of mathematics. See Example 9.8, Example 9.9, and Example
9.10.

9.2 Sum and Difference Identities

• The sum formula for cosines states that the cosine of the sum of two angles equals the product of the cosines of the
angles minus the product of the sines of the angles. The difference formula for cosines states that the cosine of the
difference of two angles equals the product of the cosines of the angles plus the product of the sines of the angles.

• The sum and difference formulas can be used to find the exact values of the sine, cosine, or tangent of an angle. See
Example 9.11 and Example 9.12.

• The sum formula for sines states that the sine of the sum of two angles equals the product of the sine of the first
angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second
angle. The difference formula for sines states that the sine of the difference of two angles equals the product of the
sine of the first angle and cosine of the second angle minus the product of the cosine of the first angle and the sine
of the second angle. See Example 9.13.

• The sum and difference formulas for sine and cosine can also be used for inverse trigonometric functions. See
Example 9.14.

• The sum formula for tangent states that the tangent of the sum of two angles equals the sum of the tangents of the
angles divided by 1 minus the product of the tangents of the angles. The difference formula for tangent states that
the tangent of the difference of two angles equals the difference of the tangents of the angles divided by 1 plus the
product of the tangents of the angles. See Example 9.15.

• The Pythagorean Theorem along with the sum and difference formulas can be used to find multiple sums and
differences of angles. See Example 9.16.

• The cofunction identities apply to complementary angles and pairs of reciprocal functions. See Example 9.17.

• Sum and difference formulas are useful in verifying identities. See Example 9.18 and Example 9.19.

• Application problems are often easier to solve by using sum and difference formulas. See Example 9.20 and
Example 9.20.

9.3 Double-Angle, Half-Angle, and Reduction Formulas

• Double-angle identities are derived from the sum formulas of the fundamental trigonometric functions: sine, cosine,
and tangent. See Example 9.22, Example 9.23, Example 9.24, and Example 9.25.

• Reduction formulas are especially useful in calculus, as they allow us to reduce the power of the trigonometric term.
See Example 9.26 and Example 9.27.

• Half-angle formulas allow us to find the value of trigonometric functions involving half-angles, whether the original
angle is known or not. See Example 9.28, Example 9.29, and Example 9.30.

9.4 Sum-to-Product and Product-to-Sum Formulas

• From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product formulas
for sine and cosine.

• We can use the product-to-sum formulas to rewrite products of sines, products of cosines, and products of sine and
cosine as sums or differences of sines and cosines. See Example 9.31, Example 9.32, and Example 9.33.
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• We can also derive the sum-to-product identities from the product-to-sum identities using substitution.

• We can use the sum-to-product formulas to rewrite sum or difference of sines, cosines, or products sine and cosine
as products of sines and cosines. See Example 9.34.

• Trigonometric expressions are often simpler to evaluate using the formulas. See Example 9.35.

• The identities can be verified using other formulas or by converting the expressions to sines and cosines. To verify
an identity, we choose the more complicated side of the equals sign and rewrite it until it is transformed into the
other side. See Example 9.36 and Example 9.37.

9.5 Solving Trigonometric Equations

• When solving linear trigonometric equations, we can use algebraic techniques just as we do solving algebraic
equations. Look for patterns, like the difference of squares, quadratic form, or an expression that lends itself well to
substitution. See Example 9.38, Example 9.39, and Example 9.40.

• Equations involving a single trigonometric function can be solved or verified using the unit circle. See Example
9.41, Example 9.42, and Example 9.43, and Example 9.44.

• We can also solve trigonometric equations using a graphing calculator. See Example 9.45 and Example 9.46.

• Many equations appear quadratic in form. We can use substitution to make the equation appear simpler, and then
use the same techniques we use solving an algebraic quadratic: factoring, the quadratic formula, etc. See Example
9.47, Example 9.48, Example 9.49, and Example 9.50.

• We can also use the identities to solve trigonometric equation. See Example 9.51, Example 9.52, and Example
9.53.

• We can use substitution to solve a multiple-angle trigonometric equation, which is a compression of a standard
trigonometric function. We will need to take the compression into account and verify that we have found all
solutions on the given interval. See Example 9.54.

• Real-world scenarios can be modeled and solved using the Pythagorean Theorem and trigonometric functions. See
Example 9.55.

CHAPTER 9 REVIEW EXERCISES
Solving Trigonometric Equations with Identities

For the following exercises, find all solutions exactly that
exist on the interval  [0, 2π).

331. csc2 t = 3

332. cos2 x = 1
4

333. 2 sin θ = −1

334. tan x sin x + sin(−x) = 0

335. 9 sin ω − 2 = 4 sin2 ω

336. 1 − 2 tan(ω) = tan2(ω)

For the following exercises, use basic identities to simplify
the expression.

337. sec x cos x + cos x − 1
sec x

338. sin3 x + cos2 x sin x

For the following exercises, determine if the given
identities are equivalent.

339. sin2 x + sec2 x − 1 =
⎛
⎝1 − cos2 x⎞

⎠
⎛
⎝1 + cos2 x⎞

⎠

cos2 x

340. tan3 x csc2 x cot2 x cos x sin x = 1

Sum and Difference Identities

For the following exercises, find the exact value.

341. tan⎛
⎝
7π
12

⎞
⎠

342. cos⎛
⎝
25π
12

⎞
⎠

343. sin(70°)cos(25°) − cos(70°)sin(25°)

344. cos(83°)cos(23°) + sin(83°)sin(23°)
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For the following exercises, prove the identity.

345. cos(4x) − cos(3x)cosx = sin2 x − 4 cos2 x sin2 x

346. cos(3x) − cos3 x = − cos x sin2 x − sin x sin(2x)

For the following exercise, simplify the expression.

347.
tan⎛

⎝
1
2x⎞

⎠ + tan⎛
⎝
1
8x⎞

⎠

1 − tan⎛
⎝
1
8x⎞

⎠tan⎛
⎝
1
2x⎞

⎠

For the following exercises, find the exact value.

348. cos⎛
⎝sin−1 (0) − cos−1 ⎛

⎝
1
2

⎞
⎠
⎞
⎠

349. tan⎛
⎝sin−1 (0) + sin−1 ⎛

⎝
1
2

⎞
⎠
⎞
⎠

Double-Angle, Half-Angle, and Reduction
Formulas

For the following exercises, find the exact value.

350. Find  sin(2θ), cos(2θ), and  tan(2θ)  given

 cos θ = − 1
3   and  θ  is in the interval  ⎡⎣π

2, π⎤
⎦.

351. Find  sin(2θ), cos(2θ), and  tan(2θ)  given

 sec θ = − 5
3   and  θ  is in the interval  ⎡⎣π

2, π⎤
⎦.

352. sin⎛
⎝
7π
8

⎞
⎠

353. sec⎛
⎝
3π
8

⎞
⎠

For the following exercises, use Figure 9.26 to find the
desired quantities.

Figure 9.26

354.
sin(2β), cos(2β), tan(2β), sin(2α), cos(2α), and tan(2α)

355.

sin⎛
⎝
β
2

⎞
⎠, cos⎛

⎝
β
2

⎞
⎠, tan⎛

⎝
β
2

⎞
⎠, sin⎛

⎝
α
2

⎞
⎠, cos⎛

⎝
α
2

⎞
⎠, and tan⎛

⎝
α
2

⎞
⎠

For the following exercises, prove the identity.

356. 2cos(2x)
sin(2x) = cot x − tan x

357. cot x cos(2x) = − sin(2x) + cot x

For the following exercises, rewrite the expression with no
powers.

358. cos2 x sin4(2x)

359. tan2 x sin3 x

Sum-to-Product and Product-to-Sum Formulas

For the following exercises, evaluate the product for the
given expression using a sum or difference of two
functions. Write the exact answer.

360. cos⎛
⎝
π
3

⎞
⎠ sin⎛

⎝
π
4

⎞
⎠

361. 2 sin⎛
⎝
2π
3

⎞
⎠ sin⎛

⎝
5π
6

⎞
⎠

362. 2 cos⎛
⎝
π
5

⎞
⎠ cos⎛

⎝
π
3

⎞
⎠

For the following exercises, evaluate the sum by using a
product formula. Write the exact answer.

363. sin⎛
⎝

π
12

⎞
⎠ − sin⎛

⎝
7π
12

⎞
⎠

364. cos⎛
⎝
5π
12

⎞
⎠ + cos⎛

⎝
7π
12

⎞
⎠

For the following exercises, change the functions from a
product to a sum or a sum to a product.

365. sin(9x)cos(3x)

366. cos(7x)cos(12x)

367. sin(11x) + sin(2x)

368. cos(6x) + cos(5x)

Solving Trigonometric Equations

For the following exercises, find all exact solutions on the
interval  [0, 2π).

369. tan x + 1 = 0
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370. 2 sin(2x) + 2 = 0

For the following exercises, find all exact solutions on the
interval  [0, 2π).

371. 2 sin2 x − sin x = 0

372. cos2 x − cos x − 1 = 0

373. 2 sin2 x + 5 sin x + 3 = 0

374. cos x − 5 sin(2x) = 0

375. 1
sec2 x

+ 2 + sin2 x + 4 cos2 x = 0

For the following exercises, simplify the equation
algebraically as much as possible. Then use a calculator to
find the solutions on the interval  [0, 2π). Round to four
decimal places.

376. 3 cot2 x + cot x = 1

377. csc2 x − 3 csc x − 4 = 0

For the following exercises, graph each side of the equation
to find the approximate solutions on the interval  [0, 2π).

378. 20 cos2 x + 21 cos x + 1 = 0

379. sec2 x − 2 sec x = 15

CHAPTER 9 PRACTICE TEST
For the following exercises, simplify the given expression.

380. cos(−x)sin x cot x + sin2 x

381. sin(−x)cos(−2x)−sin(−x)cos(−2x)

382. csc(θ)cot(θ)⎛
⎝sec2 θ − 1⎞

⎠

383. cos2 (θ)sin2 (θ)⎛
⎝1 + cot2 (θ)⎞

⎠
⎛
⎝1 + tan2 (θ)⎞

⎠

For the following exercises, find the exact value.

384. cos⎛
⎝
7π
12

⎞
⎠

385. tan⎛
⎝
3π
8

⎞
⎠

386. tan⎛
⎝sin−1 ⎛

⎝
2
2

⎞
⎠ + tan−1 3⎞

⎠

387. 2sin⎛
⎝
π
4

⎞
⎠sin⎛

⎝
π
6

⎞
⎠

388. cos⎛
⎝
4π
3 + θ⎞

⎠

389. tan⎛
⎝−

π
4 + θ⎞

⎠

For the following exercises, simplify each expression. Do
not evaluate.

390. cos2(32°)tan2(32°)

391. cot⎛⎝
θ
2

⎞
⎠
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For the following exercises, find all exact solutions to the
equation on  [0, 2π).

392. cos2 x − sin2 x − 1 = 0

393. cos2 x = cos x 4 sin2 x + 2 sin x − 3 = 0

394. cos(2x) + sin2 x = 0

395. 2 sin2 x − sin x = 0

396. Rewrite the expression as a product instead of a sum:
 cos(2x) + cos(−8x).

For the following exercise, rewrite the product as a sum or
difference.

397. 8cos(15x)sin(3x)

For the following exercise, rewrite the sum or difference as
a product.

398. 2⎛
⎝sin(8θ) − sin(4θ)⎞

⎠

399. Find all solutions of  tan(x) − 3 = 0.

400. Find the solutions of  sec2 x − 2 sec x = 15  on the
interval  [0, 2π)  algebraically; then graph both sides of the
equation to determine the answer.

For the following exercises, find all solutions exactly on the
interval  0 ≤ θ ≤ π

401. 2cos⎛
⎝
θ
2

⎞
⎠ = 1

402. 3cot(y) = 1

403. Find  sin(2θ), cos(2θ), and  tan(2θ)  given

 cot θ = − 3
4   and  θ  is on the interval  ⎡⎣π

2, π⎤
⎦.

404. Find  sin⎛
⎝
θ
2

⎞
⎠, cos⎛

⎝
θ
2

⎞
⎠, and  tan⎛

⎝
θ
2

⎞
⎠  given

 cos θ = 7
25   and  θ  is in quadrant IV.

405. Rewrite the expression  sin4 x with no powers
greater than 1.

For the following exercises, prove the identity.

406. tan3 x − tan x sec2 x = tan(−x)

407. sin(3x) − cos x sin(2x) = cos2 x sin x − sin3 x

408. sin(2x)
sin x − cos(2x)

cos x = sec x

409. Plot the points and find a function of the form
 y = Acos(Bx + C) + D  that fits the given data.

x 0 1 2 3 4 5

y −2 2 −2 2 −2 2

410. The displacement  h(t)  in centimeters of a mass
suspended by a spring is modeled by the function
 h(t) = 1

4  sin(120πt), where  t  is measured in seconds.

Find the amplitude, period, and frequency of this
displacement.

411. A woman is standing 300 feet away from a 2000-foot
building. If she looks to the top of the building, at what
angle above horizontal is she looking? A bored worker
looks down at her from the 15th floor (1500 feet above her).
At what angle is he looking down at her? Round to the
nearest tenth of a degree.

412. Two frequencies of sound are played on an
instrument governed by the equation
 n(t) = 8 cos(20πt)cos(1000πt). What are the period and
frequency of the “fast” and “slow” oscillations? What is the
amplitude?

413. The average monthly snowfall in a small village in
the Himalayas is 6 inches, with the low of 1 inch occurring
in July. Construct a function that models this behavior.
During what period is there more than 10 inches of
snowfall?

414. A spring attached to a ceiling is pulled down 20 cm.
After 3 seconds, wherein it completes 6 full periods, the
amplitude is only 15 cm. Find the function modeling the
position of the spring  t  seconds after being released. At
what time will the spring come to rest? In this case, use 1
cm amplitude as rest.

415. Water levels near a glacier currently average 9 feet,
varying seasonally by 2 inches above and below the
average and reaching their highest point in January. Due
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to global warming, the glacier has begun melting faster
than normal. Every year, the water levels rise by a steady
3 inches. Find a function modeling the depth of the water
 t months from now. If the docks are 2 feet above current
water levels, at what point will the water first rise above the
docks?
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10 | FURTHER
APPLICATIONS OF
TRIGONOMETRY

Figure 10.1 General Sherman, the world’s largest living tree. (credit: Mike Baird, Flickr)

Chapter Outline
10.1 Non-right Triangles: Law of Sines

10.2 Non-right Triangles: Law of Cosines

10.3 Polar Coordinates

10.4 Polar Coordinates: Graphs

10.5 Polar Form of Complex Numbers

10.6 Parametric Equations

10.7 Parametric Equations: Graphs

10.8 Vectors
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Introduction
The world’s largest tree by volume, named General Sherman, stands 274.9 feet tall and resides in Northern California.[1]

Just how do scientists know its true height? A common way to measure the height involves determining the angle of
elevation, which is formed by the tree and the ground at a point some distance away from the base of the tree. This method
is much more practical than climbing the tree and dropping a very long tape measure.

In this chapter, we will explore applications of trigonometry that will enable us to solve many different kinds of problems, 
including finding the height of a tree. We extend topics we introduced in Trigonometric Functions 
(https://cnx.org/content/m49369/latest/) and investigate applications more deeply and meaningfully.

10.1 | Non-right Triangles: Law of Sines

Learning Objectives

In this section, you will:

10.1.1 Use the Law of Sines to solve oblique triangles.
10.1.2 Find the area of an oblique triangle using the sine function.
10.1.3 Solve applied problems using the Law of Sines.

Suppose two radar stations located 20 miles apart each detect an aircraft between them. The angle of elevation measured
by the first station is 35 degrees, whereas the angle of elevation measured by the second station is 15 degrees. How can we
determine the altitude of the aircraft? We see in Figure 10.2 that the triangle formed by the aircraft and the two stations
is not a right triangle, so we cannot use what we know about right triangles. In this section, we will find out how to solve
problems involving non-right triangles.

Figure 10.2

Using the Law of Sines to Solve Oblique Triangles
In any triangle, we can draw an altitude, a perpendicular line from one vertex to the opposite side, forming two right
triangles. It would be preferable, however, to have methods that we can apply directly to non-right triangles without first
having to create right triangles.

Any triangle that is not a right triangle is an oblique triangle. Solving an oblique triangle means finding the measurements
of all three angles and all three sides. To do so, we need to start with at least three of these values, including at least one of
the sides. We will investigate three possible oblique triangle problem situations:

1. ASA (angle-side-angle) We know the measurements of two angles and the included side. See Figure 10.3.

Figure 10.3

2. AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the known angles.
See Figure 10.4.

1. Source: National Park Service. "The General Sherman Tree." http://www.nps.gov/seki/naturescience/sherman.htm.
Accessed April 25, 2014.
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Figure 10.4

3. SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the known sides.
See Figure 10.5.

Figure 10.5

Knowing how to approach each of these situations enables us to solve oblique triangles without having to drop a
perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the measurement of one of the angles
to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. Let’s see how this
statement is derived by considering the triangle shown in Figure 10.6.

Figure 10.6

Using the right triangle relationships, we know that  sin α = h
b   and  sin β = h

a.   Solving both equations for  h  gives two

different expressions for  h.

h = bsin α and h = asin β

We then set the expressions equal to each other.

           bsin α = asin β
 ⎛⎝

1
ab

⎞
⎠(bsin α) = (asin β)⎛⎝

1
ab

⎞
⎠ Multiply both sides by  1

ab.  

             sin α
a = sin β

b

Similarly, we can compare the other ratios.

sin α
a = sin γ

c  and sin β
b = sin γ

c

Collectively, these relationships are called the Law of Sines.

sin α
a = sin β

b = sin λ
c

Note the standard way of labeling triangles: angle  α  (alpha) is opposite side  a;   angle  β  (beta) is opposite side  b;   and

angle  γ  (gamma) is opposite side  c.  See Figure 10.7.

While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally, final answers
are rounded to the nearest tenth, unless otherwise specified.
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Figure 10.7

Law of Sines

Given a triangle with angles and opposite sides labeled as in Figure 10.7, the ratio of the measurement of an angle to
the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. All proportions
will be equal. The Law of Sines is based on proportions and is presented symbolically two ways.

(10.1)sin α
a = sin β

b = sin γ
c

(10.2)a
sin α = b

sin β = c
sin γ

To solve an oblique triangle, use any pair of applicable ratios.

Example 10.1

Solving for Two Unknown Sides and Angle of an AAS Triangle

Solve the triangle shown in Figure 10.8 to the nearest tenth.

Figure 10.8

Solution
The three angles must add up to 180 degrees. From this, we can determine that

β = 180° − 50° − 30°
= 100°

To find an unknown side, we need to know the corresponding angle and a known ratio. We know that angle
α = 50° and its corresponding side a = 10. We can use the following proportion from the Law of Sines to find
the length of  c.
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10.1

  sin(50°)
10 = sin(30°)

c

csin(50°)
10 = sin(30°) Multiply both sides by c.

                   c = sin(30 ° ) 10
sin(50°) Multiply by the reciprocal to isolate c.

                   c ≈ 6.5

Similarly, to solve for  b,  we set up another proportion.

    sin(50°)
10 = sin(100°)

b
  bsin(50°) = 10sin(100°) Multiply both sides by b.

               b = 10sin(100°)
sin(50°) Multiply by the reciprocal to isolate b.

               b ≈ 12.9

Therefore, the complete set of angles and sides is

α = 50°               a = 10
β = 100°            b ≈ 12.9
γ = 30°                c ≈ 6.5

Solve the triangle shown in Figure 10.9 to the nearest tenth.

Figure 10.9

Using The Law of Sines to Solve SSA Triangles
We can use the Law of Sines to solve any oblique triangle, but some solutions may not be straightforward. In some cases,
more than one triangle may satisfy the given criteria, which we describe as an ambiguous case. Triangles classified as SSA,
those in which we know the lengths of two sides and the measurement of the angle opposite one of the given sides, may
result in one or two solutions, or even no solution.

Possible Outcomes for SSA Triangles

Oblique triangles in the category SSA may have four different outcomes. Figure 10.10 illustrates the solutions with
the known sides  a  and  b  and known angle  α.
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Figure 10.10

Example 10.2

Solving an Oblique SSA Triangle

Solve the triangle in Figure 10.11 for the missing side and find the missing angle measures to the nearest tenth.

Figure 10.11

Solution
Use the Law of Sines to find angle  β  and angle  γ,   and then side  c.  Solving for  β,  we have the proportion

sin α
a = sin β

b
sin(35°)

6 = sin β
8

8sin(35°)
6 = sin β

0.7648 ≈ sin β 
sin−1(0.7648) ≈ 49.9°

β ≈ 49.9°
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However, in the diagram, angle  β  appears to be an obtuse angle and may be greater than 90°. How did we get

an acute angle, and how do we find the measurement of  β?  Let’s investigate further. Dropping a perpendicular

from  γ  and viewing the triangle from a right angle perspective, we have Figure 10.12. It appears that there may

be a second triangle that will fit the given criteria.

Figure 10.12

The angle supplementary to  β  is approximately equal to 49.9°, which means that  β = 180° − 49.9° = 130.1°. 
(Remember that the sine function is positive in both the first and second quadrants.) Solving for  γ, we have

γ = 180° − 35° − 130.1° ≈ 14.9°

We can then use these measurements to solve the other triangle. Since  γ′   is supplementary to  γ, we have

γ′ = 180° − 35° − 49.9° ≈ 95.1°

Now we need to find  c  and  c′.

We have

c
sin(14.9°) = 6

sin(35°)

              c = 6sin(14.9°)
sin(35°) ≈ 2.7

Finally,

c′
sin(95.1°) = 6

sin(35°)

             c′ = 6sin(95.1°)
sin(35°) ≈ 10.4

To summarize, there are two triangles with an angle of 35°, an adjacent side of 8, and an opposite side of 6, as
shown in Figure 10.13.
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10.2

Figure 10.13

However, we were looking for the values for the triangle with an obtuse angle  β. We can see them in the first

triangle (a) in Figure 10.13.

Given  α = 80°, a = 120,   and  b = 121,   find the missing side and angles. If there is more than one
possible solution, show both.

Example 10.3

Solving for the Unknown Sides and Angles of a SSA Triangle

In the triangle shown in Figure 10.14, solve for the unknown side and angles. Round your answers to the nearest
tenth.

Figure 10.14

Solution
In choosing the pair of ratios from the Law of Sines to use, look at the information given. In this case, we know
the angle  γ = 85°,   and its corresponding side  c = 12,   and we know side  b = 9. We will use this proportion to

solve for  β.

sin(85°)
12 = sin β

9 Isolate the unknown.

 9sin(85°)
12 = sin β
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10.3

To find  β,   apply the inverse sine function. The inverse sine will produce a single result, but keep in mind that

there may be two values for  β.  It is important to verify the result, as there may be two viable solutions, only one

solution (the usual case), or no solutions.

β = sin−1 ⎛
⎝
9sin(85°)

12
⎞
⎠

β ≈ sin−1(0.7471)
β ≈ 48.3°

In this case, if we subtract  β  from 180°, we find that there may be a second possible solution. Thus,

 β = 180° − 48.3° ≈ 131.7°. To check the solution, subtract both angles, 131.7° and 85°, from 180°. This gives

α = 180° − 85° − 131.7° ≈ − 36.7°,

which is impossible, and so  β ≈ 48.3°.

To find the remaining missing values, we calculate  α = 180° − 85° − 48.3° ≈ 46.7°. Now, only side  a  is
needed. Use the Law of Sines to solve for  a  by one of the proportions.

 sin(85 ° )
12 = sin(46.7 ° )

a

 asin(85 ° )
12 = sin(46.7 ° )

                 a = 12sin(46.7 ° )
sin(85 ° ) ≈ 8.8

The complete set of solutions for the given triangle is

α ≈ 46.7°       a ≈ 8.8
β ≈ 48.3°       b = 9
γ = 85°           c = 12

Given  α = 80°, a = 100,   b = 10,   find the missing side and angles. If there is more than one possible
solution, show both. Round your answers to the nearest tenth.

Example 10.4

Finding the Triangles That Meet the Given Criteria

Find all possible triangles if one side has length 4 opposite an angle of 50°, and a second side has length 10.

Solution
Using the given information, we can solve for the angle opposite the side of length 10. See Figure 10.15.
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10.4

 sin α
10 = sin(50°)

4

 sin α = 10sin(50°)
4

  sin α ≈ 1.915

Figure 10.15

We can stop here without finding the value of  α. Because the range of the sine function is  [−1, 1],   it is

impossible for the sine value to be 1.915. In fact, inputting  sin−1 (1.915)  in a graphing calculator generates an
ERROR DOMAIN. Therefore, no triangles can be drawn with the provided dimensions.

Determine the number of triangles possible given  a = 31,   b = 26,   β = 48°.  

Finding the Area of an Oblique Triangle Using the Sine Function
Now that we can solve a triangle for missing values, we can use some of those values and the sine function to find the
area of an oblique triangle. Recall that the area formula for a triangle is given as  Area = 1

2bh,  where  b  is base and  h  is
height. For oblique triangles, we must find  h  before we can use the area formula. Observing the two triangles in Figure
10.16, one acute and one obtuse, we can drop a perpendicular to represent the height and then apply the trigonometric

property  sin α = opposite
hypotenuse   to write an equation for area in oblique triangles. In the acute triangle, we have  sin α = h

c   or

csin α = h. However, in the obtuse triangle, we drop the perpendicular outside the triangle and extend the base  b  to form
a right triangle. The angle used in calculation is  α′,   or  180 − α.

Figure 10.16

Thus,
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10.5

Area = 1
2(base)⎛

⎝height⎞
⎠ = 1

2b(csin α)

Similarly,

Area = 1
2a⎛

⎝bsin γ⎞
⎠ = 1

2a⎛
⎝csin β⎞

⎠

Area of an Oblique Triangle

The formula for the area of an oblique triangle is given by

(10.3)Area = 1
2bcsin α

             = 1
2acsin β

             = 1
2absin γ

This is equivalent to one-half of the product of two sides and the sine of their included angle.

Example 10.5

Finding the Area of an Oblique Triangle

Find the area of a triangle with sides  a = 90, b = 52,   and angle  γ = 102°. Round the area to the nearest

integer.

Solution
Using the formula, we have

Area = 1
2absin γ

Area = 1
2(90)(52)sin(102°)

Area ≈ 2289  square  units

Find the area of the triangle given  β = 42°,   a = 7.2 ft,   c = 3.4 ft. Round the area to the nearest tenth.

Solving Applied Problems Using the Law of Sines
The more we study trigonometric applications, the more we discover that the applications are countless. Some are flat,
diagram-type situations, but many applications in calculus, engineering, and physics involve three dimensions and motion.

Example 10.6

Finding an Altitude

Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in Figure 10.17.
Round the altitude to the nearest tenth of a mile.
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Figure 10.17

Solution
To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the side  a,
and then use right triangle relationships to find the height of the aircraft,  h.

Because the angles in the triangle add up to 180 degrees, the unknown angle must be 180°−15°−35°=130°. This
angle is opposite the side of length 20, allowing us to set up a Law of Sines relationship.

  sin(130°)
20 = sin(35°)

a
asin(130°) = 20sin(35°)

a = 20sin(35°)
sin(130°)

               a ≈ 14.98

The distance from one station to the aircraft is about 14.98 miles.

Now that we know  a,  we can use right triangle relationships to solve for  h.

sin(15°) = opposite
hypotenuse

sin(15°) = h
a

sin(15°) = h
14.98

  h = 14.98sin(15°)
           h ≈ 3.88

The aircraft is at an altitude of approximately 3.9 miles.

1070 Chapter 10 Further Applications of Trigonometry

This content is available for free at https://cnx.org/content/col11758/1.5



10.6 The diagram shown in Figure 10.18 represents the height of a blimp flying over a football stadium.
Find the height of the blimp if the angle of elevation at the southern end zone, point A, is 70°, the angle of
elevation from the northern end zone, point  B,   is 62°, and the distance between the viewing points of the two
end zones is 145 yards.

Figure 10.18

Access these online resources for additional instruction and practice with trigonometric applications.

• Law of Sines: The Basics (http://openstaxcollege.org/l/sinesbasic)

• Law of Sines: The Ambiguous Case (http://openstaxcollege.org/l/sinesambiguous)
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10.1 EXERCISES
Verbal

Describe the altitude of a triangle.

Compare right triangles and oblique triangles.

When can you use the Law of Sines to find a missing
angle?

In the Law of Sines, what is the relationship between the
angle in the numerator and the side in the denominator?

What type of triangle results in an ambiguous case?

Algebraic
For the following exercises, assume  α  is opposite side
 a, β  is opposite side  b,   and  γ  is opposite side  c.  Solve

each triangle, if possible. Round each answer to the nearest
tenth.

α = 43°, γ = 69°, a = 20

α = 35°, γ = 73°, c = 20

α = 60°,   β = 60°,  γ = 60°

a = 4,   α =  60°,  β = 100°

b = 10,  β = 95°, γ =  30°

For the following exercises, use the Law of Sines to solve
for the missing side for each oblique triangle. Round each
answer to the nearest hundredth. Assume that angle  A
is opposite side  a,   angle  B  is opposite side  b,   and angle
 C  is opposite side  c.

Find side  b when  A = 37°,   B = 49°,  c = 5.

Find side  a when  A = 132°, C = 23°, b = 10.

Find side  c when  B = 37°, C = 21,  b = 23.

For the following exercises, assume  α  is opposite side
 a, β  is opposite side  b,   and  γ  is opposite side  c. 
Determine whether there is no triangle, one triangle, or two
triangles. Then solve each triangle, if possible. Round each
answer to the nearest tenth.

α = 119°, a = 14, b = 26

γ = 113°, b = 10, c = 32

b = 3.5,   c = 5.3,   γ =  80°

a = 12,   c = 17,   α =  35°

a = 20.5,   b = 35.0,   β = 25°

a = 7,  c = 9,   α =  43°

a = 7, b = 3, β = 24°

b = 13, c = 5, γ =  10°

a = 2.3, c = 1.8, γ = 28°

β = 119°, b = 8.2, a = 11.3

For the following exercises, use the Law of Sines to solve,
if possible, the missing side or angle for each triangle or
triangles in the ambiguous case. Round each answer to the
nearest tenth.

Find angle A when  a = 24, b = 5, B = 22°.

Find angle A when  a = 13, b = 6, B = 20°.

Find angle  B when  A = 12°, a = 2, b = 9.

For the following exercises, find the area of the triangle
with the given measurements. Round each answer to the
nearest tenth.

a = 5, c = 6, β =  35°

b = 11, c = 8, α = 28°

a = 32, b = 24, γ = 75°

a = 7.2, b = 4.5, γ = 43°

Graphical
For the following exercises, find the length of side  x. 
Round to the nearest tenth.
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

For the following exercises, find the measure of angle  x,  
if possible. Round to the nearest tenth.

Notice that  x  is an obtuse angle.

For the following exercises, find the area of each triangle.
Round each answer to the nearest tenth.
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44.

45.

46.

47.

48.

49.

50.

51.

52.

Extensions

Find the radius of the circle in Figure 10.19. Round to
the nearest tenth.

Figure 10.19

Find the diameter of the circle in Figure 10.20.
Round to the nearest tenth.

Figure 10.20

Find  m ∠ ADC  in Figure 10.21. Round to the
nearest tenth.
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53.

54.

55.

56.

57.

58.

Figure 10.21

Find  AD  in Figure 10.22. Round to the nearest tenth.

Figure 10.22

Solve both triangles in Figure 10.23. Round each
answer to the nearest tenth.

Figure 10.23

Find  AB  in the parallelogram shown in Figure
10.24.

Figure 10.24

Solve the triangle in Figure 10.25. (Hint: Draw a
perpendicular from  H  to  JK). Round each answer to the
nearest tenth.

Figure 10.25

Solve the triangle in Figure 10.26. (Hint: Draw a
perpendicular from  N   to  LM). Round each answer to the
nearest tenth.

Figure 10.26

In Figure 10.27,  ABCD  is not a parallelogram.
  ∠ m  is obtuse. Solve both triangles. Round each answer
to the nearest tenth.
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60.

61.

62.

Figure 10.27

Real-World Applications

A pole leans away from the sun at an angle of  7°  to the
vertical, as shown in Figure 10.28. When the elevation of
the sun is  55°,   the pole casts a shadow 42 feet long on the
level ground. How long is the pole? Round the answer to
the nearest tenth.

Figure 10.28

To determine how far a boat is from shore, two radar
stations 500 feet apart find the angles out to the boat, as
shown in Figure 10.29. Determine the distance of the boat
from station  A  and the distance of the boat from shore.
Round your answers to the nearest whole foot.

Figure 10.29

Figure 10.30 shows a satellite orbiting Earth. The
satellite passes directly over two tracking stations  A  and
 B,  which are 69 miles apart. When the satellite is on one
side of the two stations, the angles of elevation at  A  and  B 
are measured to be  86.2°  and  83.9°,   respectively. How
far is the satellite from station  A  and how high is the
satellite above the ground? Round answers to the nearest
whole mile.

Figure 10.30

A communications tower is located at the top of a steep
hill, as shown in Figure 10.31. The angle of inclination of
the hill is  67°. A guy wire is to be attached to the top of the
tower and to the ground, 165 meters downhill from the base
of the tower. The angle formed by the guy wire and the hill
is  16°.  Find the length of the cable required for the guy
wire to the nearest whole meter.
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71.

Figure 10.31

The roof of a house is at a  20°  angle. An 8-foot solar
panel is to be mounted on the roof and should be angled
 38°  relative to the horizontal for optimal results. (See
Figure 10.32). How long does the vertical support holding
up the back of the panel need to be? Round to the nearest
tenth.

Figure 10.32

Similar to an angle of elevation, an angle of depression
is the acute angle formed by a horizontal line and an
observer’s line of sight to an object below the horizontal. A
pilot is flying over a straight highway. He determines the
angles of depression to two mileposts, 6.6 km apart, to be
 37° and  44°, as shown in Figure 10.33. Find the
distance of the plane from point  A  to the nearest tenth of a
kilometer.

Figure 10.33

A pilot is flying over a straight highway. He determines
the angles of depression to two mileposts, 4.3 km apart, to

be 32° and 56°, as shown in Figure 10.34. Find the
distance of the plane from point  A  to the nearest tenth of a
kilometer.

Figure 10.34

In order to estimate the height of a building, two
students stand at a certain distance from the building at
street level. From this point, they find the angle of elevation
from the street to the top of the building to be 39°. They
then move 300 feet closer to the building and find the angle
of elevation to be 50°. Assuming that the street is level,
estimate the height of the building to the nearest foot.

In order to estimate the height of a building, two
students stand at a certain distance from the building at
street level. From this point, they find the angle of elevation
from the street to the top of the building to be 35°. They
then move 250 feet closer to the building and find the angle
of elevation to be 53°. Assuming that the street is level,
estimate the height of the building to the nearest foot.

Points  A  and  B  are on opposite sides of a lake. Point
 C  is 97 meters from  A. The measure of angle  BAC  is
determined to be 101°, and the measure of angle  ACB  is
determined to be 53°. What is the distance from  A  to  B,  
rounded to the nearest whole meter?

A man and a woman standing  31
2  miles apart spot a

hot air balloon at the same time. If the angle of elevation
from the man to the balloon is 27°, and the angle of
elevation from the woman to the balloon is 41°, find the
altitude of the balloon to the nearest foot.

Two search teams spot a stranded climber on a
mountain. The first search team is 0.5 miles from the
second search team, and both teams are at an altitude of 1
mile. The angle of elevation from the first search team to
the stranded climber is 15°. The angle of elevation from the
second search team to the climber is 22°. What is the
altitude of the climber? Round to the nearest tenth of a mile.

A street light is mounted on a pole. A 6-foot-tall man is
standing on the street a short distance from the pole, casting
a shadow. The angle of elevation from the tip of the man’s
shadow to the top of his head of 28°. A 6-foot-tall woman is
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73.

74.

75.

76.

77.

standing on the same street on the opposite side of the pole
from the man. The angle of elevation from the tip of her
shadow to the top of her head is 28°. If the man and woman
are 20 feet apart, how far is the street light from the tip
of the shadow of each person? Round the distance to the
nearest tenth of a foot.

Three cities,  A, B, and  C, are located so that city  A 
is due east of city  B.  If city  C  is located 35° west of north
from city  B  and is 100 miles from city  A  and 70 miles
from city  B, how far is city  A  from city  B?  Round the
distance to the nearest tenth of a mile.

Two streets meet at an 80° angle. At the corner, a park
is being built in the shape of a triangle. Find the area of the
park if, along one road, the park measures 180 feet, and
along the other road, the park measures 215 feet.

Brian’s house is on a corner lot. Find the area of the
front yard if the edges measure 40 and 56 feet, as shown in
Figure 10.35.

Figure 10.35

The Bermuda triangle is a region of the Atlantic Ocean
that connects Bermuda, Florida, and Puerto Rico. Find the
area of the Bermuda triangle if the distance from Florida to
Bermuda is 1030 miles, the distance from Puerto Rico to
Bermuda is 980 miles, and the angle created by the two
distances is 62°.

A yield sign measures 30 inches on all three sides.
What is the area of the sign?

Naomi bought a modern dining table whose top is in
the shape of a triangle. Find the area of the table top if two
of the sides measure 4 feet and 4.5 feet, and the smaller
angles measure 32° and 42°, as shown in Figure 10.36.

Figure 10.36
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10.2 | Non-right Triangles: Law of Cosines

Learning Objectives

In this section, you will:

10.2.1 Use the Law of Cosines to solve oblique triangles.
10.2.2 Solve applied problems using the Law of Cosines.
10.2.3 Use Heron’s formula to find the area of a triangle.

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles as shown in Figure 10.37. How
far from port is the boat?

Figure 10.37

Unfortunately, while the Law of Sines enables us to address many non-right triangle cases, it does not help us with triangles
where the known angle is between two known sides, a SAS (side-angle-side) triangle, or when all three sides are known,
but no angles are known, a SSS (side-side-side) triangle. In this section, we will investigate another tool for solving oblique
triangles described by these last two cases.

Using the Law of Cosines to Solve Oblique Triangles
The tool we need to solve the problem of the boat’s distance from the port is the Law of Cosines, which defines the
relationship among angle measurements and side lengths in oblique triangles. Three formulas make up the Law of Cosines.
At first glance, the formulas may appear complicated because they include many variables. However, once the pattern is
understood, the Law of Cosines is easier to work with than most formulas at this mathematical level.

Understanding how the Law of Cosines is derived will be helpful in using the formulas. The derivation begins with the
Generalized Pythagorean Theorem, which is an extension of the Pythagorean Theorem to non-right triangles. Here is
how it works: An arbitrary non-right triangle  ABC  is placed in the coordinate plane with vertex  A  at the origin, side  c 
drawn along the x-axis, and vertex  C  located at some point  (x, y)  in the plane, as illustrated in Figure 10.38. Generally,

triangles exist anywhere in the plane, but for this explanation we will place the triangle as noted.
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Figure 10.38

We can drop a perpendicular from  C  to the x-axis (this is the altitude or height). Recalling the basic trigonometric identities,
we know that

cos θ = x(adjacent)
b(hypotenuse) and sin θ = y(opposite)

b(hypotenuse)

In terms of  θ,  x = bcos θ  and y = bsin θ. The  (x, y)  point located at  C  has coordinates  (bcos θ,   bsin θ). Using the

side  (x − c)  as one leg of a right triangle and  y  as the second leg, we can find the length of hypotenuse  a  using the

Pythagorean Theorem. Thus,

a2 = (x − c)2 + y2

= (bcos θ − c)2 + (bsin θ)2 Substitute (bcos θ) for x  and (bsin θ) for y.

= ⎛
⎝b2 cos2 θ − 2bccos θ + c2⎞

⎠ + b2 sin2 θ Expand the perfect square.

= b2 cos2 θ + b2 sin2 θ + c2 − 2bccos θ Group terms noting that cos2 θ + sin2 θ = 1.

= b2 ⎛
⎝cos2 θ + sin2 θ⎞

⎠ + c2 − 2bccos θ Factor out b2.

a2 = b2 + c2 − 2bccos θ
The formula derived is one of the three equations of the Law of Cosines. The other equations are found in a similar fashion.

Keep in mind that it is always helpful to sketch the triangle when solving for angles or sides. In a real-world scenario, try to
draw a diagram of the situation. As more information emerges, the diagram may have to be altered. Make those alterations
to the diagram and, in the end, the problem will be easier to solve.

Law of Cosines

The Law of Cosines states that the square of any side of a triangle is equal to the sum of the squares of the other two
sides minus twice the product of the other two sides and the cosine of the included angle. For triangles labeled as in
Figure 10.39, with angles  α, β, and  γ, and opposite corresponding sides  a, b, and  c,   respectively, the Law of

Cosines is given as three equations.

(10.4)a2 = b2 + c2 − 2bc  cos α
b2 = a2 + c2 − 2ac  cos β
c2 = a2 + b2 − 2ab  cos γ
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Figure 10.39

To solve for a missing side measurement, the corresponding opposite angle measure is needed.

When solving for an angle, the corresponding opposite side measure is needed. We can use another version of the Law
of Cosines to solve for an angle.

cos α = b2 + c2 − a2

2bc

cos β = a2 + c2 − b2

2ac

cos γ = a2 + b2 − c2

2ab

Given two sides and the angle between them (SAS), find the measures of the remaining side and angles of a
triangle.

1. Sketch the triangle. Identify the measures of the known sides and angles. Use variables to represent the
measures of the unknown sides and angles.

2. Apply the Law of Cosines to find the length of the unknown side or angle.

3. Apply the Law of Sines or Cosines to find the measure of a second angle.

4. Compute the measure of the remaining angle.

Example 10.7

Finding the Unknown Side and Angles of a SAS Triangle

Find the unknown side and angles of the triangle in Figure 10.40.

Figure 10.40

Solution
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10.7

First, make note of what is given: two sides and the angle between them. This arrangement is classified as SAS
and supplies the data needed to apply the Law of Cosines.

Each one of the three laws of cosines begins with the square of an unknown side opposite a known angle. For this
example, the first side to solve for is side  b,   as we know the measurement of the opposite angle  β.

b2 = a2 + c2 − 2accos β
b2 = 102 + 122 − 2(10)(12)cos(30∘) Substitute the measurements for the known quantities.

b2 = 100 + 144 − 240⎛
⎝

3
2

⎞
⎠ Evaluate the cosine and begin to simplify.

b2 = 244 − 120 3
  b = 244 − 120 3  Use the square root property.
  b ≈ 6.013

Because we are solving for a length, we use only the positive square root. Now that we know the length  b,  we
can use the Law of Sines to fill in the remaining angles of the triangle. Solving for angle  α,  we have

sin α
a = sin β

b
sin α
10 = sin(30°)

6.013

 sin α = 10sin(30°)
6.013 Multiply both sides of the equation by 10.

 α = sin−1 ⎛
⎝
10sin(30°)

6.013
⎞
⎠ Find the inverse sine of 10sin(30°)

6.013 .

  α ≈ 56.3°

The other possibility for  α would be  α = 180° – 56.3° ≈ 123.7°.  In the original diagram,  α  is adjacent to the
longest side, so  α  is an acute angle and, therefore,  123.7°  does not make sense. Notice that if we choose to apply
the Law of Cosines, we arrive at a unique answer. We do not have to consider the other possibilities, as cosine
is unique for angles between  0°  and  180°.  Proceeding with  α ≈ 56.3°,  we can then find the third angle of the
triangle.

γ = 180° − 30° − 56.3° ≈ 93.7°

The complete set of angles and sides is

α ≈ 56.3° a = 10
β = 30° b ≈ 6.013
 γ ≈ 93.7° c = 12

Find the missing side and angles of the given triangle:  α = 30°,   b = 12,   c = 24.

Example 10.8

Solving for an Angle of a SSS Triangle

Find the angle  α  for the given triangle if side  a = 20,   side  b = 25,   and side  c = 18.
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10.8

Solution
For this example, we have no angles. We can solve for any angle using the Law of Cosines. To solve for angle
 α,  we have

                a2 = b2 + c2 −2bccos α
             202 = 252 + 182 −2(25)(18)cos α Substitute the appropriate measurements.
             400 = 625 + 324 − 900cos α Simplify in each step.
             400 = 949 − 900cos α
           −549 = −900cos α Isolate cos α.
          −549

−900 = cos α
            0.61 ≈ cos α
cos−1(0.61) ≈ α Find the inverse cosine.
                 α ≈ 52.4°

See Figure 10.41.

Figure 10.41

Analysis
Because the inverse cosine can return any angle between 0 and 180 degrees, there will not be any ambiguous
cases using this method.

Given  a = 5, b = 7,   and  c = 10,   find the missing angles.

Solving Applied Problems Using the Law of Cosines
Just as the Law of Sines provided the appropriate equations to solve a number of applications, the Law of Cosines is
applicable to situations in which the given data fits the cosine models. We may see these in the fields of navigation,
surveying, astronomy, and geometry, just to name a few.

Example 10.9

Using the Law of Cosines to Solve a Communication Problem

On many cell phones with GPS, an approximate location can be given before the GPS signal is received. This is
accomplished through a process called triangulation, which works by using the distances from two known points.
Suppose there are two cell phone towers within range of a cell phone. The two towers are located 6000 feet apart
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along a straight highway, running east to west, and the cell phone is north of the highway. Based on the signal
delay, it can be determined that the signal is 5050 feet from the first tower and 2420 feet from the second tower.
Determine the position of the cell phone north and east of the first tower, and determine how far it is from the
highway.

Solution
For simplicity, we start by drawing a diagram similar to Figure 10.42 and labeling our given information.

Figure 10.42

Using the Law of Cosines, we can solve for the angle  θ. Remember that the Law of Cosines uses the square of
one side to find the cosine of the opposite angle. For this example, let  a = 2420, b = 5050,   and  c = 6000.
Thus,  θ  corresponds to the opposite side  a = 2420.

a2 = b2 + c2 − 2bccos θ
(2420)2 = (5050)2 + (6000)2 − 2(5050)(6000)cos θ

  (2420)2 − (5050)2 − (6000)2 = − 2(5050)(6000)cos θ
(2420)2 − (5050)2 − (6000)2

−2(5050)(6000) = cos θ
cos θ ≈ 0.9183

θ ≈ cos−1(0.9183)
θ ≈ 23.3°

To answer the questions about the phone’s position north and east of the tower, and the distance to the highway,
drop a perpendicular from the position of the cell phone, as in Figure 10.43. This forms two right triangles,
although we only need the right triangle that includes the first tower for this problem.

Figure 10.43

Using the angle  θ = 23.3°  and the basic trigonometric identities, we can find the solutions. Thus
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       cos(23.3°) = x
5050

                   x = 5050cos(23.3°)
                   x ≈ 4638.15 feet
   sin(23.3°) = y

5050
                   y = 5050sin(23.3°)
                   y ≈ 1997.5 feet

The cell phone is approximately 4638 feet east and 1998 feet north of the first tower, and 1998 feet from the
highway.

Example 10.10

Calculating Distance Traveled Using a SAS Triangle

Returning to our problem at the beginning of this section, suppose a boat leaves port, travels 10 miles, turns 20
degrees, and travels another 8 miles. How far from port is the boat? The diagram is repeated here in Figure
10.44.

Figure 10.44

Solution
The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle,
180° − 20° = 160°. With this, we can utilize the Law of Cosines to find the missing side of the obtuse
triangle—the distance of the boat to the port.
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 x2 = 82 + 102 − 2(8)(10)cos(160°)
 x2 = 314.35
  x = 314.35
  x ≈ 17.7 miles

The boat is about 17.7 miles from port.

Using Heron’s Formula to Find the Area of a Triangle
We already learned how to find the area of an oblique triangle when we know two sides and an angle. We also know the
formula to find the area of a triangle using the base and the height. When we know the three sides, however, we can use
Heron’s formula instead of finding the height. Heron of Alexandria was a geometer who lived during the first century A.D.
He discovered a formula for finding the area of oblique triangles when three sides are known.

Heron’s Formula

Heron’s formula finds the area of oblique triangles in which sides  a, b, and  c  are known.

(10.5)Area = s(s − a)(s − b)(s − c)

where  s = (a + b + c)
2   is one half of the perimeter of the triangle, sometimes called the semi-perimeter.

Example 10.11

Using Heron’s Formula to Find the Area of a Given Triangle

Find the area of the triangle in Figure 10.45 using Heron’s formula.

Figure 10.45

Solution
First, we calculate  s.

s = (a + b + c)
2

s = (10 + 15 + 7)
2 = 16

Then we apply the formula.
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10.9

Area = s(s − a)(s − b)(s − c)

Area = 16(16 − 10)(16 − 15)(16 − 7)
Area ≈ 29.4

The area is approximately 29.4 square units.

Use Heron’s formula to find the area of a triangle with sides of lengths  a = 29.7 ft, b = 42.3 ft,   and
 c = 38.4 ft.

Example 10.12

Applying Heron’s Formula to a Real-World Problem

A Chicago city developer wants to construct a building consisting of artist’s lofts on a triangular lot bordered by
Rush Street, Wabash Avenue, and Pearson Street. The frontage along Rush Street is approximately 62.4 meters,
along Wabash Avenue it is approximately 43.5 meters, and along Pearson Street it is approximately 34.1 meters.
How many square meters are available to the developer? See Figure 10.46 for a view of the city property.

Figure 10.46

Solution
Find the measurement for  s,  which is one-half of the perimeter.

s = (62.4 + 43.5 + 34.1)
2

s = 70 m
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10.10

Apply Heron’s formula.

Area = 70(70 − 62.4)(70 − 43.5)(70 − 34.1)
Area = 506,118.2
Area ≈ 711.4

The developer has about 711.4 square meters.

Find the area of a triangle given  a = 4.38 ft , b = 3.79 ft,  and  c = 5.22 ft.

Access these online resources for additional instruction and practice with the Law of Cosines.

• Law of Cosines (http://openstaxcollege.org/l/lawcosines)

• Law of Cosines: Applications (http://openstaxcollege.org/l/cosineapp)

• Law of Cosines: Applications 2 (http://openstaxcollege.org/l/cosineapp2)
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10.2 EXERCISES
Verbal

If you are looking for a missing side of a triangle, what
do you need to know when using the Law of Cosines?

If you are looking for a missing angle of a triangle,
what do you need to know when using the Law of Cosines?

Explain what  s  represents in Heron’s formula.

Explain the relationship between the Pythagorean
Theorem and the Law of Cosines.

When must you use the Law of Cosines instead of the
Pythagorean Theorem?

Algebraic
For the following exercises, assume  α  is opposite side
 a, β  is opposite side  b,   and  γ  is opposite side  c.  If
possible, solve each triangle for the unknown side. Round
to the nearest tenth.

γ = 41.2°, a = 2.49, b = 3.13

α = 120°, b = 6, c = 7

β = 58.7°, a = 10.6, c = 15.7

γ = 115°, a = 18, b = 23

α = 119°, a = 26, b = 14

γ = 113°, b = 10, c = 32

β = 67°, a = 49, b = 38

α = 43.1°, a = 184.2, b = 242.8

α = 36.6°, a = 186.2, b = 242.2

β = 50°, a = 105, b = 45

For the following exercises, use the Law of Cosines to
solve for the missing angle of the oblique triangle. Round
to the nearest tenth.

 a = 42, b = 19, c = 30;   find angle  A.

 a = 14,  b = 13,  c = 20;   find angle  C.

 a = 16, b = 31, c = 20;   find angle  B.

 a = 13,  b = 22,  c = 28;   find angle  A.

a = 108,  b = 132,  c = 160;   find angle  C. 

For the following exercises, solve the triangle. Round to the
nearest tenth.

A = 35°, b = 8, c = 11

B = 88°, a = 4.4, c = 5.2

C = 121°, a = 21, b = 37

a = 13, b = 11, c = 15

a = 3.1, b = 3.5, c = 5

a = 51, b = 25, c = 29

For the following exercises, use Heron’s formula to find the
area of the triangle. Round to the nearest hundredth.

Find the area of a triangle with sides of length 18 in,
21 in, and 32 in. Round to the nearest tenth.

Find the area of a triangle with sides of length 20 cm,
26 cm, and 37 cm. Round to the nearest tenth.

a = 1
2  m, b = 1

3  m, c = 1
4  m

a = 12.4 ft,  b = 13.7 ft,  c = 20.2 ft

a = 1.6 yd,  b = 2.6 yd,  c = 4.1 yd

Graphical
For the following exercises, find the length of side x.
Round to the nearest tenth.
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114.

115.

116.

117.

118.

119.

For the following exercises, find the measurement of angle
A.
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120.

121.

122.

123.

124.

125.

126.

127.

128.

Find the measure of each angle in the triangle shown in
Figure 10.47. Round to the nearest tenth.

Figure 10.47

For the following exercises, solve for the unknown side.
Round to the nearest tenth.

For the following exercises, find the area of the triangle.
Round to the nearest hundredth.
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130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Extensions

A parallelogram has sides of length 16 units and 10
units. The shorter diagonal is 12 units. Find the measure of
the longer diagonal.

The sides of a parallelogram are 11 feet and 17 feet.
The longer diagonal is 22 feet. Find the length of the shorter
diagonal.

The sides of a parallelogram are 28 centimeters and
40 centimeters. The measure of the larger angle is 100°.
Find the length of the shorter diagonal.

A regular octagon is inscribed in a circle with a radius
of 8 inches. (See Figure 10.48.) Find the perimeter of the
octagon.

Figure 10.48

A regular pentagon is inscribed in a circle of radius 12
cm. (See Figure 10.49.) Find the perimeter of the
pentagon. Round to the nearest tenth of a centimeter.

Figure 10.49

For the following exercises, suppose that
 x2 = 25 + 36 − 60cos(52)  represents the relationship of
three sides of a triangle and the cosine of an angle.

Draw the triangle.

Find the length of the third side.

For the following exercises, find the area of the triangle.

Real-World Applications

A surveyor has taken the measurements shown in
Figure 10.50. Find the distance across the lake. Round
answers to the nearest tenth.

Figure 10.50

A satellite calculates the distances and angle shown in
Figure 10.51 (not to scale). Find the distance between the
two cities. Round answers to the nearest tenth.
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141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

Figure 10.51

An airplane flies 220 miles with a heading of 40°, and
then flies 180 miles with a heading of 170°. How far is the
plane from its starting point, and at what heading? Round
answers to the nearest tenth.

A 113-foot tower is located on a hill that is inclined
34° to the horizontal, as shown in Figure 10.52. A guy-
wire is to be attached to the top of the tower and anchored at
a point 98 feet uphill from the base of the tower. Find the
length of wire needed.

Figure 10.52

Two ships left a port at the same time. One ship
traveled at a speed of 18 miles per hour at a heading of
320°. The other ship traveled at a speed of 22 miles per
hour at a heading of 194°. Find the distance between the
two ships after 10 hours of travel.

The graph in Figure 10.53 represents two boats
departing at the same time from the same dock. The first
boat is traveling at 18 miles per hour at a heading of 327°
and the second boat is traveling at 4 miles per hour at a
heading of 60°. Find the distance between the two boats
after 2 hours.

Figure 10.53

A triangular swimming pool measures 40 feet on one
side and 65 feet on another side. These sides form an angle
that measures 50°. How long is the third side (to the nearest
tenth)?

A pilot flies in a straight path for 1 hour 30 min. She
then makes a course correction, heading 10° to the right of
her original course, and flies 2 hours in the new direction. If
she maintains a constant speed of 680 miles per hour, how
far is she from her starting position?

Los Angeles is 1,744 miles from Chicago, Chicago is
714 miles from New York, and New York is 2,451 miles
from Los Angeles. Draw a triangle connecting these three
cities, and find the angles in the triangle.

Philadelphia is 140 miles from Washington, D.C.,
Washington, D.C. is 442 miles from Boston, and Boston is
315 miles from Philadelphia. Draw a triangle connecting
these three cities and find the angles in the triangle.

Two planes leave the same airport at the same time.
One flies at 20° east of north at 500 miles per hour. The
second flies at 30° east of south at 600 miles per hour. How
far apart are the planes after 2 hours?

Two airplanes take off in different directions. One
travels 300 mph due west and the other travels 25° north of
west at 420 mph. After 90 minutes, how far apart are they,
assuming they are flying at the same altitude?

A parallelogram has sides of length 15.4 units and 9.8
units. Its area is 72.9 square units. Find the measure of the
longer diagonal.

The four sequential sides of a quadrilateral have
lengths 4.5 cm, 7.9 cm, 9.4 cm, and 12.9 cm. The angle
between the two smallest sides is 117°. What is the area of
this quadrilateral?
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153.

154.

155.

The four sequential sides of a quadrilateral have
lengths 5.7 cm, 7.2 cm, 9.4 cm, and 12.8 cm. The angle
between the two smallest sides is 106°. What is the area of
this quadrilateral?

Find the area of a triangular piece of land that
measures 30 feet on one side and 42 feet on another; the
included angle measures 132°. Round to the nearest whole
square foot.

Find the area of a triangular piece of land that
measures 110 feet on one side and 250 feet on another; the
included angle measures 85°. Round to the nearest whole
square foot.
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10.3 | Polar Coordinates

Learning Objectives

In this section, you will:

10.3.1 Plot points using polar coordinates.
10.3.2 Convert from polar coordinates to rectangular coordinates.
10.3.3 Convert from rectangular coordinates to polar coordinates.
10.3.4 Transform equations between polar and rectangular forms.
10.3.5 Identify and graph polar equations by converting to rectangular equations.

Over 12 kilometers from port, a sailboat encounters rough weather and is blown off course by a 16-knot wind (see Figure
10.54). How can the sailor indicate his location to the Coast Guard? In this section, we will investigate a method of
representing location that is different from a standard coordinate grid.

Figure 10.54

Plotting Points Using Polar Coordinates
When we think about plotting points in the plane, we usually think of rectangular coordinates  (x, y)  in the Cartesian

coordinate plane. However, there are other ways of writing a coordinate pair and other types of grid systems. In this section,
we introduce to polar coordinates, which are points labeled  (r, θ)  and plotted on a polar grid. The polar grid is represented
as a series of concentric circles radiating out from the pole, or the origin of the coordinate plane.

The polar grid is scaled as the unit circle with the positive x-axis now viewed as the polar axis and the origin as the pole.
The first coordinate  r  is the radius or length of the directed line segment from the pole. The angle  θ, measured in radians,
indicates the direction of  r. We move counterclockwise from the polar axis by an angle of  θ, and measure a directed line
segment the length of  r  in the direction of  θ. Even though we measure  θ  first and then  r, the polar point is written with

the r-coordinate first. For example, to plot the point  ⎛⎝2, π
4

⎞
⎠, we would move  π4   units in the counterclockwise direction and

then a length of 2 from the pole. This point is plotted on the grid in Figure 10.55.
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10.11

Figure 10.55

Example 10.13

Plotting a Point on the Polar Grid

Plot the point  ⎛⎝3, π
2

⎞
⎠  on the polar grid.

Solution
The angle  π2   is found by sweeping in a counterclockwise direction 90° from the polar axis. The point is located

at a length of 3 units from the pole in the  π2   direction, as shown in Figure 10.56.

Figure 10.56

Plot the point  ⎛⎝2,  π3
⎞
⎠  in the polar grid.
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10.12

Example 10.14

Plotting a Point in the Polar Coordinate System with a Negative Component

Plot the point  ⎛⎝−2,  π6
⎞
⎠  on the polar grid.

Solution
We know that  π6   is located in the first quadrant. However,  r = −2. We can approach plotting a point with a

negative  r  in two ways:

1. Plot the point  ⎛⎝2, π
6

⎞
⎠  by moving  π6   in the counterclockwise direction and extending a directed line

segment 2 units into the first quadrant. Then retrace the directed line segment back through the pole, and
continue 2 units into the third quadrant;

2. Move  π6   in the counterclockwise direction, and draw the directed line segment from the pole 2 units in

the negative direction, into the third quadrant.

See Figure 10.57(a). Compare this to the graph of the polar coordinate  ⎛⎝2, π
6

⎞
⎠  shown in Figure 10.57(b).

Figure 10.57

Plot the points  ⎛⎝3, − π
6

⎞
⎠ and  ⎛⎝2, 9π

4
⎞
⎠  on the same polar grid.

Converting from Polar Coordinates to Rectangular Coordinates
When given a set of polar coordinates, we may need to convert them to rectangular coordinates. To do so, we can recall the
relationships that exist among the variables  x,  y,  r,   and  θ.

cos θ = x
r → x = rcos θ

sin θ = y
r → y = rsin θ
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Dropping a perpendicular from the point in the plane to the x-axis forms a right triangle, as illustrated in Figure 10.58. An
easy way to remember the equations above is to think of  cos θ  as the adjacent side over the hypotenuse and  sin θ  as the
opposite side over the hypotenuse.

Figure 10.58

Converting from Polar Coordinates to Rectangular Coordinates

To convert polar coordinates  (r,  θ)  to rectangular coordinates  (x,  y), let

cos θ = x
r → x = rcos θ

sin θ = y
r → y = rsin θ

Given polar coordinates, convert to rectangular coordinates.

1. Given the polar coordinate  (r, θ), write  x = rcos θ  and  y = rsin θ.

2. Evaluate  cos θ  and  sin θ.

3. Multiply  cos θ  by  r  to find the x-coordinate of the rectangular form.

4. Multiply  sin θ  by  r  to find the y-coordinate of the rectangular form.

Example 10.15

Writing Polar Coordinates as Rectangular Coordinates

Write the polar coordinates  ⎛⎝3, π
2

⎞
⎠  as rectangular coordinates.

Solution
Use the equivalent relationships.

x = rcos θ
x = 3cos π2 = 0

y = rsin θ
y = 3sin π2 = 3

The rectangular coordinates are  (0, 3).  See Figure 10.59.
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Figure 10.59

Example 10.16

Writing Polar Coordinates as Rectangular Coordinates

Write the polar coordinates  (−2, 0)  as rectangular coordinates.

Solution
See Figure 10.60. Writing the polar coordinates as rectangular, we have

x = rcos θ
x = −2cos(0) = −2

y = rsin θ
y = −2sin(0) = 0

The rectangular coordinates are also  (−2, 0).
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Figure 10.60

Write the polar coordinates  ⎛⎝−1, 2π
3

⎞
⎠  as rectangular coordinates.

Converting from Rectangular Coordinates to Polar Coordinates
To convert rectangular coordinates to polar coordinates, we will use two other familiar relationships. With this conversion,
however, we need to be aware that a set of rectangular coordinates will yield more than one polar point.

Converting from Rectangular Coordinates to Polar Coordinates

Converting from rectangular coordinates to polar coordinates requires the use of one or more of the relationships
illustrated in Figure 10.61.

(10.6)cos θ = x
r    or   x = rcos θ

sin θ = y
r    or   y = rsin θ

      r2 = x2 + y2

tan θ = y
x  

Figure 10.61
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Example 10.17

Writing Rectangular Coordinates as Polar Coordinates

Convert the rectangular coordinates  (3, 3)  to polar coordinates.

Solution

We see that the original point  (3, 3)  is in the first quadrant. To find  θ,   use the formula  tan θ = y
x. This gives

           tan θ = 3
3

           tan θ = 1
   tan−1(1) = π

4

To find  r,  we substitute the values for  x  and  y  into the formula  r = x2 + y2. We know that  r must be

positive, as  π4   is in the first quadrant. Thus

r = 32 + 32

r = 9 + 9
r = 18 = 3 2

So,  r = 3 2   and  θ=π
4,   giving us the polar point  ⎛⎝3 2, π

4
⎞
⎠.  See Figure 10.62.

Figure 10.62

Analysis
There are other sets of polar coordinates that will be the same as our first solution. For example, the points

 ⎛⎝−3 2,  5π
4

⎞
⎠  and  ⎛⎝3 2, − 7π

4
⎞
⎠ will coincide with the original solution of  ⎛⎝3 2,  π4

⎞
⎠. The point  ⎛⎝−3 2,  5π

4
⎞
⎠ 

indicates a move further counterclockwise by  π,  which is directly opposite  π4. The radius is expressed as

 − 3 2. However, the angle  5π
4   is located in the third quadrant and, as  r  is negative, we extend the directed
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line segment in the opposite direction, into the first quadrant. This is the same point as  ⎛⎝3 2,   π4
⎞
⎠. The point

 ⎛⎝3 2,  − 7π
4

⎞
⎠  is a move further clockwise by  − 7π

4 ,   from  π4. The radius,  3 2,   is the same.

Transforming Equations between Polar and Rectangular Forms
We can now convert coordinates between polar and rectangular form. Converting equations can be more difficult, but it
can be beneficial to be able to convert between the two forms. Since there are a number of polar equations that cannot be
expressed clearly in Cartesian form, and vice versa, we can use the same procedures we used to convert points between
the coordinate systems. We can then use a graphing calculator to graph either the rectangular form or the polar form of the
equation.

Given an equation in polar form, graph it using a graphing calculator.

1. Change the MODE to POL, representing polar form.

2. Press the Y= button to bring up a screen allowing the input of six equations:  r1,   r2,   .  .  .  ,   r6.

3. Enter the polar equation, set equal to  r.

4. Press GRAPH.

Example 10.18

Writing a Cartesian Equation in Polar Form

Write the Cartesian equation  x2 + y2 = 9  in polar form.

Solution
The goal is to eliminate  x  and  y  from the equation and introduce  r  and  θ.  Ideally, we would write the equation

 r  as a function of  θ. To obtain the polar form, we will use the relationships between  (x, y)  and  (r, θ).  Since

 x = rcos θ  and  y = rsin θ,  we can substitute and solve for  r.

   (rcos θ)2 + (rsin θ)2 = 9
   r2 cos2 θ + r2 sin2 θ = 9

  r2(cos2 θ + sin2 θ) = 9
r2(1) = 9 Substitute cos2 θ + sin2 θ = 1.

r = ± 3 Use the square root property.

Thus,  x2 + y2 = 9, r = 3, and  r = − 3  should generate the same graph. See Figure 10.63.
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Figure 10.63 (a) Cartesian form  x2 + y2 = 9  (b) Polar form  r = 3

To graph a circle in rectangular form, we must first solve for  y.

x2 + y2 = 9

        y2 = 9 − x2

          y = ± 9 − x2

Note that this is two separate functions, since a circle fails the vertical line test. Therefore, we need to enter the

positive and negative square roots into the calculator separately, as two equations in the form  Y1 = 9 − x2  and

 Y2 = − 9 − x2.  Press GRAPH.

Example 10.19

Rewriting a Cartesian Equation as a Polar Equation

Rewrite the Cartesian equation  x2 + y2 = 6y  as a polar equation.

Solution
This equation appears similar to the previous example, but it requires different steps to convert the equation.

We can still follow the same procedures we have already learned and make the following substitutions:

                                 r2 = 6y Use x2 + y2 = r2.

                                 r2 = 6rsin θ Substitute y = rsin θ.

       r2 − 6rsin θ = 0 Set equal to 0.
      r(r − 6sin θ) = 0 Factor and solve.
                                    r = 0 We reject r = 0,  as it only represents one point, (0, 0).
                              or r = 6sin θ
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Therefore, the equations  x2 + y2 = 6y  and  r = 6sin θ  should give us the same graph. See Figure 10.64.

Figure 10.64 (a) Cartesian form  x2 + y2 = 6y (b) polar form  r = 6sin θ

The Cartesian or rectangular equation is plotted on the rectangular grid, and the polar equation is plotted on the
polar grid. Clearly, the graphs are identical.

Example 10.20

Rewriting a Cartesian Equation in Polar Form

Rewrite the Cartesian equation  y = 3x + 2  as a polar equation.

Solution
We will use the relationships  x = rcos θ  and  y = rsin θ.

y = 3x + 2
                 rsin θ = 3rcos θ + 2
 rsin θ − 3rcos θ = 2
r(sin θ − 3cos θ) = 2 Isolate r.

  r = 2
sin θ − 3cos θ Solve for r.

Rewrite the Cartesian equation  y2 = 3 − x2   in polar form.

Identify and Graph Polar Equations by Converting to Rectangular
Equations
We have learned how to convert rectangular coordinates to polar coordinates, and we have seen that the points are indeed
the same. We have also transformed polar equations to rectangular equations and vice versa. Now we will demonstrate that
their graphs, while drawn on different grids, are identical.
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Example 10.21

Graphing a Polar Equation by Converting to a Rectangular Equation

Covert the polar equation  r = 2sec θ  to a rectangular equation, and draw its corresponding graph.

Solution
The conversion is

           r = 2sec θ
            r = 2

cos θ
 rcos θ = 2
                x = 2

Notice that the equation  r = 2sec θ  drawn on the polar grid is clearly the same as the vertical line  x = 2  drawn
on the rectangular grid (see Figure 10.65). Just as  x = c  is the standard form for a vertical line in rectangular
form,  r = csec θ  is the standard form for a vertical line in polar form.

Figure 10.65 (a) Polar grid (b) Rectangular coordinate system

A similar discussion would demonstrate that the graph of the function  r = 2csc θ  will be the horizontal line
 y = 2.  In fact,  r = ccsc θ  is the standard form for a horizontal line in polar form, corresponding to the

rectangular form  y = c.

Example 10.22

Rewriting a Polar Equation in Cartesian Form

Rewrite the polar equation  r = 3
1 − 2cos θ   as a Cartesian equation.

Solution
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The goal is to eliminate  θ  and  r, and introduce  x  and  y. We clear the fraction, and then use substitution. In

order to replace  r  with  x  and  y, we must use the expression  x2 + y2 = r2.

                   r = 3
1 − 2cos θ

r(1 − 2cos θ) = 3
r⎛

⎝1 − 2⎛
⎝
x
r

⎞
⎠
⎞
⎠ = 3 Use cos θ = x

r  to eliminate θ.
  r − 2x = 3

r = 3 + 2x Isolate r.
                 r2 = (3 + 2x)2 Square both sides.

         x2 + y2 = (3 + 2x)2 Use x2 + y2 = r2.

The Cartesian equation is  x2 + y2 = (3 + 2x)2. However, to graph it, especially using a graphing calculator or

computer program, we want to isolate  y.

x2 + y2 = (3 + 2x)2

        y2 = (3 + 2x)2 − x2

          y = ± (3 + 2x)2 − x2

When our entire equation has been changed from  r  and  θ  to  x  and  y,  we can stop, unless asked to solve for

 y  or simplify. See Figure 10.66.

Figure 10.66

The “hour-glass” shape of the graph is called a hyperbola. Hyperbolas have many interesting geometric features
and applications, which we will investigate further in Analytic Geometry.

Analysis
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In this example, the right side of the equation can be expanded and the equation simplified further, as shown
above. However, the equation cannot be written as a single function in Cartesian form. We may wish to write the
rectangular equation in the hyperbola’s standard form. To do this, we can start with the initial equation.

                              x2 + y2 = (3 + 2x)2

           x2 + y2 − (3 + 2x)2 = 0

x2 + y2 − (9 + 12x + 4x2) = 0

   x2 + y2 − 9 − 12x − 4x2 = 0

             − 3x2 − 12x + y2 = 9 Multiply through by −1.

                  3x2 + 12x − y2 = − 9

       3(x2 + 4x +          ) − y2 = − 9 Organize terms to complete the square for x.

           3(x2 + 4x + 4) − y2 = − 9 + 12

                  3(x + 2)2 − y2 = 3

                    (x + 2)2 − y2

3 = 1

Rewrite the polar equation  r = 2sin θ  in Cartesian form.

Example 10.23

Rewriting a Polar Equation in Cartesian Form

Rewrite the polar equation  r = sin(2θ)  in Cartesian form.

Solution
                 r = sin(2θ) Use the double angle identity for sine.

                 r = 2sin θcos θ Use cos θ = x
r  and sin θ = y

r .

                 r = 2⎛
⎝
x
r

⎞
⎠
⎛
⎝
y
r

⎞
⎠ Simplify.

                 r = 2xy
r2  Multiply both sides by r2.

               r3 = 2xy

⎛
⎝ x2 + y2⎞

⎠
3

= 2xy As x2 + y2 = r2, r = x2 + y2.

This equation can also be written as

⎛
⎝x2 + y2⎞

⎠

3
2

= 2xy or x2 + y2 = ⎛
⎝2xy⎞

⎠

2
3

Access these online resources for additional instruction and practice with polar coordinates.

• Introduction to Polar Coordinates (http://openstaxcollege.org/l/intropolar)

• Comparing Polar and Rectangular Coordinates (http://openstaxcollege.org/l/polarrect)
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193.

10.3 EXERCISES
Verbal

How are polar coordinates different from rectangular
coordinates?

How are the polar axes different from the x- and y-
axes of the Cartesian plane?

Explain how polar coordinates are graphed.

How are the points  ⎛⎝3, π
2

⎞
⎠  and  ⎛⎝−3, π

2
⎞
⎠  related?

Explain why the points  ⎛⎝−3, π
2

⎞
⎠  and  ⎛⎝3, − π

2
⎞
⎠  are

the same.

Algebraic
For the following exercises, convert the given polar
coordinates to Cartesian coordinates with  r > 0  and
 0 ≤ θ ≤ 2π. Remember to consider the quadrant in which
the given point is located when determining  θ  for the
point.

⎛
⎝7, 7π

6
⎞
⎠

(5, π)

⎛
⎝6, − π

4
⎞
⎠

⎛
⎝−3, π

6
⎞
⎠

⎛
⎝4, 7π

4
⎞
⎠

For the following exercises, convert the given Cartesian
coordinates to polar coordinates with  r > 0,   0 ≤ θ < 2π. 
Remember to consider the quadrant in which the given
point is located.

(4, 2)

(−4, 6)

(3, −5)

(−10, −13)

(8, 8)

For the following exercises, convert the given Cartesian
equation to a polar equation.

x = 3

y = 4

y = 4x2

y = 2x4

x2 + y2 = 4y

x2 + y2 = 3x

x2 − y2 = x

x2 − y2 = 3y

x2 + y2 = 9

x2 = 9y

y2 = 9x

9xy = 1

For the following exercises, convert the given polar
equation to a Cartesian equation. Write in the standard
form of a conic if possible, and identify the conic section
represented.

r = 3sin θ

r = 4cos θ

r = 4
sin θ + 7cos θ

r = 6
cos θ + 3sin θ

r = 2sec θ

r = 3csc θ

r = rcos θ + 2

r2 = 4sec θ csc θ

r = 4

r2 = 4
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194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

r = 1
4cos θ − 3sin θ

r = 3
cos θ − 5sin θ

Graphical
For the following exercises, find the polar coordinates of
the point.

For the following exercises, plot the points.

⎛
⎝−2, π

3
⎞
⎠

⎛
⎝−1, − π

2
⎞
⎠

⎛
⎝3.5, 7π

4
⎞
⎠

⎛
⎝−4, π

3
⎞
⎠

⎛
⎝5, π

2
⎞
⎠

⎛
⎝4, −5π

4
⎞
⎠

⎛
⎝3, 5π

6
⎞
⎠

⎛
⎝−1.5, 7π

6
⎞
⎠

⎛
⎝−2, π

4
⎞
⎠
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209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

⎛
⎝1, 3π

2
⎞
⎠

For the following exercises, convert the equation from
rectangular to polar form and graph on the polar axis.

5x − y = 6

2x + 7y = − 3

x2 + ⎛
⎝y − 1⎞

⎠
2 = 1

(x + 2)2 + ⎛
⎝y + 3⎞

⎠
2 = 13

x = 2

x2 + y2 = 5y

x2 + y2 = 3x

For the following exercises, convert the equation from
polar to rectangular form and graph on the rectangular
plane.

r = 6

r = − 4

θ = − 2π
3

θ = π
4

r = sec θ

r = −10sin θ

r = 3cos θ

Technology

Use a graphing calculator to find the rectangular

coordinates of  ⎛⎝2, − π
5

⎞
⎠. Round to the nearest thousandth.

Use a graphing calculator to find the rectangular

coordinates of  ⎛⎝−3, 3π
7

⎞
⎠. Round to the nearest thousandth.

Use a graphing calculator to find the polar
coordinates of  (−7, 8)  in degrees. Round to the nearest
thousandth.

Use a graphing calculator to find the polar
coordinates of  (3, − 4)  in degrees. Round to the nearest
hundredth.

Use a graphing calculator to find the polar
coordinates of  (−2, 0)  in radians. Round to the nearest
hundredth.

Extensions

Describe the graph of  r = asec θ; a > 0.

Describe the graph of  r = asec θ; a < 0.

Describe the graph of  r = acsc θ; a > 0.

Describe the graph of  r = acsc θ; a < 0.

What polar equations will give an oblique line?

For the following exercise, graph the polar inequality.

r < 4

0 ≤ θ ≤ π
4

θ = π
4,  r  ≥  2

θ = π
4,  r  ≥ −3

0 ≤ θ ≤ π
3,  r  <  2

−π
6 < θ ≤ π

3, − 3 < r  <  2
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10.4 | Polar Coordinates: Graphs

Learning Objectives

In this section you will:

10.4.1 Test polar equations for symmetry.
10.4.2 Graph polar equations by plotting points.

The planets move through space in elliptical, periodic orbits about the sun, as shown in Figure 10.67. They are in constant
motion, so fixing an exact position of any planet is valid only for a moment. In other words, we can fix only a planet’s
instantaneous position. This is one application of polar coordinates, represented as  (r, θ).  We interpret  r  as the distance
from the sun and  θ  as the planet’s angular bearing, or its direction from a fixed point on the sun. In this section, we will
focus on the polar system and the graphs that are generated directly from polar coordinates.

Figure 10.67 Planets follow elliptical paths as they orbit around the Sun. (credit: modification
of work by NASA/JPL-Caltech)

Testing Polar Equations for Symmetry
Just as a rectangular equation such as  y = x2   describes the relationship between  x  and  y  on a Cartesian grid, a polar
equation describes a relationship between  r  and  θ  on a polar grid. Recall that the coordinate pair  (r, θ)  indicates that we
move counterclockwise from the polar axis (positive x-axis) by an angle of  θ,   and extend a ray from the pole (origin)  r 
units in the direction of  θ. All points that satisfy the polar equation are on the graph.

Symmetry is a property that helps us recognize and plot the graph of any equation. If an equation has a graph that is
symmetric with respect to an axis, it means that if we folded the graph in half over that axis, the portion of the graph on one
side would coincide with the portion on the other side. By performing three tests, we will see how to apply the properties
of symmetry to polar equations. Further, we will use symmetry (in addition to plotting key points, zeros, and maximums of
 r)  to determine the graph of a polar equation.

In the first test, we consider symmetry with respect to the line  θ = π
2   (y-axis). We replace  (r, θ) with  (−r, − θ)  to

determine if the new equation is equivalent to the original equation. For example, suppose we are given the equation
 r = 2sin θ;
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    r = 2sin θ
−r = 2sin(−θ) Replace (r, θ) with (−r, −θ).
−r = −2sin θ Identity: sin(−θ) = −sin θ.
  r = 2sin θ Multiply both sides by−1.

This equation exhibits symmetry with respect to the line  θ = π
2.

In the second test, we consider symmetry with respect to the polar axis (  x -axis). We replace  (r, θ) with  (r, − θ)  or
 (−r, π − θ)  to determine equivalency between the tested equation and the original. For example, suppose we are given the
equation  r = 1 − 2cos θ.

r = 1 − 2cos θ
r = 1 − 2cos(−θ) Replace (r, θ) with (r, −θ).
r = 1 − 2cos θ Even/Odd identity

The graph of this equation exhibits symmetry with respect to the polar axis.

In the third test, we consider symmetry with respect to the pole (origin). We replace  (r, θ) with  (−r, θ)  to determine if the
tested equation is equivalent to the original equation. For example, suppose we are given the equation  r = 2sin(3θ).

  r = 2sin(3θ)
−r = 2sin(3θ)

The equation has failed the symmetry test, but that does not mean that it is not symmetric with respect to the pole. Passing
one or more of the symmetry tests verifies that symmetry will be exhibited in a graph. However, failing the symmetry tests
does not necessarily indicate that a graph will not be symmetric about the line  θ = π

2,   the polar axis, or the pole. In these

instances, we can confirm that symmetry exists by plotting reflecting points across the apparent axis of symmetry or the
pole. Testing for symmetry is a technique that simplifies the graphing of polar equations, but its application is not perfect.

Symmetry Tests

A polar equation describes a curve on the polar grid. The graph of a polar equation can be evaluated for three types
of symmetry, as shown in Figure 10.68.

Figure 10.68 (a) A graph is symmetric with respect to the line  θ = π
2   (y-axis) if replacing  (r, θ) with  ( − r, − θ) 

yields an equivalent equation. (b) A graph is symmetric with respect to the polar axis (x-axis) if replacing  (r, θ) with

 (r, − θ)  or  (−r, π−θ)  yields an equivalent equation. (c) A graph is symmetric with respect to the pole (origin) if

replacing  (r, θ) with  (−r, θ)  yields an equivalent equation.
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Given a polar equation, test for symmetry.

1. Substitute the appropriate combination of components for  (r, θ) :  (−r, − θ)  for  θ = π
2   symmetry;

 (r, − θ)  for polar axis symmetry; and  (−r, θ)  for symmetry with respect to the pole.

2. If the resulting equations are equivalent in one or more of the tests, the graph produces the expected
symmetry.

Example 10.24

Testing a Polar Equation for Symmetry

Test the equation  r = 2sin θ  for symmetry.

Solution
Test for each of the three types of symmetry.

1) Replacing  (r, θ) with  ( − r, − θ)  yields the same
result. Thus, the graph is symmetric with respect to the
line  θ = π

2.

−r = 2sin(−θ)
−r = −2sin θ Even-odd identity
    r = 2sin θ Multiply by −1
Passed

2) Replacing  θ with  − θ  does not yield the same
equation. Therefore, the graph fails the test and may or
may not be symmetric with respect to the polar axis.

r = 2sin(−θ)
r = −2sin θ Even-odd identity
r = −2sin θ ≠ 2sin θ
Failed

3) Replacing  r with – r  changes the equation and fails
the test. The graph may or may not be symmetric with
respect to the pole.

−r = 2sin θ
  r = −2sin θ ≠ 2sin θ
Failed

Table 10.1

Analysis
Using a graphing calculator, we can see that the equation  r = 2sin θ  is a circle centered at  (0, 1) with radius

 r = 1  and is indeed symmetric to the line  θ = π
2. We can also see that the graph is not symmetric with the polar

axis or the pole. See Figure 10.69.
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Figure 10.69

Test the equation for symmetry:  r = − 2cos θ.

Graphing Polar Equations by Plotting Points
To graph in the rectangular coordinate system we construct a table of  x  and  y  values. To graph in the polar coordinate

system we construct a table of  θ  and  r  values. We enter values of  θ  into a polar equation and calculate  r. However, using
the properties of symmetry and finding key values of  θ  and  r means fewer calculations will be needed.

Finding Zeros and Maxima
To find the zeros of a polar equation, we solve for the values of  θ  that result in  r = 0.  Recall that, to find the zeros of
polynomial functions, we set the equation equal to zero and then solve for  x. We use the same process for polar equations.
Set  r = 0,   and solve for  θ.

For many of the forms we will encounter, the maximum value of a polar equation is found by substituting those values of
 θ  into the equation that result in the maximum value of the trigonometric functions. Consider  r = 5cos θ;   the maximum
distance between the curve and the pole is 5 units. The maximum value of the cosine function is 1 when  θ = 0,   so our
polar equation is  5cos θ,   and the value  θ = 0  will yield the maximum  |r|.

Similarly, the maximum value of the sine function is 1 when  θ = π
2,   and if our polar equation is  r = 5sin θ,   the value

 θ = π
2  will yield the maximum  |r|. We may find additional information by calculating values of  r when  θ = 0. These

points would be polar axis intercepts, which may be helpful in drawing the graph and identifying the curve of a polar
equation.

Example 10.25

Finding Zeros and Maximum Values for a Polar Equation

Using the equation in Example 10.24, find the zeros and maximum  |r|  and, if necessary, the polar axis
intercepts of  r = 2sin θ.
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Solution
To find the zeros, set  r  equal to zero and solve for  θ.

2sin θ = 0
   sin θ = 0
           θ = sin−1 0
           θ = nπ where n is an integer

Substitute any one of the  θ  values into the equation. We will use  0.

r = 2sin(0)
r = 0

The points  (0, 0)  and  (0, ± nπ)  are the zeros of the equation. They all coincide, so only one point is visible on
the graph. This point is also the only polar axis intercept.

To find the maximum value of the equation, look at the maximum value of the trigonometric function  sin θ,  
which occurs when  θ = π

2 ± 2kπ  resulting in  sin⎛
⎝
π
2

⎞
⎠ = 1.  Substitute  π2   for  θ.

r = 2sin⎛
⎝
π
2

⎞
⎠

r = 2(1)
r = 2

Analysis

The point  ⎛⎝2, π
2

⎞
⎠ will be the maximum value on the graph. Let’s plot a few more points to verify the graph of a

circle. See Table 10.1 and Figure 10.70.
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θ r = 2sin θ r

0 r = 2sin(0) = 0 0

π
6 r = 2sin⎛

⎝
π
6

⎞
⎠ = 1 1

π
3 r = 2sin⎛

⎝
π
3

⎞
⎠ ≈ 1.73 1.73

π
2 r = 2sin⎛

⎝
π
2

⎞
⎠ = 2 2

2π
3 r = 2sin⎛

⎝
2π
3

⎞
⎠ ≈ 1.73 1.73

5π
6 r = 2sin⎛

⎝
5π
6

⎞
⎠ = 1 1

π r = 2sin(π) = 0 0

Table 10.1

Figure 10.70

Without converting to Cartesian coordinates, test the given equation for symmetry and find the zeros
and maximum values of  |r| :    r = 3cos θ.

Investigating Circles
Now we have seen the equation of a circle in the polar coordinate system. In the last two examples, the same equation was
used to illustrate the properties of symmetry and demonstrate how to find the zeros, maximum values, and plotted points
that produced the graphs. However, the circle is only one of many shapes in the set of polar curves.
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There are five classic polar curves: cardioids, limaҫons, lemniscates, rose curves, and Archimedes’ spirals. We will
briefly touch on the polar formulas for the circle before moving on to the classic curves and their variations.

Formulas for the Equation of a Circle

Some of the formulas that produce the graph of a circle in polar coordinates are given by  r = acos θ  and  r = asin θ,
where  a  is the diameter of the circle or the distance from the pole to the farthest point on the circumference. The radius

is  |a|
2 , or one-half the diameter. For  r = acos θ,  the center is  ⎛⎝a

2, 0⎞
⎠.  For  r = asin θ, the center is  ⎛⎝a

2, π⎞
⎠. Figure

10.71 shows the graphs of these four circles.

Figure 10.71

Example 10.26

Sketching the Graph of a Polar Equation for a Circle

Sketch the graph of  r = 4cos θ.

Solution
First, testing the equation for symmetry, we find that the graph is symmetric about the polar axis. Next, we find the
zeros and maximum  |r|  for  r = 4cos θ.  First, set  r = 0,   and solve for  θ . Thus, a zero occurs at  θ = π

2 ± kπ. 

A key point to plot is  ⎛⎝0, π
2

⎞
⎠ .

To find the maximum value of  r, note that the maximum value of the cosine function is 1 when  θ = 0 ± 2kπ. 
Substitute  θ = 0  into the equation:

r = 4cos θ
     r = 4cos(0)
       r = 4(1) = 4

The maximum value of the equation is 4. A key point to plot is  (4,  0).

As  r = 4cos θ  is symmetric with respect to the polar axis, we only need to calculate r-values for  θ  over the
interval  [0,   π].  Points in the upper quadrant can then be reflected to the lower quadrant. Make a table of values
similar to Table 10.2. The graph is shown in Figure 10.72.
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θ 0
π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6 π

r 4 3.46 2.83 2 0 −2 −2.83 −3.46 4

Table 10.2

Figure 10.72

Investigating Cardioids
While translating from polar coordinates to Cartesian coordinates may seem simpler in some instances, graphing the classic
curves is actually less complicated in the polar system. The next curve is called a cardioid, as it resembles a heart. This
shape is often included with the family of curves called limaçons, but here we will discuss the cardioid on its own.

Formulas for a Cardioid

The formulas that produce the graphs of a cardioid are given by  r = a ± bcos θ  and  r = a ± bsin θ where

 a > 0,   b > 0,   and  ab = 1. The cardioid graph passes through the pole, as we can see in Figure 10.73.

Figure 10.73
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Given the polar equation of a cardioid, sketch its graph.

1. Check equation for the three types of symmetry.

2. Find the zeros. Set  r = 0.

3. Find the maximum value of the equation according to the maximum value of the trigonometric expression.

4. Make a table of values for  r  and  θ.

5. Plot the points and sketch the graph.

Example 10.27

Sketching the Graph of a Cardioid

Sketch the graph of  r = 2 + 2cos θ.

Solution
First, testing the equation for symmetry, we find that the graph of this equation will be symmetric about the polar
axis. Next, we find the zeros and maximums. Setting  r = 0,  we have  θ = π + 2kπ. The zero of the equation is
located at  (0, π). The graph passes through this point.

The maximum value of  r = 2 + 2cos θ  occurs when  cos θ  is a maximum, which is when  cos θ = 1  or when
 θ = 0.  Substitute  θ = 0  into the equation, and solve for  r. 

r = 2 + 2cos(0)
r = 2 + 2(1) = 4

The point  (4, 0)  is the maximum value on the graph.

We found that the polar equation is symmetric with respect to the polar axis, but as it extends to all four quadrants,
we need to plot values over the interval  [0,  π]. The upper portion of the graph is then reflected over the polar
axis. Next, we make a table of values, as in Table 10.3, and then we plot the points and draw the graph. See
Figure 10.74.

θ 0 π
4

π
2

2π
3 π

r 4 3.41 2 1 0

Table 10.3

Chapter 10 Further Applications of Trigonometry 1119



Figure 10.74

Investigating Limaçons
The word limaçon is Old French for “snail,” a name that describes the shape of the graph. As mentioned earlier, the cardioid
is a member of the limaçon family, and we can see the similarities in the graphs. The other images in this category include
the one-loop limaçon and the two-loop (or inner-loop) limaçon. One-loop limaçons are sometimes referred to as dimpled
limaçons when  1 < a

b < 2  and convex limaçons when  ab ≥ 2. 

Formulas for One-Loop Limaçons

The formulas that produce the graph of a dimpled one-loop limaçon are given by  r = a ± bcos θ  and  r = a ± bsin θ 
where  a > 0,  b > 0,   and 1<a

b < 2. All four graphs are shown in Figure 10.75.

Figure 10.75 Dimpled limaçons
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Given a polar equation for a one-loop limaçon, sketch the graph.

1. Test the equation for symmetry. Remember that failing a symmetry test does not mean that the shape will
not exhibit symmetry. Often the symmetry may reveal itself when the points are plotted.

2. Find the zeros.

3. Find the maximum values according to the trigonometric expression.

4. Make a table.

5. Plot the points and sketch the graph.

Example 10.28

Sketching the Graph of a One-Loop Limaçon

Graph the equation  r = 4 − 3sin θ.

Solution
First, testing the equation for symmetry, we find that it fails all three symmetry tests, meaning that the graph may
or may not exhibit symmetry, so we cannot use the symmetry to help us graph it. However, this equation has a
graph that clearly displays symmetry with respect to the line  θ = π

2,   yet it fails all the three symmetry tests. A

graphing calculator will immediately illustrate the graph’s reflective quality.

Next, we find the zeros and maximum, and plot the reflecting points to verify any symmetry. Setting  r = 0  results
in  θ  being undefined. What does this mean? How could  θ  be undefined? The angle  θ  is undefined for any value
of  sin θ > 1. Therefore,  θ  is undefined because there is no value of  θ  for which  sin θ > 1. Consequently, the
graph does not pass through the pole. Perhaps the graph does cross the polar axis, but not at the pole. We can
investigate other intercepts by calculating r when  θ = 0. 

r(0) = 4 − 3sin(0)
       r = 4 − 3 ⋅ 0 = 4

So, there is at least one polar axis intercept at  (4, 0).

Next, as the maximum value of the sine function is 1 when  θ = π
2,  we will substitute  θ = π

2   into the equation

and solve for  r. Thus,  r = 1.

Make a table of the coordinates similar to Table 10.4.

θ 0 π
6

π
3

π
2

2π
3

5π
6 π 7π

6
4π
3

3π
2

5π
3

11π
6 2π

r 4 2.5 1.4 1 1.4 2.5 4 5.5 6.6 7 6.6 5.5 4

Table 10.4

The graph is shown in Figure 10.76.
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Figure 10.76 One-loop limaçon

Analysis
This is an example of a curve for which making a table of values is critical to producing an accurate graph. The
symmetry tests fail; the zero is undefined. While it may be apparent that an equation involving  sin θ  is likely
symmetric with respect to the line  θ = π

2, evaluating more points helps to verify that the graph is correct.

Sketch the graph of  r = 3 − 2cos θ.

Another type of limaçon, the inner-loop limaçon, is named for the loop formed inside the general limaçon shape. It
was discovered by the German artist Albrecht Dürer(1471-1528), who revealed a method for drawing the inner-loop
limaçon in his 1525 book Underweysung der Messing. A century later, the father of mathematician Blaise Pascal, Étienne
Pascal(1588-1651), rediscovered it.

Formulas for Inner-Loop Limaçons

The formulas that generate the inner-loop limaçons are given by  r = a ± bcos θ  and  r = a ± bsin θ where
 a > 0,   b > 0,   and   a < b. The graph of the inner-loop limaçon passes through the pole twice: once for the outer
loop, and once for the inner loop. See Figure 10.77 for the graphs.
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Figure 10.77

Example 10.29

Sketching the Graph of an Inner-Loop Limaçon

Sketch the graph of  r = 2 + 5cos θ.

Solution
Testing for symmetry, we find that the graph of the equation is symmetric about the polar axis. Next, finding the
zeros reveals that when  r = 0,   θ = 1.98.  The maximum  |r|  is found when  cos θ = 1  or when  θ = 0. Thus,
the maximum is found at the point (7, 0).

Even though we have found symmetry, the zero, and the maximum, plotting more points will help to define the
shape, and then a pattern will emerge.

See Table 10.5.

θ 0 π
6

π
3

π
2

2π
3

5π
6 π 7π

6
4π
3

3π
2

5π
3

11π
6 2π

r
7 6.3 4.5 2 −0.5 −2.3 −3 −2.3 −0.5 2 4.5 6.3 7

Table 10.5

As expected, the values begin to repeat after  θ = π. The graph is shown in Figure 10.78.
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Figure 10.78 Inner-loop limaçon

Investigating Lemniscates
The lemniscate is a polar curve resembling the infinity symbol  ∞  or a figure 8. Centered at the pole, a lemniscate is
symmetrical by definition.

Formulas for Lemniscates

The formulas that generate the graph of a lemniscate are given by  r2 = a2 cos 2θ  and  r2 = a2 sin 2θ where  a ≠ 0. 
The formula  r2 = a2 sin 2θ  is symmetric with respect to the pole. The formula  r2 = a2 cos 2θ  is symmetric with
respect to the pole, the line  θ = π

2,   and the polar axis. See Figure 10.79 for the graphs.

Figure 10.79

Example 10.30

Sketching the Graph of a Lemniscate
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Sketch the graph of  r2 = 4cos 2θ.

Solution
The equation exhibits symmetry with respect to the line  θ = π

2,   the polar axis, and the pole.

Let’s find the zeros. It should be routine by now, but we will approach this equation a little differently by making
the substitution  u = 2θ.

               0 = 4cos 2θ
               0 = 4cos u
               0 = cos u
cos−1 0 = π

2
               u = π

2 Substitute 2θ back in for u.

            2θ = π
2

               θ = π
4

So, the point ⎛
⎝0, π

4
⎞
⎠ is a zero of the equation.

Now let’s find the maximum value. Since the maximum of  cos u = 1 when  u = 0,   the maximum  cos 2θ = 1 
when  2θ = 0. Thus,

 r2 = 4cos(0)
   r2 = 4(1) = 4

          r = ± 4  = 2

We have a maximum at (2, 0). Since this graph is symmetric with respect to the pole, the line  θ = π
2, and the

polar axis, we only need to plot points in the first quadrant.

Make a table similar to Table 10.6.

θ 0
π
6

π
4

π
3

π
2

r 2 2 0 2 0

Table 10.6

Plot the points on the graph, such as the one shown in Figure 10.80.

Figure 10.80 Lemniscate
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Analysis
Making a substitution such as  u = 2θ  is a common practice in mathematics because it can make calculations
simpler. However, we must not forget to replace the substitution term with the original term at the end, and then
solve for the unknown.

Some of the points on this graph may not show up using the Trace function on the TI-84 graphing calculator, and
the calculator table may show an error for these same points of  r. This is because there are no real square roots
for these values of  θ.  In other words, the corresponding r-values of   4cos(2θ)  are complex numbers because
there is a negative number under the radical.

Investigating Rose Curves
The next type of polar equation produces a petal-like shape called a rose curve. Although the graphs look complex, a simple
polar equation generates the pattern.

Rose Curves

The formulas that generate the graph of a rose curve are given by  r = acos nθ  and  r = asin nθ where  a ≠ 0.  If  n  is
even, the curve has  2n  petals. If  n  is odd, the curve has  n  petals. See Figure 10.81.

Figure 10.81

Example 10.31

Sketching the Graph of a Rose Curve (n Even)

Sketch the graph of  r = 2cos 4θ.

Solution
Testing for symmetry, we find again that the symmetry tests do not tell the whole story. The graph is not only
symmetric with respect to the polar axis, but also with respect to the line  θ = π

2   and the pole.

Now we will find the zeros. First make the substitution  u = 4θ.
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                              0 = 2cos 4θ
                           0 = cos 4θ
                        0 = cos u

cos−1 0 = u
                 u = π

2
              4θ = π

2
                  θ = π

8

The zero is  θ = π
8. The point  ⎛⎝0, π

8
⎞
⎠  is on the curve.

Next, we find the maximum  |r|. We know that the maximum value of  cos u = 1 when  θ = 0. Thus,

r = 2cos(4 ⋅ 0)
r = 2cos(0)
r = 2(1) = 2

The point  (2, 0)  is on the curve.

The graph of the rose curve has unique properties, which are revealed in Table 10.7.

θ 0
π
8

π
4

3π
8

π
2

5π
8

3π
4

r 2 0 −2 0 2 0 −2

Table 10.7

As  r = 0 when  θ = π
8,   it makes sense to divide values in the table by  π8   units. A definite pattern emerges. Look

at the range of r-values: 2, 0, −2, 0, 2, 0, −2, and so on. This represents the development of the curve one petal at
a time. Starting at  r = 0,   each petal extends out a distance of  r = 2,   and then turns back to zero  2n  times for
a total of eight petals. See the graph in Figure 10.82.

Figure 10.82 Rose curve,  n  even

Analysis
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When these curves are drawn, it is best to plot the points in order, as in the Table 10.7. This allows us to see how
the graph hits a maximum (the tip of a petal), loops back crossing the pole, hits the opposite maximum, and loops
back to the pole. The action is continuous until all the petals are drawn.

Sketch the graph of  r = 4sin(2θ).

Example 10.32

Sketching the Graph of a Rose Curve (n Odd)

Sketch the graph of  r = 2sin(5θ).

Solution
The graph of the equation shows symmetry with respect to the line  θ = π

2. Next, find the zeros and maximum.

We will want to make the substitution  u = 5θ.

  0 = 2sin(5θ)
  0 = sin u

sin−1 0 = 0
  u = 0
  5θ = 0
  θ = 0

The maximum value is calculated at the angle where  sin θ  is a maximum. Therefore,

r = 2sin⎛
⎝5 ⋅ π

2
⎞
⎠

r = 2(1) = 2

Thus, the maximum value of the polar equation is 2. This is the length of each petal. As the curve for  n  odd yields
the same number of petals as  n,   there will be five petals on the graph. See Figure 10.83.

Create a table of values similar to Table 10.8.

θ 0
π
6

π
3

π
2

2π
3

5π
6 π

r 0 1 −1.73 2 −1.73 1 0

Table 10.8
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Figure 10.83 Rose curve,  n  odd

Sketch the graph of r = 3cos(3θ).

Investigating the Archimedes’ Spiral
The final polar equation we will discuss is the Archimedes’ spiral, named for its discoverer, the Greek mathematician
Archimedes (c. 287 BCE - c. 212 BCE), who is credited with numerous discoveries in the fields of geometry and mechanics.

Archimedes’ Spiral

The formula that generates the graph of the Archimedes’ spiral is given by  r = θ  for  θ ≥ 0. As  θ  increases,  r 
increases at a constant rate in an ever-widening, never-ending, spiraling path. See Figure 10.84.

Figure 10.84
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Given an Archimedes’ spiral over  [0, 2π], sketch the graph.

1. Make a table of values for  r  and  θ  over the given domain.

2. Plot the points and sketch the graph.

Example 10.33

Sketching the Graph of an Archimedes’ Spiral

Sketch the graph of  r = θ  over  [0, 2π].

Solution
As  r  is equal to  θ,   the plot of the Archimedes’ spiral begins at the pole at the point (0, 0). While the graph
hints of symmetry, there is no formal symmetry with regard to passing the symmetry tests. Further, there is no
maximum value, unless the domain is restricted.

Create a table such as Table 10.9.

θ π
4

π
2 π 3π

2
7π
4 2π

r 0.785 1.57 3.14 4.71 5.50 6.28

Table 10.9

Notice that the r-values are just the decimal form of the angle measured in radians. We can see them on a graph
in Figure 10.85.

Figure 10.85 Archimedes’ spiral

Analysis
The domain of this polar curve is  [0, 2π].  In general, however, the domain of this function is  (−∞, ∞). 
Graphing the equation of the Archimedes’ spiral is rather simple, although the image makes it seem like it would
be complex.
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10.21 Sketch the graph of  r = − θ  over the interval  [0, 4π].

Summary of Curves
We have explored a number of seemingly complex polar curves in this section. Figure 10.86 and Figure 10.87
summarize the graphs and equations for each of these curves.

Figure 10.86

Figure 10.87

Access these online resources for additional instruction and practice with graphs of polar coordinates.

• Graphing Polar Equations Part 1 (http://openstaxcollege.org/l/polargraph1)

• Graphing Polar Equations Part 2 (http://openstaxcollege.org/l/polargraph2)

• Animation: The Graphs of Polar Equations (http://openstaxcollege.org/l/polaranim)

• Graphing Polar Equations on the TI-84 (http://openstaxcollege.org/l/polarTI84)
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10.4 EXERCISES
Verbal

Describe the three types of symmetry in polar graphs,
and compare them to the symmetry of the Cartesian plane.

Which of the three types of symmetries for polar
graphs correspond to the symmetries with respect to the x-
axis, y-axis, and origin?

What are the steps to follow when graphing polar
equations?

Describe the shapes of the graphs of cardioids,
limaçons, and lemniscates.

What part of the equation determines the shape of the
graph of a polar equation?

Graphical
For the following exercises, test the equation for symmetry.

r = 5cos 3θ

r = 3 − 3cos θ

r = 3 + 2sin θ

r = 3sin 2θ

r = 4

r = 2θ

r = 4cos θ2

r = 2
θ

r = 3 1 − cos2 θ

r = 5sin 2θ

For the following exercises, graph the polar equation.
Identify the name of the shape.

r = 3cos θ

r = 4sin θ

r = 2 + 2cos θ

r = 2 − 2cos θ

r = 5 − 5sin θ

r = 3 + 3sin θ

r = 3 + 2sin θ

r = 7 + 4sin θ

r = 4 + 3cos θ

r = 5 + 4cos θ

r = 10 + 9cos θ

r = 1 + 3sin θ

r = 2 + 5sin θ

r = 5 + 7sin θ

r = 2 + 4cos θ

r = 5 + 6cos θ

r2 = 36cos(2θ)

r2 = 10cos(2θ)

r2 = 4sin(2θ)

r2 = 10sin(2θ)

r = 3sin(2θ)

r = 3cos(2θ)

r = 5sin(3θ)

r = 4sin(4θ)

r = 4sin(5θ)

r = −θ

r = 2θ

r = − 3θ

Technology
For the following exercises, use a graphing calculator to
sketch the graph of the polar equation.

r = 1
θ

r = 1
θ
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298.

299.

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

r = 2sin θtan θ, a cissoid

r = 2 1 − sin2 θ , a hippopede

r = 5 + cos(4θ)

r = 2 − sin(2θ)

r = θ2

r = θ + 1

r = θsin θ

r = θcos θ

For the following exercises, use a graphing utility to graph
each pair of polar equations on a domain of  [0, 4π]  and
then explain the differences shown in the graphs.

r = θ, r = − θ

r = θ, r = θ + sin θ

r = sin θ + θ, r = sin θ − θ

r = 2sin⎛
⎝
θ
2

⎞
⎠, r = θsin⎛

⎝
θ
2

⎞
⎠

r = sin⎛
⎝cos(3θ)⎞

⎠  r = sin(3θ)

On a graphing utility, graph  r = sin⎛
⎝
16
5 θ⎞

⎠  on

 [0, 4π], [0, 8π], [0, 12π],   and  ⎡⎣0, 16π⎤
⎦. Describe the

effect of increasing the width of the domain.

On a graphing utility, graph and sketch

 r = sin θ + ⎛
⎝sin⎛

⎝
5
2θ⎞

⎠
⎞
⎠
3
  on  [0, 4π].

On a graphing utility, graph each polar equation.
Explain the similarities and differences you observe in the
graphs.

r1 = 3sin(3θ)

r2 = 2sin(3θ)
r3 = sin(3θ)

On a graphing utility, graph each polar equation.
Explain the similarities and differences you observe in the
graphs.

r1 = 3 + 3cos θ
r2 = 2 + 2cos θ
r3 = 1 + cos θ

On a graphing utility, graph each polar equation.
Explain the similarities and differences you observe in the
graphs.

r1 = 3θ

r2 = 2θ
r3 = θ

Extensions
For the following exercises, draw each polar equation on
the same set of polar axes, and find the points of
intersection.

r1 = 3 + 2sin θ,  r2 = 2

r1 = 6 − 4cos θ,  r2 = 4

r1 = 1 + sin θ,  r2 = 3sin θ

r1 = 1 + cos θ,  r2 = 3cos θ

r1 = cos(2θ),  r2 = sin(2θ)

r1 = sin2 (2θ),  r2 = 1 − cos(4θ)

r1 = 3,  r2 = 2sin(θ)

r1
2 = sin θ, r2

2 = cos θ

r1 = 1 + cos θ,  r2 = 1 − sin θ
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10.5 | Polar Form of Complex Numbers

Learning Objectives

In this section, you will:

10.5.1 Plot complex numbers in the complex plane.
10.5.2 Find the absolute value of a complex number.
10.5.3 Write complex numbers in polar form.
10.5.4 Convert a complex number from polar to rectangular form.
10.5.5 Find products of complex numbers in polar form.
10.5.6 Find quotients of complex numbers in polar form.
10.5.7 Find powers of complex numbers in polar form.
10.5.8 Find roots of complex numbers in polar form.

“God made the integers; all else is the work of man.” This rather famous quote by nineteenth-century German
mathematician Leopold Kronecker sets the stage for this section on the polar form of a complex number. Complex numbers
were invented by people and represent over a thousand years of continuous investigation and struggle by mathematicians
such as Pythagoras, Descartes, De Moivre, Euler, Gauss, and others. Complex numbers answered questions that for
centuries had puzzled the greatest minds in science.

We first encountered complex numbers in Complex Numbers. In this section, we will focus on the mechanics of working
with complex numbers: translation of complex numbers from polar form to rectangular form and vice versa, interpretation
of complex numbers in the scheme of applications, and application of De Moivre’s Theorem.

Plotting Complex Numbers in the Complex Plane
Plotting a complex number  a + bi  is similar to plotting a real number, except that the horizontal axis represents the real
part of the number,  a,   and the vertical axis represents the imaginary part of the number,  bi.

Given a complex number  a + bi,   plot it in the complex plane.

1. Label the horizontal axis as the real axis and the vertical axis as the imaginary axis.

2. Plot the point in the complex plane by moving  a  units in the horizontal direction and  b  units in the
vertical direction.

Example 10.34

Plotting a Complex Number in the Complex Plane

Plot the complex number  2 − 3i  in the complex plane.

Solution
From the origin, move two units in the positive horizontal direction and three units in the negative vertical
direction. See Figure 10.88.
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Figure 10.88

Plot the point  1 + 5i  in the complex plane.

Finding the Absolute Value of a Complex Number
The first step toward working with a complex number in polar form is to find the absolute value. The absolute value of a
complex number is the same as its magnitude, or  |z|.  It measures the distance from the origin to a point in the plane. For
example, the graph of  z = 2 + 4i,   in Figure 10.89, shows  |z|.

Figure 10.89

Absolute Value of a Complex Number

Given  z = x + yi,   a complex number, the absolute value of  z  is defined as

|z| = x2 + y2

It is the distance from the origin to the point  (x, y).
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Notice that the absolute value of a real number gives the distance of the number from 0, while the absolute value of a
complex number gives the distance of the number from the origin,  (0,  0).

Example 10.35

Finding the Absolute Value of a Complex Number with a Radical

Find the absolute value of  z = 5 − i.

Solution
Using the formula, we have

|z| = x2 + y2

|z| = ⎛
⎝ 5⎞

⎠
2 + (−1)2

|z| = 5 + 1
|z| = 6

See Figure 10.90.

Figure 10.90

Find the absolute value of the complex number  z = 12 − 5i.

Example 10.36

Finding the Absolute Value of a Complex Number

Given  z = 3 − 4i,   find  |z|.

Solution
Using the formula, we have
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|z| = x2 + y2

|z| = (3)2 + (−4)2

|z| = 9 + 16
|z| = 25
|z| = 5

The absolute value  z  is 5. See Figure 10.91.

Figure 10.91

Given  z = 1 − 7i,   find  |z|.

Writing Complex Numbers in Polar Form
The polar form of a complex number expresses a number in terms of an angle  θ  and its distance from the origin  r. Given
a complex number in rectangular form expressed as  z = x + yi,  we use the same conversion formulas as we do to write

the number in trigonometric form:

 x = rcos θ
 y = rsin θ
  r = x2 + y2

We review these relationships in Figure 10.92.
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Figure 10.92

We use the term modulus to represent the absolute value of a complex number, or the distance from the origin to the point
 (x, y). The modulus, then, is the same as  r,   the radius in polar form. We use  θ  to indicate the angle of direction (just as

with polar coordinates). Substituting, we have

z = x + yi
z = rcos θ + (rsin θ)i
z = r(cos θ + isin θ)

Polar Form of a Complex Number

Writing a complex number in polar form involves the following conversion formulas:

x = rcos θ
y = rsin θ
r = x2 + y2

Making a direct substitution, we have

z = x + yi
z = (rcos θ) + i(rsin θ)
z = r(cos θ + isin θ)

where  r  is the modulus and θ is the argument. We often use the abbreviation  rcis θ  to represent  r(cos θ + isin θ).

Example 10.37

Expressing a Complex Number Using Polar Coordinates

Express the complex number  4i  using polar coordinates.

Solution
On the complex plane, the number  z = 4i  is the same as  z = 0 + 4i. Writing it in polar form, we have to
calculate  r  first.
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r = x2 + y2

r = 02 + 42

r = 16
r = 4

Next, we look at  x.  If  x = rcos θ,   and  x = 0,   then  θ = π
2.  In polar coordinates, the complex number

 z = 0 + 4i  can be written as  z = 4⎛
⎝cos⎛

⎝
π
2

⎞
⎠ + isin⎛

⎝
π
2

⎞
⎠
⎞
⎠  or  4cis⎛

⎝ π2
⎞
⎠.  See Figure 10.93.

Figure 10.93

Express  z = 3i  as  r cis θ  in polar form.

Example 10.38

Finding the Polar Form of a Complex Number

Find the polar form of  − 4 + 4i.

Solution
First, find the value of  r.

r = x2 + y2

r = (−4)2 + ⎛
⎝42⎞

⎠

r = 32
r = 4 2

Find the angle  θ  using the formula:
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cos θ = x
r

cos θ = −4
4 2

cos θ = − 1
2

 θ = cos−1 ⎛
⎝− 1

2
⎞
⎠ = 3π

4

Thus, the solution is  4 2cis⎛
⎝
3π
4

⎞
⎠.

Write  z = 3 + i  in polar form.

Converting a Complex Number from Polar to Rectangular Form
Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and using
the distributive property. In other words, given  z = r(cos θ + isin θ),   first evaluate the trigonometric functions  cos θ  and
 sin θ. Then, multiply through by  r.

Example 10.39

Converting from Polar to Rectangular Form

Convert the polar form of the given complex number to rectangular form:

z = 12⎛
⎝cos⎛

⎝
π
6

⎞
⎠ + isin⎛

⎝
π
6

⎞
⎠
⎞
⎠

Solution
We begin by evaluating the trigonometric expressions.

cos⎛
⎝
π
6

⎞
⎠ = 3

2  and sin⎛
⎝
π
6

⎞
⎠ = 1

2

After substitution, the complex number is

z = 12⎛
⎝

3
2 + 1

2i⎞⎠

We apply the distributive property:

z = 12⎛
⎝

3
2 + 1

2i⎞⎠

= (12) 3
2 + (12)1

2i

  = 6 3 + 6i

The rectangular form of the given point in complex form is  6 3 + 6i.
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Example 10.40

Finding the Rectangular Form of a Complex Number

Find the rectangular form of the complex number given  r = 13  and  tan θ = 5
12.

Solution

If  tan θ = 5
12,   and  tan θ = y

x,  we first determine  r = x2 + y2 = 122 + 52 = 13. We then find  cos θ = x
r  

and  sin θ = y
r .

z = 13(cos θ + isin θ)

    = 13⎛
⎝
12
13 + 5

13i⎞⎠
    = 12 + 5i

The rectangular form of the given number in complex form is  12 + 5i.

Convert the complex number to rectangular form:

z = 4⎛
⎝cos11π

6 + isin11π
6

⎞
⎠

Finding Products of Complex Numbers in Polar Form
Now that we can convert complex numbers to polar form we will learn how to perform operations on complex numbers
in polar form. For the rest of this section, we will work with formulas developed by French mathematician Abraham de
Moivre (1667-1754). These formulas have made working with products, quotients, powers, and roots of complex numbers
much simpler than they appear. The rules are based on multiplying the moduli and adding the arguments.

Products of Complex Numbers in Polar Form

If  z1 = r1(cos θ1 + isin θ1)  and  z2 = r2(cos θ2 + isin θ2), then the product of these numbers is given as:

z1 z2 = r1 r2
⎡
⎣cos⎛

⎝θ1 + θ2
⎞
⎠ + isin⎛

⎝θ1 + θ2
⎞
⎠
⎤
⎦

z1 z2 = r1 r2 cis⎛
⎝θ1 + θ2

⎞
⎠

Notice that the product calls for multiplying the moduli and adding the angles.

Example 10.41

Finding the Product of Two Complex Numbers in Polar Form

Find the product of  z1 z2,   given  z1 = 4(cos(80°) + isin(80°))  and  z2 = 2(cos(145°) + isin(145°)).

Solution
Follow the formula
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z1 z2 = 4 ⋅ 2[cos(80° + 145°) + isin(80° + 145°)]
z1 z2 = 8[cos(225°) + isin(225°)]

z1 z2 = 8⎡
⎣cos⎛

⎝
5π
4

⎞
⎠ + isin⎛

⎝
5π
4

⎞
⎠
⎤
⎦

z1 z2 = 8⎡
⎣− 2

2 + i⎛⎝− 2
2

⎞
⎠
⎤
⎦

z1 z2 = − 4 2 − 4i 2

Finding Quotients of Complex Numbers in Polar Form
The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the two
arguments.

Quotients of Complex Numbers in Polar Form

If  z1 = r1(cos θ1 + isin θ1)  and  z2 = r2(cos θ2 + isin θ2), then the quotient of these numbers is

z1
z2

= r1
r2

⎡
⎣cos⎛

⎝θ1 − θ2
⎞
⎠ + isin⎛

⎝θ1 − θ2
⎞
⎠
⎤
⎦,   z2 ≠ 0

z1
z2

= r1
r2

cis⎛
⎝θ1 − θ2

⎞
⎠,   z2 ≠ 0

Notice that the moduli are divided, and the angles are subtracted.

Given two complex numbers in polar form, find the quotient.

1. Divide  r1
r2

.

2. Find  θ1 − θ2.

3. Substitute the results into the formula:  z = r(cos θ + isin θ). Replace  r with  r1
r2

,   and replace  θ with

 θ1 − θ2.

4. Calculate the new trigonometric expressions and multiply through by  r.

Example 10.42

Finding the Quotient of Two Complex Numbers

Find the quotient of  z1 = 2(cos(213°) + isin(213°))  and  z2 = 4(cos(33°) + isin(33°)).

Solution
Using the formula, we have
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z1
z2

= 2
4[cos(213° − 33°) + isin(213° − 33°)]

z1
z2

= 1
2[cos(180°) + isin(180°)]

z1
z2

= 1
2[ − 1 + 0i]

z1
z2

= − 1
2 + 0i

z1
z2

= − 1
2

Find the product and the quotient of  z1 = 2 3(cos(150°) + isin(150°))  and

 z2 = 2(cos(30°) + isin(30°)).

Finding Powers of Complex Numbers in Polar Form
Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem. It states that, for a positive integer
 n, zn   is found by raising the modulus to the  nth  power and multiplying the argument by  n.  It is the standard method used
in modern mathematics.

De Moivre’s Theorem

If  z = r(cos θ + isin θ)  is a complex number, then

zn = rn ⎡
⎣cos(nθ) + isin(nθ)⎤

⎦

zn = rn cis(nθ)

where  n  is a positive integer.

Example 10.43

Evaluating an Expression Using De Moivre’s Theorem

Evaluate the expression  (1 + i)5   using De Moivre’s Theorem.

Solution
Since De Moivre’s Theorem applies to complex numbers written in polar form, we must first write  (1 + i)  in
polar form. Let us find  r.

r = x2 + y2

r = (1)2 + (1)2

r = 2

Then we find  θ. Using the formula  tan θ = y
x   gives
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tan θ = 1
1

tan θ = 1
  θ = π

4

Use De Moivre’s Theorem to evaluate the expression.

(a + bi)n = rn[cos(nθ) + isin(nθ)]

 (1 + i)5 = ( 2)5 ⎡
⎣cos⎛

⎝5 ⋅ π
4

⎞
⎠ + isin⎛

⎝5 ⋅ π
4

⎞
⎠
⎤
⎦

 (1 + i)5 = 4 2⎡
⎣cos⎛

⎝
5π
4

⎞
⎠ + isin⎛

⎝
5π
4

⎞
⎠
⎤
⎦

 (1 + i)5 = 4 2⎡
⎣− 2

2 + i⎛⎝− 2
2

⎞
⎠
⎤
⎦

  (1 + i)5 = − 4 − 4i

Finding Roots of Complex Numbers in Polar Form
To find the nth root of a complex number in polar form, we use the  nth Root Theorem or De Moivre’s Theorem and raise
the complex number to a power with a rational exponent. There are several ways to represent a formula for finding  nth 
roots of complex numbers in polar form.

The nth Root Theorem

To find the  nth  root of a complex number in polar form, use the formula given as

z
1
n = r

1
n ⎡

⎣cos⎛
⎝
θ
n + 2kπ

n
⎞
⎠ + isin⎛

⎝
θ
n + 2kπ

n
⎞
⎠
⎤
⎦

where  k = 0,   1,   2,   3,  .  .  .  ,   n − 1. We add  2kπ
n    to  θn   in order to obtain the periodic roots.

Example 10.44

Finding the nth Root of a Complex Number

Evaluate the cube roots of  z = 8⎛
⎝cos⎛

⎝
2π
3

⎞
⎠ + isin⎛

⎝
2π
3

⎞
⎠
⎞
⎠.

Solution
We have

z
1
3 = 8

1
3

⎡

⎣
⎢cos

⎛

⎝
⎜

2π
3
3 + 2kπ

3
⎞

⎠
⎟ + isin

⎛

⎝
⎜

2π
3
3 + 2kπ

3
⎞

⎠
⎟
⎤

⎦
⎥

z
1
3 = 2⎡

⎣cos⎛
⎝
2π
9 + 2kπ

3
⎞
⎠ + isin⎛

⎝
2π
9 + 2kπ

3
⎞
⎠
⎤
⎦

There will be three roots:  k = 0,   1,   2. When  k = 0,  we have
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z
1
3 = 2⎛

⎝cos⎛
⎝
2π
9

⎞
⎠ + isin⎛

⎝
2π
9

⎞
⎠
⎞
⎠

When  k = 1,  we have

z
1
3 = 2⎡

⎣cos⎛
⎝
2π
9 + 6π

9
⎞
⎠ + isin⎛

⎝
2π
9 + 6π

9
⎞
⎠
⎤
⎦     Add 2(1)π

3  to each angle.

z
1
3 = 2⎛

⎝cos⎛
⎝
8π
9

⎞
⎠ + isin⎛

⎝
8π
9

⎞
⎠
⎞
⎠

When  k = 2,   we have

z
1
3 = 2⎡

⎣cos⎛
⎝
2π
9 + 12π

9
⎞
⎠ + isin⎛

⎝
2π
9 + 12π

9
⎞
⎠
⎤
⎦ Add 2(2)π

3  to each angle.

z
1
3 = 2⎛

⎝cos⎛
⎝
14π

9
⎞
⎠ + isin⎛

⎝
14π

9
⎞
⎠
⎞
⎠

Remember to find the common denominator to simplify fractions in situations like this one. For  k = 1,   the angle
simplification is

2π
3
3 + 2(1)π

3 = 2π
3

⎛
⎝
1
3

⎞
⎠ + 2(1)π

3
⎛
⎝
3
3

⎞
⎠

                           = 2π
9 + 6π

9
                           = 8π

9

Find the four fourth roots of  16(cos(120°) + isin(120°)).

Access these online resources for additional instruction and practice with polar forms of complex numbers.

• The Product and Quotient of Complex Numbers in Trigonometric Form
(http://openstaxcollege.org/l/prodquocomplex)

• De Moivre’s Theorem (http://openstaxcollege.org/l/demoivre)
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10.5 EXERCISES
Verbal

A complex number is  a + bi. Explain each part.

What does the absolute value of a complex number
represent?

How is a complex number converted to polar form?

How do we find the product of two complex
numbers?

What is De Moivre’s Theorem and what is it used for?

Algebraic
For the following exercises, find the absolute value of the
given complex number.

5 + 3i

−7 + i

−3 − 3i

2 − 6i

2i

2.2 − 3.1i

For the following exercises, write the complex number in
polar form.

2 + 2i

8 − 4i

−1
2 − 1

2i

3 + i

3i

For the following exercises, convert the complex number
from polar to rectangular form.

z = 7cis⎛
⎝
π
6

⎞
⎠

z = 2cis⎛
⎝
π
3

⎞
⎠

z = 4cis⎛
⎝
7π
6

⎞
⎠

z = 7cis(25°)

z = 3cis(240°)

z = 2cis(100°)

For the following exercises, find  z1 z2   in polar form.

z1 = 2 3cis(116°);   z2 = 2cis(82°)

z1 = 2cis(205°);  z2 = 2 2cis(118°)

z1 = 3cis(120°);  z2 = 1
4cis(60°)

z1 = 3cis⎛
⎝
π
4

⎞
⎠;  z2 = 5cis⎛

⎝
π
6

⎞
⎠

z1 = 5cis⎛
⎝
5π
8

⎞
⎠;  z2 = 15cis⎛

⎝
π
12

⎞
⎠

z1 = 4cis⎛
⎝
π
2

⎞
⎠;  z2 = 2cis⎛

⎝
π
4

⎞
⎠

For the following exercises, find  z1
z2
  in polar form.

z1 = 21cis(135°);  z2 = 3cis(65°)

z1 = 2cis(90°);  z2 = 2cis(60°)

z1 = 15cis(120°);  z2 = 3cis(40°)

z1 = 6cis⎛
⎝
π
3

⎞
⎠;  z2 = 2cis⎛

⎝
π
4

⎞
⎠

z1 = 5 2cis(π);  z2 = 2cis⎛
⎝
2π
3

⎞
⎠

z1 = 2cis⎛
⎝
3π
5

⎞
⎠;  z2 = 3cis⎛

⎝
π
4

⎞
⎠

For the following exercises, find the powers of each
complex number in polar form.

Find  z3  when  z = 5cis(45°).

Find  z4  when  z = 2cis(70°).

Find  z2  when  z = 3cis(120°).

Find  z2  when  z = 4cis⎛
⎝
π
4

⎞
⎠.

Find  z4  when  z = cis⎛
⎝
3π
16

⎞
⎠.
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351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

Find  z3  when  z = 3cis⎛
⎝
5π
3

⎞
⎠.

For the following exercises, evaluate each root.

Evaluate the cube root of  z when  z = 27cis(240°).

Evaluate the square root of  z when
 z = 16cis(100°).

Evaluate the cube root of  z when  z = 32cis⎛
⎝
2π
3

⎞
⎠.

Evaluate the square root of  z when  z = 32cis(π).

Evaluate the cube root of  z when  z = 8cis⎛
⎝
7π
4

⎞
⎠.

Graphical
For the following exercises, plot the complex number in the
complex plane.

2 + 4i

−3 − 3i

5 − 4i

−1 − 5i

3 + 2i

2i

−4

6 − 2i

−2 + i

1 − 4i

Technology
For the following exercises, find all answers rounded to the
nearest hundredth.

Use the rectangular to polar feature on the graphing
calculator to change  5 + 5i  to polar form.

Use the rectangular to polar feature on the graphing
calculator to change  3 − 2i  to polar form.

Use the rectangular to polar feature on the graphing
calculator to change −3 − 8i  to polar form.

Use the polar to rectangular feature on the graphing
calculator to change  4cis(120°)  to rectangular form.

Use the polar to rectangular feature on the graphing
calculator to change  2cis(45°)  to rectangular form.

Use the polar to rectangular feature on the graphing
calculator to change  5cis(210°)  to rectangular form.
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10.6 | Parametric Equations

Learning Objectives

In this section, you will:

10.6.1 Parameterize a curve.
10.6.2 Eliminate the parameter.
10.6.3 Find a rectangular equation for a curve defined parametrically.
10.6.4 Find parametric equations for curves defined by rectangular equations.

Consider the path a moon follows as it orbits a planet, which simultaneously rotates around the sun, as seen in Figure
10.94. At any moment, the moon is located at a particular spot relative to the planet. But how do we write and solve the
equation for the position of the moon when the distance from the planet, the speed of the moon’s orbit around the planet,
and the speed of rotation around the sun are all unknowns? We can solve only for one variable at a time.

Figure 10.94

In this section, we will consider sets of equations given by  x(t)  and  y(t)  where t is the independent variable of time.

We can use these parametric equations in a number of applications when we are looking for not only a particular position
but also the direction of the movement. As we trace out successive values of  t,   the orientation of the curve becomes clear.
This is one of the primary advantages of using parametric equations: we are able to trace the movement of an object along
a path according to time. We begin this section with a look at the basic components of parametric equations and what it
means to parameterize a curve. Then we will learn how to eliminate the parameter, translate the equations of a curve defined
parametrically into rectangular equations, and find the parametric equations for curves defined by rectangular equations.

Parameterizing a Curve
When an object moves along a curve—or curvilinear path—in a given direction and in a given amount of time, the
position of the object in the plane is given by the x-coordinate and the y-coordinate. However, both  x  and  y  vary over

time and so are functions of time. For this reason, we add another variable, the parameter, upon which both  x  and  y  are

dependent functions. In the example in the section opener, the parameter is time,  t. The  x  position of the moon at time,
 t,   is represented as the function  x(t),   and the  y  position of the moon at time,  t,   is represented as the function  y(t). 
Together,  x(t)  and  y(t)  are called parametric equations, and generate an ordered pair  ⎛⎝x(t),  y(t)⎞

⎠.  Parametric equations

primarily describe motion and direction.
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When we parameterize a curve, we are translating a single equation in two variables, such as  x  and  y , into an equivalent

pair of equations in three variables,  x, y,   and  t. One of the reasons we parameterize a curve is because the parametric

equations yield more information: specifically, the direction of the object’s motion over time.

When we graph parametric equations, we can observe the individual behaviors of  x  and of  y. There are a number of

shapes that cannot be represented in the form  y = f (x),  meaning that they are not functions. For example, consider

the graph of a circle, given as  r2 = x2 + y2.  Solving for  y  gives  y = ± r2 − x2,   or two equations:  y1 = r2 − x2  and

 y2 = − r2 − x2.  If we graph  y1   and  y2   together, the graph will not pass the vertical line test, as shown in Figure

10.95. Thus, the equation for the graph of a circle is not a function.

Figure 10.95

However, if we were to graph each equation on its own, each one would pass the vertical line test and therefore would
represent a function. In some instances, the concept of breaking up the equation for a circle into two functions is similar to
the concept of creating parametric equations, as we use two functions to produce a non-function. This will become clearer
as we move forward.

Parametric Equations

Suppose  t  is a number on an interval,  I. The set of ordered pairs,  ⎛⎝x(t),   y(t)⎞
⎠,  where  x = f (t)  and  y = g(t), forms

a plane curve based on the parameter  t. The equations  x = f (t)  and  y = g(t)  are the parametric equations.

Example 10.45

Parameterizing a Curve

Parameterize the curve  y = x2 − 1  letting  x(t) = t. Graph both equations.

Solution
If  x(t) = t,   then to find  y(t) we replace the variable  x with the expression given in  x(t).  In other words,

 y(t) = t2 − 1. Make a table of values similar to Table 10.10, and sketch the graph.
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t x(t) y(t)

−4 −4 y(−4) = (−4)2 − 1 = 15

−3 −3 y(−3) = (−3)2 − 1 = 8

−2 −2 y(−2) = (−2)2 − 1 = 3

−1 −1 y(−1) = (−1)2 − 1 = 0

0 0 y(0) = (0)2 − 1 = − 1

1 1 y(1) = (1)2 − 1 = 0

2 2 y(2) = (2)2 − 1 = 3

3 3 y(3) = (3)2 − 1 = 8

4 4 y(4) = (4)2 − 1 = 15

Table 10.10

See the graphs in Figure 10.96. It may be helpful to use the TRACE feature of a graphing calculator to see how
the points are generated as  t  increases.

Figure 10.96 (a) Parametric  y(t) = t2 − 1  (b) Rectangular  y = x2 − 1

Analysis
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10.30

The arrows indicate the direction in which the curve is generated. Notice the curve is identical to the curve of
 y = x2 − 1.

Construct a table of values and plot the parametric equations:
 x(t) = t − 3,   y(t) = 2t + 4;    − 1 ≤ t ≤ 2.

Example 10.46

Finding a Pair of Parametric Equations

Find a pair of parametric equations that models the graph of  y = 1 − x2,   using the parameter  x(t) = t.  Plot

some points and sketch the graph.

Solution

If  x(t) = t  and we substitute  t  for  x  into the  y  equation, then  y(t) = 1 − t2. Our pair of parametric equations is

x(t) = t
y(t) = 1 − t2

To graph the equations, first we construct a table of values like that in Table 10.11. We can choose values
around  t = 0,   from  t = − 3  to  t = 3. The values in the  x(t)  column will be the same as those in the  t  column
because  x(t) = t. Calculate values for the column  y(t). 
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t x(t) = t y(t) = 1 − t2

−3 −3 y(−3) = 1 − (−3)2 = − 8

−2 −2 y(−2) = 1 − (−2)2 = − 3

−1 −1 y(−1) = 1 − (−1)2 = 0

0 0 y(0) = 1 − 0 = 1

1 1 y(1) = 1 − (1)2 = 0

2 2 y(2) = 1 − (2)2 = − 3

3 3 y(3) = 1 − (3)2 = − 8

Table 10.11

The graph of  y = 1 − t2   is a parabola facing downward, as shown in Figure 10.97. We have mapped the curve

over the interval  [−3,  3], shown as a solid line with arrows indicating the orientation of the curve according
to  t. Orientation refers to the path traced along the curve in terms of increasing values of  t. As this parabola is
symmetric with respect to the line  x = 0,   the values of  x  are reflected across the y-axis.
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10.31

Figure 10.97

Parameterize the curve given by  x = y3 − 2y.

Example 10.47

Finding Parametric Equations That Model Given Criteria

An object travels at a steady rate along a straight path  (−5,  3)  to  (3,  −1)  in the same plane in four seconds.
The coordinates are measured in meters. Find parametric equations for the position of the object.

Solution
The parametric equations are simple linear expressions, but we need to view this problem in a step-by-step
fashion. The x-value of the object starts at  −5 meters and goes to 3 meters. This means the distance x has changed

by 8 meters in 4 seconds, which is a rate of  8 m
4 s , or  2 m / s. We can write the x-coordinate as a linear function

with respect to time as  x(t) = 2t − 5.  In the linear function template  y = mx + b, 2t = mx  and  − 5 = b.

Similarly, the y-value of the object starts at 3 and goes to  −1,  which is a change in the distance y of −4 meters

in 4 seconds, which is a rate of  −4 m
4 s , or  − 1m / s. We can also write the y-coordinate as the linear function

 y(t) = − t + 3. Together, these are the parametric equations for the position of the object, where  x  and  y  are

expressed in meters and  t  represents time:
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x(t) = 2t − 5
y(t) = − t + 3

Using these equations, we can build a table of values for  t, x,   and  y (see Table 10.12). In this example, we

limited values of  t  to non-negative numbers. In general, any value of  t  can be used.

t x(t) = 2t − 5 y(t) = − t + 3

0 x = 2(0) − 5 = − 5 y = − (0) + 3 = 3

1 x = 2(1) − 5 = − 3 y = − (1) + 3 = 2

2 x = 2(2) − 5 = − 1 y = − (2) + 3 = 1

3 x = 2(3) − 5 = 1 y = − (3) + 3 = 0

4 x = 2(4) − 5 = 3 y = − (4) + 3 = − 1

Table 10.12

From this table, we can create three graphs, as shown in Figure 10.98.

Figure 10.98 (a) A graph of  x  vs.  t,   representing the horizontal position over time. (b) A graph of y vs.  t,   representing

the vertical position over time. (c) A graph of  y  vs.  x,   representing the position of the object in the plane at time  t.

Analysis
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Again, we see that, in Figure 10.98(c), when the parameter represents time, we can indicate the movement of
the object along the path with arrows.

Eliminating the Parameter
In many cases, we may have a pair of parametric equations but find that it is simpler to draw a curve if the equation involves
only two variables, such as  x  and  y. Eliminating the parameter is a method that may make graphing some curves easier.

However, if we are concerned with the mapping of the equation according to time, then it will be necessary to indicate
the orientation of the curve as well. There are various methods for eliminating the parameter  t  from a set of parametric
equations; not every method works for every type of equation. Here we will review the methods for the most common types
of equations.

Eliminating the Parameter from Polynomial, Exponential, and Logarithmic Equations
For polynomial, exponential, or logarithmic equations expressed as two parametric equations, we choose the equation that
is most easily manipulated and solve for  t. We substitute the resulting expression for  t  into the second equation. This gives
one equation in  x  and  y. 

Example 10.48

Eliminating the Parameter in Polynomials

Given  x(t) = t2 + 1  and  y(t) = 2 + t,   eliminate the parameter, and write the parametric equations as a

Cartesian equation.

Solution
We will begin with the equation for  y  because the linear equation is easier to solve for  t.

          y = 2 + t
y − 2 = t

Next, substitute  y − 2  for  t  in  x(t).

x = t2 + 1
x = (y − 2)2 + 1 Substitute the expression for t into x.

x = y2 − 4y + 4 + 1

x = y2 − 4y + 5

x = y2 − 4y + 5

The Cartesian form is  x = y2 − 4y + 5.

Analysis
This is an equation for a parabola in which, in rectangular terms,  x  is dependent on  y.  From the curve’s vertex at

 (1, 2),   the graph sweeps out to the right. See Figure 10.99. In this section, we consider sets of equations given
by the functions  x(t)  and  y(t),  where  t  is the independent variable of time. Notice, both  x  and  y  are functions

of time; so in general  y  is not a function of  x.
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Figure 10.99

Given the equations below, eliminate the parameter and write as a rectangular equation for  y  as a

function
of  x.

x(t) = 2t2 + 6
y(t) = 5 − t

Example 10.49

Eliminating the Parameter in Exponential Equations

Eliminate the parameter and write as a Cartesian equation:  x(t) = e−t   and  y(t) = 3et,   t > 0. 

Solution

Isolate  et.

  x = e−t

et = 1
x

Substitute the expression into  y(t).

y = 3et

y = 3⎛
⎝
1
x

⎞
⎠

y = 3
x

The Cartesian form is  y = 3
x .

Analysis
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The graph of the parametric equation is shown in Figure 10.100(a). The domain is restricted to  t > 0. The

Cartesian equation,  y = 3
x   is shown in Figure 10.100(b) and has only one restriction on the domain,  x ≠ 0.

Figure 10.100

Example 10.50

Eliminating the Parameter in Logarithmic Equations

Eliminate the parameter and write as a Cartesian equation:  x(t) = t + 2  and  y(t) = log(t).

Solution
Solve the first equation for  t.

           x = t + 2
    x − 2 = t
(x − 2)2 = t Square both sides.

Then, substitute the expression for t into the y equation.

y = log(t)
y = log(x − 2)2

The Cartesian form is  y = log(x − 2)2.

Analysis
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To be sure that the parametric equations are equivalent to the Cartesian equation, check the domains. The
parametric equations restrict the domain on  x = t + 2  to  t > 0; we restrict the domain on  x  to  x > 2. The

domain for the parametric equation  y = log(t)  is restricted to  t > 0; we limit the domain on  y = log(x − 2)2  
to  x > 2.

Eliminate the parameter and write as a rectangular equation.

x(t) = t2

y(t) = ln t        t > 0

Eliminating the Parameter from Trigonometric Equations
Eliminating the parameter from trigonometric equations is a straightforward substitution. We can use a few of the familiar
trigonometric identities and the Pythagorean Theorem.

First, we use the identities:
x(t) = acos t
y(t) = bsin t

Solving for  cos t  and  sin t,  we have

x
a = cos t
y
b = sin t

Then, use the Pythagorean Theorem:

cos2 t + sin2 t = 1

Substituting gives

cos2 t + sin2 t = ⎛
⎝
x
a

⎞
⎠
2

+ ⎛
⎝
y
b

⎞
⎠

2
= 1

Example 10.51

Eliminating the Parameter from a Pair of Trigonometric Parametric Equations

Eliminate the parameter from the given pair of trigonometric equations where  0 ≤ t ≤ 2π  and sketch the graph.

x(t) = 4cos t
y(t) = 3sin t

Solution
Solving for  cos t  and  sin t, we have

 x = 4cos t
x
4 = cos t
 y = 3sin t
y
3 = sin t
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10.34

Next, use the Pythagorean identity and make the substitutions.

cos2 t + sin2 t = 1
⎛
⎝
x
4

⎞
⎠
2

+ ⎛
⎝
y
3

⎞
⎠

2
= 1

x2

16 + y2

9 = 1

The graph for the equation is shown in Figure 10.101.

Figure 10.101

Analysis
Applying the general equations for conic sections (introduced in Analytic Geometry, we can identify

 x2

16 + y2

9 = 1  as an ellipse centered at  (0, 0). Notice that when  t = 0  the coordinates are  (4, 0),   and when

 t = π
2   the coordinates are  (0, 3). This shows the orientation of the curve with increasing values of  t.

Eliminate the parameter from the given pair of parametric equations and write as a Cartesian equation:
 x(t) = 2cos t  and  y(t) = 3sin t.

Finding Cartesian Equations from Curves Defined Parametrically
When we are given a set of parametric equations and need to find an equivalent Cartesian equation, we are essentially
“eliminating the parameter.” However, there are various methods we can use to rewrite a set of parametric equations as a
Cartesian equation. The simplest method is to set one equation equal to the parameter, such as  x(t) = t.  In this case,  y(t) 
can be any expression. For example, consider the following pair of equations.

x(t) = t
y(t) = t2 − 3

Rewriting this set of parametric equations is a matter of substituting  x  for  t. Thus, the Cartesian equation is  y = x2 − 3.

Example 10.52
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Finding a Cartesian Equation Using Alternate Methods

Use two different methods to find the Cartesian equation equivalent to the given set of parametric equations.

x(t) = 3t − 2
y(t) = t + 1

Solution
Method 1. First, let’s solve the  x  equation for  t. Then we can substitute the result into the y equation.

       x = 3t − 2
 x + 2 = 3t
x + 2

3 = t

Now substitute the expression for  t  into the  y  equation.

y = t + 1

y = ⎛
⎝
x + 2

3
⎞
⎠ + 1

y = x
3 + 2

3 + 1

y = 1
3x + 5

3

Method 2. Solve the  y  equation for  t  and substitute this expression in the  x  equation.

      y = t + 1
y − 1 = t

Make the substitution and then solve for  y.

       x = 3(y − 1) − 2
       x = 3y − 3 − 2
       x = 3y − 5
 x + 5 = 3y
x + 5

3 = y

       y = 1
3x + 5

3

Write the given parametric equations as a Cartesian equation:  x(t) = t3   and  y(t) = t6.

Finding Parametric Equations for Curves Defined by Rectangular
Equations
Although we have just shown that there is only one way to interpret a set of parametric equations as a rectangular equation,
there are multiple ways to interpret a rectangular equation as a set of parametric equations. Any strategy we may use to find
the parametric equations is valid if it produces equivalency. In other words, if we choose an expression to represent  x,
and then substitute it into the  y  equation, and it produces the same graph over the same domain as the rectangular equation,

then the set of parametric equations is valid. If the domain becomes restricted in the set of parametric equations, and the
function does not allow the same values for  x  as the domain of the rectangular equation, then the graphs will be different.
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Example 10.53

Finding a Set of Parametric Equations for Curves Defined by Rectangular
Equations

Find a set of equivalent parametric equations for  y = (x + 3)2 + 1.

Solution

An obvious choice would be to let  x(t) = t. Then  y(t) = (t + 3)2 + 1. But let’s try something more interesting.

What if we let  x = t + 3?  Then we have

y = (x + 3)2 + 1

y = ((t + 3) + 3)2 + 1

y = (t + 6)2 + 1

The set of parametric equations is

x(t) = t + 3
y(t) = (t + 6)2 + 1

See Figure 10.102.

Figure 10.102

Access these online resources for additional instruction and practice with parametric equations.

• Introduction to Parametric Equations (http://openstaxcollege.org/l/introparametric)

• Converting Parametric Equations to Rectangular Form (http://openstaxcollege.org/l/
convertpara)
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10.6 EXERCISES
Verbal

What is a system of parametric equations?

Some examples of a third parameter are time, length,
speed, and scale. Explain when time is used as a parameter.

Explain how to eliminate a parameter given a set of
parametric equations.

What is a benefit of writing a system of parametric
equations as a Cartesian equation?

What is a benefit of using parametric equations?

Why are there many sets of parametric equations to
represent on Cartesian function?

Algebraic
For the following exercises, eliminate the parameter  t  to
rewrite the parametric equation as a Cartesian equation.

⎧

⎩
⎨
x(t) = 5 − t
y(t) = 8 − 2t

⎧

⎩
⎨
x(t) = 6 − 3t
y(t) = 10 − t

⎧

⎩
⎨
x(t) = 2t + 1
y(t) = 3 t

⎧

⎩
⎨

x(t) = 3t − 1
y(t) = 2t2

⎧

⎩
⎨x(t) = 2et

y(t) = 1 − 5t

⎧

⎩
⎨x(t) = e−2t

y(t) = 2e−t

⎧

⎩
⎨
x(t) = 4log(t)
y(t) = 3 + 2t

⎧

⎩
⎨

x(t) = log(2t)
y(t) = t − 1

⎧

⎩
⎨x(t) = t3 − t

y(t) = 2t

⎧

⎩
⎨x(t) = t − t4

y(t) = t + 2

⎧

⎩
⎨x(t) = e2t

y(t) = e6t

⎧

⎩
⎨x(t) = t5

y(t) = t10

⎧

⎩
⎨
x(t) = 4cos t
y(t) = 5sin t

⎧

⎩
⎨
x(t) = 3sin t
y(t) = 6cos t

⎧

⎩
⎨x(t) = 2cos2 t

y(t) = − sin t

⎧

⎩
⎨

x(t) = cos t + 4
y(t) = 2sin2 t

⎧

⎩
⎨

x(t) = t − 1
y(t) = t2

⎧

⎩
⎨

x(t) = − t

y(t) = t3 + 1

⎧

⎩
⎨

x(t) = 2t − 1
y(t) = t3 − 2

For the following exercises, rewrite the parametric equation
as a Cartesian equation by building an x-y table.

⎧

⎩
⎨
x(t) = 2t − 1
y(t) = t + 4

⎧

⎩
⎨
x(t) = 4 − t
y(t) = 3t + 2

⎧

⎩
⎨
x(t) = 2t − 1
y(t) = 5t

⎧

⎩
⎨
x(t) = 4t − 1
y(t) = 4t + 2

For the following exercises, parameterize (write parametric
equations for) each Cartesian equation by setting x(t) = t
or by setting  y(t) = t.

y(x) = 3x2 + 3
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411.

412.

413.

414.

415.

416.

417.

418.

419.

420.

421.

y(x) = 2sin x + 1

x(y) = 3log(y) + y

x(y) = y + 2y

For the following exercises, parameterize (write parametric
equations for) each Cartesian equation by using
x(t) = acos t and  y(t) = bsin t.  Identify the curve.

x2

4 + y2

9 = 1

x2

16 + y2

36 = 1

x2 + y2 = 16

x2 + y2 = 10

Parameterize the line from  (3, 0)  to  (−2, −5)  so
that the line is at  (3, 0)  at  t = 0,   and at  (−2, −5)  at
 t = 1.

Parameterize the line from  (−1, 0)  to  (3, −2)  so
that the line is at  (−1, 0)  at  t = 0,   and at  (3, −2)  at
 t = 1.

Parameterize the line from  (−1, 5)  to  (2, 3) so that
the line is at  (−1, 5)  at  t = 0,   and at  (2, 3)  at  t = 1.

Parameterize the line from  (4, 1)  to  (6, −2)  so that
the line is at  (4, 1)  at  t = 0,   and at  (6, −2)  at  t = 1.

Technology
For the following exercises, use the table feature in the
graphing calculator to determine whether the graphs
intersect.

⎧

⎩
⎨

x1(t) = 3t
y1(t) = 2t − 1

 and 
⎧

⎩
⎨

x2(t) = t + 3
y2(t) = 4t − 4

⎧

⎩
⎨x1(t) = t2

y1(t) = 2t − 1
 and 

⎧

⎩
⎨

x2(t) = − t + 6
y2(t) = t + 1

For the following exercises, use a graphing calculator to
complete the table of values for each set of parametric
equations.

⎧

⎩
⎨x1 (t) = 3t2 − 3t + 7

y1 (t) = 2t + 3

t x y

–1

0

1

⎧

⎩
⎨

x1 (t) = t2 − 4

y1 (t) = 2t2 − 1

t x y

1

2

3

⎧

⎩
⎨

x1 (t) = t4

y1 (t) = t3 + 4

t x y

-1

0

1

2

Extensions

Find two different sets of parametric equations for
 y = (x + 1)2.

Find two different sets of parametric equations for
 y = 3x − 2.

Find two different sets of parametric equations for
 y = x2 − 4x + 4.

Chapter 10 Further Applications of Trigonometry 1163



10.7 | Parametric Equations: Graphs

Learning Objectives

In this section you will:

10.7.1 Graph plane curves described by parametric equations by plotting points.
10.7.2 Graph parametric equations.

It is the bottom of the ninth inning, with two outs and two men on base. The home team is losing by two runs. The batter
swings and hits the baseball at 140 feet per second and at an angle of approximately  45°  to the horizontal. How far will
the ball travel? Will it clear the fence for a game-winning home run? The outcome may depend partly on other factors
(for example, the wind), but mathematicians can model the path of a projectile and predict approximately how far it will
travel using parametric equations. In this section, we’ll discuss parametric equations and some common applications, such
as projectile motion problems.

Figure 10.103 Parametric equations can model the path of a
projectile. (credit: Paul Kreher, Flickr)

Graphing Parametric Equations by Plotting Points
In lieu of a graphing calculator or a computer graphing program, plotting points to represent the graph of an equation is the
standard method. As long as we are careful in calculating the values, point-plotting is highly dependable.

Given a pair of parametric equations, sketch a graph by plotting points.

1. Construct a table with three columns:  t, x(t), and  y(t).

2. Evaluate x and y for values of t over the interval for which the functions are defined.

3. Plot the resulting pairs  (x, y).

Example 10.54

Sketching the Graph of a Pair of Parametric Equations by Plotting Points

Sketch the graph of the parametric equations x(t) = t2 + 1,   y(t) = 2 + t.

Solution
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Construct a table of values for  t, x(t),   and  y(t),   as in Table 10.13, and plot the points in a plane.

t x(t) = t2 + 1 y(t) = 2 + t

−5 26 −3

−4 17 −2

−3 10 −1

−2 5 0

−1 2 1

0 1 2

1 2 3

2 5 4

3 10 5

4 17 6

5 26 7

Table 10.13

The graph is a parabola with vertex at the point  (1, 2), opening to the right. See Figure 10.104.
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10.36

Figure 10.104

Analysis
As values for  t  progress in a positive direction from 0 to 5, the plotted points trace out the top half of the
parabola. As values of  t  become negative, they trace out the lower half of the parabola. There are no restrictions
on the domain. The arrows indicate direction according to increasing values of  t. The graph does not represent
a function, as it will fail the vertical line test. The graph is drawn in two parts: the positive values for t, and the
negative values for t.

Sketch the graph of the parametric equations  x = t,   y = 2t + 3,    0 ≤ t ≤ 3.

Example 10.55

Sketching the Graph of Trigonometric Parametric Equations

Construct a table of values for the given parametric equations and sketch the graph:

x = 2cos t
y = 4sin t

Solution
Construct a table like that in Table 10.14 using angle measure in radians as inputs for  t,   and evaluating  x  and
 y. Using angles with known sine and cosine values for  t makes calculations easier.
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t x = 2cos t y = 4sin t

0 x = 2cos(0) = 2 y = 4sin(0) = 0

π
6 x = 2cos⎛

⎝
π
6

⎞
⎠ = 3 y = 4sin⎛

⎝
π
6

⎞
⎠ = 2

π
3 x = 2cos⎛

⎝
π
3

⎞
⎠ = 1 y = 4sin⎛

⎝
π
3

⎞
⎠ = 2 3

π
2 x = 2cos⎛

⎝
π
2

⎞
⎠ = 0 y = 4sin⎛

⎝
π
2

⎞
⎠ = 4

2π
3 x = 2cos⎛

⎝
2π
3

⎞
⎠ = − 1 y = 4sin⎛

⎝
2π
3

⎞
⎠ = 2 3

5π
6 x = 2cos⎛

⎝
5π
6

⎞
⎠ = − 3 y = 4sin⎛

⎝
5π
6

⎞
⎠ = 2

π x = 2cos(π) = − 2 y = 4sin(π) = 0

7π
6 x = 2cos⎛

⎝
7π
6

⎞
⎠ = − 3 y = 4sin⎛

⎝
7π
6

⎞
⎠ = − 2

4π
3 x = 2cos⎛

⎝
4π
3

⎞
⎠ = − 1 y = 4sin⎛

⎝
4π
3

⎞
⎠ = − 2 3

3π
2 x = 2cos⎛

⎝
3π
2

⎞
⎠ = 0 y = 4sin⎛

⎝
3π
2

⎞
⎠ = − 4

5π
3 x = 2cos⎛

⎝
5π
3

⎞
⎠ = 1 y = 4sin⎛

⎝
5π
3

⎞
⎠ = − 2 3

11π
6 x = 2cos⎛

⎝
11π

6
⎞
⎠ = 3 y = 4sin⎛

⎝
11π

6
⎞
⎠ = − 2

2π x = 2cos(2π) = 2 y = 4sin(2π) = 0

Table 10.14

Figure 10.105 shows the graph.
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10.37

Figure 10.105

By the symmetry shown in the values of x and  y,  we see that the parametric equations represent an ellipse.

The ellipse is mapped in a counterclockwise direction as shown by the arrows indicating increasing  t  values.

Analysis
We have seen that parametric equations can be graphed by plotting points. However, a graphing calculator will
save some time and reveal nuances in a graph that may be too tedious to discover using only hand calculations.

Make sure to change the mode on the calculator to parametric (PAR). To confirm, the  Y =  window should show

X1T =
Y1T =

instead of  Y1 = .

Graph the parametric equations:  x = 5cos t,   y = 3sin t.

Example 10.56

Graphing Parametric Equations and Rectangular Form Together

Graph the parametric equations  x = 5cos t  and  y = 2sin t.  First, construct the graph using data points generated

from the parametric form. Then graph the rectangular form of the equation. Compare the two graphs.

Solution
Construct a table of values like that in Table 10.15.
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t x = 5cos t y = 2sin t

0 x = 5cos(0) = 5 y = 2sin(0) = 0

1 x = 5cos(1) ≈ 2.7 y = 2sin(1) ≈ 1.7

2 x = 5cos(2) ≈ −2.1 y = 2sin(2) ≈ 1.8

3 x = 5cos(3) ≈ −4.95 y = 2sin(3) ≈ 0.28

4 x = 5cos(4) ≈ −3.3 y = 2sin(4) ≈ −1.5

5 x = 5cos(5) ≈ 1.4 y = 2sin(5) ≈ −1.9

−1 x = 5cos(−1) ≈ 2.7 y = 2sin(−1) ≈ −1.7

−2 x = 5cos(−2) ≈ −2.1 y = 2sin(−2) ≈ −1.8

−3 x = 5cos(−3) ≈ −4.95 y = 2sin(−3) ≈ −0.28

−4 x = 5cos(−4) ≈ −3.3 y = 2sin(−4) ≈ 1.5

−5 x = 5cos(−5) ≈ 1.4 y = 2sin(−5) ≈ 1.9

Table 10.15

Plot the  (x, y)  values from the table. See Figure 10.106.
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Figure 10.106

Next, translate the parametric equations to rectangular form. To do this, we solve for  t  in either  x(t)  or  y(t),  
and then substitute the expression for  t  in the other equation. The result will be a function y(x) if solving for  t
as a function of  x,   or  x(y) if solving for  t  as a function of  y.

 x = 5cos t
x
5 = cos t Solve for cos t.
 y = 2sin t Solve for sin t.
y
2 = sin t

Then, use the Pythagorean Theorem.

cos2 t + sin2 t = 1
⎛
⎝
x
5

⎞
⎠

2
+ ⎛

⎝
y
2

⎞
⎠
2

= 1

x2

25 + y2

4 = 1

Analysis
In Figure 10.107, the data from the parametric equations and the rectangular equation are plotted together. The
parametric equations are plotted in blue; the graph for the rectangular equation is drawn on top of the parametric
in a dashed style colored red. Clearly, both forms produce the same graph.

Figure 10.107
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10.38

Example 10.57

Graphing Parametric Equations and Rectangular Equations on the Coordinate
System

Graph the parametric equations  x = t + 1  and  y = t,   t ≥ 0,   and the rectangular equivalent y = x − 1  on

the same coordinate system.

Solution
Construct a table of values for the parametric equations, as we did in the previous example, and graph
 y = t,   t ≥ 0  on the same grid, as in Figure 10.108.

Figure 10.108

Analysis
With the domain on  t  restricted, we only plot positive values of  t. The parametric data is graphed in blue and the
graph of the rectangular equation is dashed in red. Once again, we see that the two forms overlap.

Sketch the graph of the parametric equations  x = 2cos θ   and  y = 4sin θ,   along with the rectangular

equation on the same grid.

Applications of Parametric Equations
Many of the advantages of parametric equations become obvious when applied to solving real-world problems. Although
rectangular equations in x and y give an overall picture of an object's path, they do not reveal the position of an object at a
specific time. Parametric equations, however, illustrate how the values of x and y change depending on t, as the location of
a moving object at a particular time.

A common application of parametric equations is solving problems involving projectile motion. In this type of motion, an
object is propelled forward in an upward direction forming an angle of θ to the horizontal, with an initial speed of v0,  
and at a height h above the horizontal.

The path of an object propelled at an inclination of θ to the horizontal, with initial speed v0,   and at a height h above the

horizontal, is given by

x = (v0 cosθ)t  

y = − 1
2gt2 + (v0 sinθ)t + h
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where  g  accounts for the effects of gravity and h is the initial height of the object. Depending on the units involved in the

problem, use  g = 32 ft / s2   or  g = 9.8 m / s2. The equation for  x  gives horizontal distance, and the equation for  y  gives

the vertical distance.

Given a projectile motion problem, use parametric equations to solve.

1. The horizontal distance is given by  x = ⎛
⎝v0 cos θ⎞

⎠t.  Substitute the initial speed of the object for  v0.

2. The expression  cos θ  indicates the angle at which the object is propelled. Substitute that angle in degrees
for  cos θ.

3. The vertical distance is given by the formula  y = − 1
2gt2 + ⎛

⎝v0 sin θ⎞
⎠t + h. The term  − 1

2gt2   represents

the effect of gravity. Depending on units involved, use  g = 32 ft/s2   or  g = 9.8 m/s2. Again, substitute

the initial speed for  v0,   and the height at which the object was propelled for  h.

4. Proceed by calculating each term to solve for  t.

Example 10.58

Finding the Parametric Equations to Describe the Motion of a Baseball

Solve the problem presented at the beginning of this section. Does the batter hit the game-winning home run?
Assume that the ball is hit with an initial velocity of 140 feet per second at an angle of  45°  to the horizontal,
making contact 3 feet above the ground.

a. Find the parametric equations to model the path of the baseball.

b. Where is the ball after 2 seconds?

c. How long is the ball in the air?

d. Is it a home run?

Solution
a. Use the formulas to set up the equations. The horizontal position is found using the parametric equation

for  x. Thus,

x = (v0 cos θ)t
x = (140cos(45°))t

The vertical position is found using the parametric equation for  y. Thus,

y = − 16t2 + (v0 sin θ)t + h

y = − 16t2 + (140sin(45°))t + 3
b. Substitute 2 into the equations to find the horizontal and vertical positions of the ball.

x = (140cos(45°))(2)
x = 198 feet

y = − 16(2)2 + (140sin(45°))(2) + 3
y = 137 feet

After 2 seconds, the ball is 198 feet away from the batter’s box and 137 feet above the ground.
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c. To calculate how long the ball is in the air, we have to find out when it will hit ground, or when  y = 0. 
Thus,

y = − 16t2 + ⎛
⎝140sin(45∘)⎞

⎠t + 3
y = 0 Set y(t) = 0 and solve the quadratic.
t = 6.2173

When  t = 6.2173  seconds, the ball has hit the ground. (The quadratic equation can be solved in various
ways, but this problem was solved using a computer math program.)

d. We cannot confirm that the hit was a home run without considering the size of the outfield, which varies
from field to field. However, for simplicity’s sake, let’s assume that the outfield wall is 400 feet from
home plate in the deepest part of the park. Let’s also assume that the wall is 10 feet high. In order to
determine whether the ball clears the wall, we need to calculate how high the ball is when x = 400 feet.
So we will set x = 400, solve for t,   and input t into  y. 

    x = ⎛
⎝140cos(45°)⎞

⎠t
400 = ⎛

⎝140cos(45°)⎞
⎠t

     t = 4.04

    y = − 16(4.04)2 + ⎛
⎝140sin(45°)⎞

⎠(4.04) + 3
    y = 141.8

The ball is 141.8 feet in the air when it soars out of the ballpark. It was indeed a home run. See Figure
10.109.

Figure 10.109

Access the following online resource for additional instruction and practice with graphs of parametric equations.

• Graphing Parametric Equations on the TI-84 (http://openstaxcollege.org/l/graphpara84)
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422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

10.7 EXERCISES
Verbal

What are two methods used to graph parametric
equations?

What is one difference in point-plotting parametric
equations compared to Cartesian equations?

Why are some graphs drawn with arrows?

Name a few common types of graphs of parametric
equations.

Why are parametric graphs important in
understanding projectile motion?

Graphical
For the following exercises, graph each set of parametric
equations by making a table of values. Include the
orientation on the graph.

⎧

⎩
⎨

x(t) = t
y(t) = t2 − 1

t x y

−3

−2

−1

0

1

2

3

⎧

⎩
⎨

x(t) = t − 1
y(t) = t2

t −3 −2 −1 0 1 2

x

y

⎧

⎩
⎨
x(t) = 2 + t
y(t) = 3 − 2t

t −2 −1 0 1 2 3

x

y

⎧

⎩
⎨
x(t) = − 2 − 2t
y(t) = 3 + t

t −3 −2 −1 0 1

x

y

⎧

⎩
⎨x(t) = t3

y(t) = t + 2

t −2 −1 0 1 2

x

y
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432.

433.

434.

435.

436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

446.

447.

448.

449.

450.

451.

452.

453.

454.

455.

456.

457.

458.

459.

460.

⎧

⎩
⎨x(t) = t2

y(t) = t + 3

t −2 −1 0 1 2

x

y

For the following exercises, sketch the curve and include
the orientation.

⎧

⎩
⎨
x(t) = t
y(t) = t

⎧

⎩
⎨
x(t) = −   t
y(t) = t

⎧

⎩
⎨
x(t) = 5 − |t|
y(t) = t + 2

⎧

⎩
⎨
x(t) = − t + 2
y(t) = 5 − |t|

⎧

⎩
⎨
x(t) = 4sin t
y(t) = 2cos t

⎧

⎩
⎨
x(t) = 2sin t
y(t) = 4cos t

⎧

⎩
⎨x(t) = 3cos2 t

y(t) = −3sin t

⎧

⎩
⎨x(t) = 3cos2 t

y(t) = −3sin2 t

⎧

⎩
⎨
x(t) = sec t
y(t) = tan t

⎧

⎩
⎨

x(t) = sec t
y(t) = tan2 t

⎧

⎩
⎨

x(t) = 1
e2t

y(t) = e− t

For the following exercises, graph the equation and include
the orientation. Then, write the Cartesian equation.

⎧

⎩
⎨

x(t) = t − 1
y(t) = − t2

⎧

⎩
⎨x(t) = t3

y(t) = t + 3

⎧

⎩
⎨
x(t) = 2cos t
y(t) = − sin t

⎧

⎩
⎨
x(t) = 7cos t
y(t) = 7sin t

⎧

⎩
⎨x(t) = e2t

y(t) = − e  t

For the following exercises, graph the equation and include
the orientation.

x = t2,  y  =  3t,  0 ≤ t ≤ 5

x = 2t,  y  =   t2,  − 5 ≤ t ≤ 5

x = t,  y = 25 − t2,  0 < t ≤ 5

x(t) = − t, y(t) = t,  t ≥ 0

x = − 2cos t,  y = 6 sin t,  0 ≤ t ≤ π

x = − sec t,  y = tan t,  −  π
2 < t < π

2

For the following exercises, use the parametric equations
for integers a and b:

x(t) = acos((a + b)t)
y(t) = acos((a − b)t)

Graph on the domain  [−π, 0],  where  a = 2  and
 b = 1,   and include the orientation.

Graph on the domain  [−π, 0],  where  a = 3  and
 b = 2 , and include the orientation.

Graph on the domain  [−π, 0],  where  a = 4  and
 b = 3 , and include the orientation.

Graph on the domain  [−π, 0],  where  a = 5  and
 b = 4 , and include the orientation.

If  a  is 1 more than  b,   describe the effect the values
of  a  and  b  have on the graph of the parametric equations.

Describe the graph if  a = 100  and  b = 99.
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461.

462.

463.

464.

465.

466.

467.

468.

469.

470.

471.

472.

473.

474.

475.

476.

What happens if  b  is 1 more than  a?  Describe the
graph.

If the parametric equations  x(t) = t2   and
 y(t) = 6 − 3t  have the graph of a horizontal parabola

opening to the right, what would change the direction of the
curve?

For the following exercises, describe the graph of the set of
parametric equations.

x(t) = − t2   and  y(t)  is linear

y(t) = t2   and  x(t)  is linear

y(t) = − t2   and  x(t)  is linear

Write the parametric equations of a circle with center
 (0, 0), radius 5, and a counterclockwise orientation.

Write the parametric equations of an ellipse with
center  (0, 0), major axis of length 10, minor axis of length
6, and a counterclockwise orientation.

For the following exercises, use a graphing utility to graph
on the window  [−3, 3]  by  [−3, 3]  on the domain
 [0, 2π)  for the following values of  a  and  b , and include
the orientation.

⎧

⎩
⎨
x(t) = sin(at)
y(t) = sin(bt)

a = 1, b = 2

a = 2, b = 1

a = 3, b = 3

a = 5, b = 5

a = 2, b = 5

a = 5, b = 2

Technology
For the following exercises, look at the graphs that were
created by parametric equations of the form

 
⎧

⎩
⎨
x(t) = acos(bt)
y(t) = csin(dt) . Use the parametric mode on the

graphing calculator to find the values of a, b, c, and d
to achieve each graph.
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477.

478.

479.

480.

481.

482.

483.

484.

485.

486.

487.

488.

489.

490.

491.

492.

493.

494.

For the following exercises, use a graphing utility to graph
the given parametric equations.

a.
⎧

⎩
⎨
x(t) = cost − 1
y(t) = sint + t

b.
⎧

⎩
⎨
x(t) = cost + t
y(t) = sint − 1

c.
⎧

⎩
⎨
x(t) = t − sint
y(t) = cost − 1

Graph all three sets of parametric equations on the
domain  [0,  2π].

Graph all three sets of parametric equations on the
domain  [0, 4π].

Graph all three sets of parametric equations on the
domain  ⎡⎣−4π, 6π⎤

⎦.

The graph of each set of parametric equations appears
to “creep” along one of the axes. What controls which axis
the graph creeps along?

Explain the effect on the graph of the parametric
equation when we switched  sin t  and  cos t .

Explain the effect on the graph of the parametric
equation when we changed the domain.

Extensions

An object is thrown in the air with vertical velocity of
20 ft/s and horizontal velocity of 15 ft/s. The object’s height
can be described by the equation  y(t) = − 16t2 + 20t ,

while the object moves horizontally with constant velocity
15 ft/s. Write parametric equations for the object’s position,

and then eliminate time to write height as a function of
horizontal position.

A skateboarder riding on a level surface at a constant
speed of 9 ft/s throws a ball in the air, the height of which
can be described by the equation
 y(t) = − 16t2 + 10t + 5. Write parametric equations for

the ball’s position, and then eliminate time to write height
as a function of horizontal position.

For the following exercises, use this scenario: A dart is
thrown upward with an initial velocity of 65 ft/s at an angle
of elevation of 52°. Consider the position of the dart at any
time  t. Neglect air resistance.

Find parametric equations that model the problem
situation.

Find all possible values of  x  that represent the
situation.

When will the dart hit the ground?

Find the maximum height of the dart.

At what time will the dart reach maximum height?

For the following exercises, look at the graphs of each of
the four parametric equations. Although they look unusual
and beautiful, they are so common that they have names, as
indicated in each exercise. Use a graphing utility to graph
each on the indicated domain.

An epicycloid:  
⎧

⎩
⎨
x(t) = 14cos t − cos(14t)
y(t) = 14sin t + sin(14t)   on the

domain  [0, 2π] .

A hypocycloid:
⎧

⎩
⎨
x(t) = 6sin t + 2sin(6t)
y(t) = 6cos t − 2cos(6t)

  on the

domain  [0, 2π] .

A hypotrochoid:
⎧

⎩
⎨
x(t) = 2sin t + 5cos(6t)
y(t) = 5cos t − 2sin(6t)

  on the

domain  [0, 2π] .

A rose:  
⎧

⎩
⎨
x(t) = 5sin(2t)sint
y(t) = 5sin(2t)cost

  on the domain  [0, 2π] .
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10.8 | Vectors

Learning Objectives

In this section you will:

10.8.1 View vectors geometrically.
10.8.2 Find magnitude and direction.
10.8.3 Perform vector addition and scalar multiplication.
10.8.4 Find the component form of a vector.
10.8.5 Find the unit vector in the direction of v .

10.8.6 Perform operations with vectors in terms of i and j .

10.8.7 Find the dot product of two vectors.

An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind (from north to
south) is blowing at 16.2 miles per hour, as shown in Figure 10.110. What are the ground speed and actual bearing of the
plane?

Figure 10.110

Ground speed refers to the speed of a plane relative to the ground. Airspeed refers to the speed a plane can travel relative
to its surrounding air mass. These two quantities are not the same because of the effect of wind. In an earlier section, we
used triangles to solve a similar problem involving the movement of boats. Later in this section, we will find the airplane’s
groundspeed and bearing, while investigating another approach to problems of this type. First, however, let’s examine the
basics of vectors.

A Geometric View of Vectors
A vector is a specific quantity drawn as a line segment with an arrowhead at one end. It has an initial point, where it
begins, and a terminal point, where it ends. A vector is defined by its magnitude, or the length of the line, and its direction,
indicated by an arrowhead at the terminal point. Thus, a vector is a directed line segment. There are various symbols that
distinguish vectors from other quantities:

• Lower case, boldfaced type, with or without an arrow on top such as v,   u,   w,    v→ ,    u→ ,   w→ .
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• Given initial point  P  and terminal point  Q,   a vector can be represented as  PQ
→  .  The arrowhead on top is what

indicates that it is not just a line, but a directed line segment.

• Given an initial point of  (0, 0)  and terminal point  (a, b),   a vector may be represented as 〈 a, b 〉 .

This last symbol 〈 a, b 〉 has special significance. It is called the standard position. The position vector has an initial

point (0, 0)  and a terminal point 〈 a, b 〉 . To change any vector into the position vector, we think about the change in the

x-coordinates and the change in the y-coordinates. Thus, if the initial point of a vector  CD
→   is  C(x1, y1)  and the terminal

point is  D(x2, y2),   then the position vector is found by calculating

AB
→   =   〈 x2 − x1, y2 − y1 〉
           =   〈 a, b 〉

In Figure 10.111, we see the original vector  CD
→   and the position vector  AB

→
.

Figure 10.111

Properties of Vectors

A vector is a directed line segment with an initial point and a terminal point. Vectors are identified by magnitude, or the
length of the line, and direction, represented by the arrowhead pointing toward the terminal point. The position vector
has an initial point at  (0, 0)  and is identified by its terminal point 〈 a, b 〉 .

Example 10.59

Find the Position Vector

Consider the vector whose initial point is  P(2, 3)  and terminal point is  Q(6, 4).  Find the position vector.

Solution
The position vector is found by subtracting one x-coordinate from the other x-coordinate, and one y-coordinate
from the other y-coordinate. Thus

v = 〈 6 − 2, 4 − 3 〉
    = 〈 4, 1 〉

The position vector begins at  (0, 0)  and terminates at  (4, 1). The graphs of both vectors are shown in Figure
10.112.
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Figure 10.112

We see that the position vector is 〈 4, 1 〉 .

Example 10.60

Drawing a Vector with the Given Criteria and Its Equivalent Position Vector

Find the position vector given that vector  v  has an initial point at  (−3, 2)  and a terminal point at  (4, 5),   then
graph both vectors in the same plane.

Solution
The position vector is found using the following calculation:

v = 〈 4 − ( − 3), 5 − 2 〉
= 〈 7, 3 〉

Thus, the position vector begins at  (0, 0)  and terminates at  (7, 3).  See Figure 10.113.

Figure 10.113
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10.39 Draw a vector  v  that connects from the origin to the point  (3, 5).

Finding Magnitude and Direction
To work with a vector, we need to be able to find its magnitude and its direction. We find its magnitude using the
Pythagorean Theorem or the distance formula, and we find its direction using the inverse tangent function.

Magnitude and Direction of a Vector

Given a position vector  v = 〈 a, b 〉 , the magnitude is found by |v| = a2 + b2. The direction is equal to the angle

formed with the x-axis, or with the y-axis, depending on the application. For a position vector, the direction is found
by  tan θ = ⎛

⎝
b
a

⎞
⎠ ⇒ θ = tan−1 ⎛

⎝
b
a

⎞
⎠,   as illustrated in Figure 10.114.

Figure 10.114

Two vectors v and u are considered equal if they have the same magnitude and the same direction. Additionally, if both
vectors have the same position vector, they are equal.

Example 10.61

Finding the Magnitude and Direction of a Vector

Find the magnitude and direction of the vector with initial point  P(−8, 1)  and terminal point  Q(−2, − 5). Draw
the vector.

Solution
First, find the position vector.

u = 〈 −2, − (−8), −5−1 〉
  = 〈 6, − 6 〉

We use the Pythagorean Theorem to find the magnitude.

|u| = (6)2 + ( − 6)2

       = 72
       = 6 2

The direction is given as
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tan θ = −6
6 = −1 ⇒ θ = tan−1(−1)

             = − 45°

However, the angle terminates in the fourth quadrant, so we add 360° to obtain a positive angle. Thus,
− 45° + 360° = 315°.  See Figure 10.115.

Figure 10.115

Example 10.62

Showing That Two Vectors Are Equal

Show that vector v with initial point at  (5, −3)  and terminal point at  (−1, 2)  is equal to vector u with initial
point at  (−1, −3)  and terminal point at  (−7, 2). Draw the position vector on the same grid as v and u. Next, find
the magnitude and direction of each vector.

Solution
As shown in Figure 10.116, draw the vector  v  starting at initial  (5, −3)  and terminal point  (−1, 2). Draw the
vector  u with initial point  (−1, −3)  and terminal point  (−7, 2).  Find the standard position for each.

Next, find and sketch the position vector for v and u. We have

v = 〈 −1 − 5, 2 − ( − 3) 〉
= 〈 −6, 5 〉

u = 〈 −7 − (−1), 2 − (−3) 〉
= 〈 −6, 5 〉

Since the position vectors are the same, v and u are the same.

An alternative way to check for vector equality is to show that the magnitude and direction are the same for both
vectors. To show that the magnitudes are equal, use the Pythagorean Theorem.
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|v| = (−1 − 5)2 + (2 − (−3))2

       = (−6)2 + (5)2

       = 36 + 25
       = 61

|u| = (−7 − (−1))2 + (2 − (−3))2

       = (−6)2 + (5)2

       = 36 + 25
       = 61

As the magnitudes are equal, we now need to verify the direction. Using the tangent function with the position
vector gives

tan θ = − 5
6 ⇒ θ = tan−1 ⎛

⎝−
5
6

⎞
⎠

             = − 39.8°

However, we can see that the position vector terminates in the second quadrant, so we add  180°. Thus, the
direction is  − 39.8° + 180° = 140.2°.

Figure 10.116

Performing Vector Addition and Scalar Multiplication
Now that we understand the properties of vectors, we can perform operations involving them. While it is convenient to
think of the vector u = 〈 x, y 〉 as an arrow or directed line segment from the origin to the point  (x, y),   vectors can

be situated anywhere in the plane. The sum of two vectors u and v, or vector addition, produces a third vector u+ v, the
resultant vector.

To find u + v, we first draw the vector u, and from the terminal end of u, we drawn the vector v. In other words, we have
the initial point of v meet the terminal end of u. This position corresponds to the notion that we move along the first vector
and then, from its terminal point, we move along the second vector. The sum u + v is the resultant vector because it results
from addition or subtraction of two vectors. The resultant vector travels directly from the beginning of u to the end of v in a
straight path, as shown in Figure 10.117.
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Figure 10.117

Vector subtraction is similar to vector addition. To find u − v, view it as u + (−v). Adding −v is reversing direction of v and
adding it to the end of u. The new vector begins at the start of u and stops at the end point of −v. See Figure 10.118 for a
visual that compares vector addition and vector subtraction using parallelograms.

Figure 10.118

Example 10.63

Adding and Subtracting Vectors

Given u = 〈 3, − 2 〉 and v = 〈 −1, 4 〉 , find two new vectors u + v, and u − v.

Solution
To find the sum of two vectors, we add the components. Thus,

u + v = 〈 3, − 2 〉 + 〈 −1, 4 〉
= 〈 3 + ( − 1), − 2 + 4 〉
= 〈 2, 2 〉

See Figure 10.119(a).

To find the difference of two vectors, add the negative components of  v  to  u. Thus,

u + ( − v) = 〈 3, − 2 〉 + 〈 1, − 4 〉
= 〈 3 + 1, − 2 + ( − 4) 〉
= 〈 4, − 6 〉

See Figure 10.119(b).

1184 Chapter 10 Further Applications of Trigonometry

This content is available for free at https://cnx.org/content/col11758/1.5



Figure 10.119 (a) Sum of two vectors (b) Difference of two vectors

Multiplying By a Scalar
While adding and subtracting vectors gives us a new vector with a different magnitude and direction, the process of
multiplying a vector by a scalar, a constant, changes only the magnitude of the vector or the length of the line. Scalar
multiplication has no effect on the direction unless the scalar is negative, in which case the direction of the resulting vector
is opposite the direction of the original vector.

Scalar Multiplication

Scalar multiplication involves the product of a vector and a scalar. Each component of the vector is multiplied by the
scalar. Thus, to multiply v = 〈 a, b 〉 by k , we have

kv = 〈 ka, kb 〉

Only the magnitude changes, unless  k  is negative, and then the vector reverses direction.

Example 10.64

Performing Scalar Multiplication

Given vector  v = 〈 3, 1 〉 ,   find 3v, 1
2 v,   and −v.

Solution
See Figure 10.120 for a geometric interpretation. If  v = 〈 3, 1 〉 , then

  3v = 〈 3 ⋅ 3, 3 ⋅ 1 〉
         = 〈 9, 3 〉

 12v = 〈 1
2 ⋅ 3, 1

2 ⋅ 1 〉

         = 〈 3
2, 1

2 〉

−v = 〈 −3, −1 〉
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10.40

Figure 10.120

Analysis
Notice that the vector 3v is three times the length of v, 1

2 v  is half the length of v, and –v is the same length of v,

but in the opposite direction.

Find the scalar multiple 3 u given u = 〈 5, 4 〉 .

Example 10.65

Using Vector Addition and Scalar Multiplication to Find a New Vector

Given u = 〈 3, − 2 〉 and v = 〈 −1, 4 〉 , find a new vector w = 3u + 2v.

Solution
First, we must multiply each vector by the scalar.

3u = 3 〈 3, − 2 〉
       = 〈 9, − 6 〉
2v = 2 〈 −1, 4 〉

= 〈 −2, 8 〉

Then, add the two together.

w = 3u + 2v
= 〈 9, − 6 〉 + 〈 −2, 8 〉
= 〈 9 − 2, − 6 + 8 〉
= 〈 7, 2 〉

So, w = 〈 7, 2 〉 .
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Finding Component Form
In some applications involving vectors, it is helpful for us to be able to break a vector down into its components. Vectors are
comprised of two components: the horizontal component is the  x  direction, and the vertical component is the  y  direction.

For example, we can see in the graph in Figure 10.121 that the position vector 〈 2, 3 〉 comes from adding the vectors v1

and v2. We have v1 with initial point  (0, 0)  and terminal point  (2, 0). 

v1 = 〈 2 − 0, 0 − 0 〉
       = 〈 2, 0 〉

We also have v2 with initial point  (0, 0)  and terminal point  (0,  3). 

v2 = 〈 0 − 0, 3 − 0 〉
        = 〈 0, 3 〉

Therefore, the position vector is

v = 〈 2 + 0, 3 + 0 〉
    = 〈 2, 3 〉

Using the Pythagorean Theorem, the magnitude of v1 is 2, and the magnitude of v2 is 3. To find the magnitude of v, use the
formula with the position vector.

|v| = |v1 |2 + |v2 |2

      = 22 + 32

      = 13

The magnitude of v is   13. To find the direction, we use the tangent function  tan θ = y
x.

tan θ = v2
v1

tan θ = 3
2

         θ = tan−1 ⎛
⎝
3
2

⎞
⎠ = 56.3°

Figure 10.121

Thus, the magnitude of  v  is   13  and the direction is  56.3∘ off the horizontal.

Example 10.66

Finding the Components of the Vector
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Find the components of the vector  v with initial point  (3, 2)  and terminal point  (7, 4).

Solution
First find the standard position.

v = 〈 7 − 3, 4 − 2 〉
= 〈 4, 2 〉

See the illustration in Figure 10.122.

Figure 10.122

The horizontal component is v1 = 〈 4, 0 〉   and the vertical component is  v2 = 〈 0, 2〉.

Finding the Unit Vector in the Direction of v
In addition to finding a vector’s components, it is also useful in solving problems to find a vector in the same direction as the
given vector, but of magnitude 1. We call a vector with a magnitude of 1 a unit vector. We can then preserve the direction
of the original vector while simplifying calculations.

Unit vectors are defined in terms of components. The horizontal unit vector is written as i = 〈 1, 0 〉 and is directed

along the positive horizontal axis. The vertical unit vector is written as j = 〈 0, 1 〉 and is directed along the positive

vertical axis. See Figure 10.123.

Figure 10.123

The Unit Vectors

If  v  is a nonzero vector, then   v|v|  is a unit vector in the direction of  v. Any vector divided by its magnitude is a unit

vector. Notice that magnitude is always a scalar, and dividing by a scalar is the same as multiplying by the reciprocal
of the scalar.
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Example 10.67

Finding the Unit Vector in the Direction of v

Find a unit vector in the same direction as v = 〈 −5, 12〉.

Solution
First, we will find the magnitude.

|v| = ( − 5)2 + (12)2

       = 25 + 144
       = 169
       = 13

Then we divide each component by  |v|, which gives a unit vector in the same direction as v:

v
|v| = − 5

13i + 12
13 j

or, in component form

v
|v| = 〈 − 5

13, 12
13 〉

See Figure 10.124.

Figure 10.124
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Verify that the magnitude of the unit vector equals 1. The magnitude of  − 5
13i + 12

13 j  is given as

⎛
⎝−

5
13

⎞
⎠

2
+ ⎛

⎝
12
13

⎞
⎠

2
= 25

169 + 144
169

= 169
169 = 1

The vector u = 5
13 i +12

13 j is the unit vector in the same direction as v = 〈 −5, 12 〉 .

Performing Operations with Vectors in Terms of i and j
So far, we have investigated the basics of vectors: magnitude and direction, vector addition and subtraction, scalar
multiplication, the components of vectors, and the representation of vectors geometrically. Now that we are familiar with
the general strategies used in working with vectors, we will represent vectors in rectangular coordinates in terms of i and j.

Vectors in the Rectangular Plane

Given a vector  v with initial point  P = (x1, y1)  and terminal point Q = (x2, y2 ), v is written as

v = (x2 − x1)i + (y1 − y2) j

The position vector from  (0, 0)  to  (a, b),  where  (x2 − x1) = a  and  (y2 − y1) = b,   is written as v = ai + bj. This

vector sum is called a linear combination of the vectors i and j.

The magnitude of v = ai + bj is given as  |v| = a2 + b2.  See Figure 10.125.

Figure 10.125

Example 10.68

Writing a Vector in Terms of i and j

Given a vector  v with initial point  P = (2, −6)  and terminal point  Q = (−6, 6),  write the vector in terms of  i 
and   j.

Solution
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10.41

Begin by writing the general form of the vector. Then replace the coordinates with the given values.

v = (x2 − x1)i + (y2 − y1) j
    = ( − 6 − 2)i + (6 − ( − 6)) j
    = − 8i + 12 j

Example 10.69

Writing a Vector in Terms of i and j Using Initial and Terminal Points

Given initial point  P1 = (−1, 3)  and terminal point  P2 = (2, 7),  write the vector  v  in terms of  i  and   j. 

Solution
Begin by writing the general form of the vector. Then replace the coordinates with the given values.

v = (x2 − x1)i + (y2 − y1) j
v = (2 − ( − 1))i + (7 − 3) j
   = 3i + 4 j

Write the vector  u with initial point  P = (−1, 6)  and terminal point  Q = (7, − 5)  in terms of  i  and

  j.

Performing Operations on Vectors in Terms of i and j
When vectors are written in terms of  i  and   j,  we can carry out addition, subtraction, and scalar multiplication by

performing operations on corresponding components.

Adding and Subtracting Vectors in Rectangular Coordinates

Given v = ai + bj and u = ci + dj, then
v + u = (a + c)i + (b + d) j
v − u = (a − c)i + (b − d) j

Example 10.70

Finding the Sum of the Vectors

Find the sum of  v1 = 2i − 3 j  and  v2 = 4i + 5 j.

Solution
According to the formula, we have
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10.42

v1 + v2 = (2 + 4)i + ( − 3 + 5) j
= 6i + 2 j

Calculating the Component Form of a Vector: Direction
We have seen how to draw vectors according to their initial and terminal points and how to find the position vector. We
have also examined notation for vectors drawn specifically in the Cartesian coordinate plane using  i  and   j.  For any of

these vectors, we can calculate the magnitude. Now, we want to combine the key points, and look further at the ideas of
magnitude and direction.

Calculating direction follows the same straightforward process we used for polar coordinates. We find the direction of the
vector by finding the angle to the horizontal. We do this by using the basic trigonometric identities, but with  |v|  replacing
 r.

Vector Components in Terms of Magnitude and Direction

Given a position vector  v = 〈 x, y 〉   and a direction angle  θ,

cos θ = x
|v| and sin θ = y

|v|
 x = |v|cos θ        y = |v|sin θ

Thus,  v = xi + y j = |v|cos θi + |v|sin θ j,   and magnitude is expressed as  |v| = x2 + y2.

Example 10.71

Writing a Vector in Terms of Magnitude and Direction

Write a vector with length 7 at an angle of 135° to the positive x-axis in terms of magnitude and direction.

Solution
Using the conversion formulas  x = |v|cos θi  and  y = |v|sin θ j,  we find that

x = 7cos(135°)i

= − 7 2
2

y = 7sin(135°) j

= 7 2
2

This vector can be written as  v = 7cos(135°)i + 7sin(135°) j  or simplified as

v = − 7 2
2 i + 7 2

2 j

A vector travels from the origin to the point  (3, 5). Write the vector in terms of magnitude and

direction.
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Finding the Dot Product of Two Vectors
As we discussed earlier in the section, scalar multiplication involves multiplying a vector by a scalar, and the result is a
vector. As we have seen, multiplying a vector by a number is called scalar multiplication. If we multiply a vector by a
vector, there are two possibilities: the dot product and the cross product. We will only examine the dot product here; you
may encounter the cross product in more advanced mathematics courses.

The dot product of two vectors involves multiplying two vectors together, and the result is a scalar.

Dot Product

The dot product of two vectors  v = 〈 a, b 〉   and  u = 〈 c, d 〉   is the sum of the product of the horizontal

components and the product of the vertical components.

v ⋅ u = ac + bd

To find the angle between the two vectors, use the formula below.

cos θ = v
|v| ⋅ u

|u|

Example 10.72

Finding the Dot Product of Two Vectors

Find the dot product of  v = 〈 5, 12 〉   and  u = 〈 −3, 4 〉 .

Solution
Using the formula, we have

v ⋅ u = 〈 5, 12 〉 ⋅ 〈 −3, 4 〉
           = 5 ⋅ ( − 3) + 12 ⋅ 4
           = − 15 + 48
           = 33

Example 10.73

Finding the Dot Product of Two Vectors and the Angle between Them

Find the dot product of v1 = 5i + 2j and v2 = 3i + 7j. Then, find the angle between the two vectors.

Solution
Finding the dot product, we multiply corresponding components.

v1 ⋅ v2 = 〈 5, 2 〉 ⋅ 〈 3, 7 〉
                 = 5 ⋅ 3 + 2 ⋅ 7
                 = 15 + 14
                 = 29

To find the angle between them, we use the formula  cos θ = v
|v| ⋅ u

|u|.
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v
|v| ⋅ u

|u| = 〈 5
29

+ 2
29

〉 ⋅ 〈 3
58

+ 7
58

〉

= 5
29

⋅ 3
58

+ 2
29

⋅ 7
58

= 15
1682

+ 14
1682

= 29
1682

             = 0.707107
cos−1(0.707107) = 45°

See Figure 10.126.

Figure 10.126

Example 10.74

Finding the Angle between Two Vectors

Find the angle between  u = 〈 −3, 4 〉   and  v = 〈 5, 12 〉 .

Solution
Using the formula, we have
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                   θ = cos−1 ⎛
⎝

u
|u| ⋅ v

|v|
⎞
⎠

⎛
⎝

u
|u| ⋅ v

|v|
⎞
⎠ = −3i + 4 j

5 ⋅ 5i + 12 j
13

                       = ⎛
⎝−

3
5 ⋅ 5

13
⎞
⎠ + ⎛

⎝
4
5 ⋅ 12

13
⎞
⎠

                       = − 15
65 + 48

65
                       = 33

65
                   θ = cos−1 ⎛

⎝
33
65

⎞
⎠

                       = 59.5∘

See Figure 10.127.

Figure 10.127

Example 10.75

Finding Ground Speed and Bearing Using Vectors

We now have the tools to solve the problem we introduced in the opening of the section.
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An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind (from
north to south) is blowing at 16.2 miles per hour. What are the ground speed and actual bearing of the plane? See
Figure 10.128.

Figure 10.128

Solution
The ground speed is represented by  x  in the diagram, and we need to find the angle  α  in order to calculate the
adjusted bearing, which will be   140° + α .
Notice in Figure 10.128, that angle  BCO must be equal to angle  AOC  by the rule of alternating interior angles,
so angle  BCO  is 140°. We can find  x  by the Law of Cosines:

x2 = (16.2)2 + (200)2 − 2(16.2)(200)cos(140°)
x2 = 45, 226.41
  x = 45, 226.41
  x = 212.7

The ground speed is approximately 213 miles per hour. Now we can calculate the bearing using the Law of Sines.

 sin α
16.2 = sin(140°)

212.7

 sin α = 16.2sin(140°)
212.7

= 0.04896
sin−1(0.04896) = 2.8°

Therefore, the plane has a SE bearing of 140°+2.8°=142.8°. The ground speed is 212.7 miles per hour.

Access these online resources for additional instruction and practice with vectors.

• Introduction to Vectors (http://openstaxcollege.org/l/introvectors)

• Vector Operations (http://openstaxcollege.org/l/vectoroperation)

• The Unit Vector (http://openstaxcollege.org/l/unitvector)
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10.8 EXERCISES
Verbal

What are the characteristics of the letters that are
commonly used to represent vectors?

How is a vector more specific than a line segment?

What are  i  and   j, and what do they represent?

What is component form?

When a unit vector is expressed as 〈 a, b 〉 , which

letter is the coefficient of the  i  and which the   j?

Algebraic

Given a vector with initial point  (5, 2)  and terminal
point  (−1, − 3),   find an equivalent vector whose initial
point is  (0, 0). Write the vector in component form

〈 a, b 〉 .

Given a vector with initial point  (−4, 2)  and
terminal point  (3, − 3),   find an equivalent vector whose
initial point is  (0, 0). Write the vector in component form

〈 a, b 〉 .

Given a vector with initial point  (7, − 1)  and
terminal point  (−1, − 7),   find an equivalent vector
whose initial point is  (0, 0). Write the vector in component

form 〈 a, b 〉 .

For the following exercises, determine whether the two
vectors  u  and  v  are equal, where  u  has an initial point
 P1   and a terminal point  P2   and v has an initial point

 P3   and a terminal point  P4 .

P1 = (5, 1), P2 = (3, − 2), P3 = (−1, 3),   and

 P4 = (9, − 4)

P1 = (2, − 3), P2 = (5, 1), P3 = (6, − 1),   and

 P4 = (9, 3)

P1 = (−1, − 1), P2 = (−4, 5), P3 = (−10, 6),  
and  P4 = (−13, 12)

P1 = (3, 7), P2 = (2, 1), P3 = (1, 2),   and

 P4 = (−1, − 4)

P1 = (8, 3), P2 = (6, 5), P3 = (11, 8),   and

P4 = (9, 10)

Given initial point  P1 = (−3, 1)  and terminal point

 P2 = (5, 2),  write the vector  v  in terms of  i  and   j. 

Given initial point  P1 = (6, 0)  and terminal point

 P2 = (−1, − 3),  write the vector  v  in terms of  i  and

  j. 

For the following exercises, use the vectors u = i + 5j, v =
−2i− 3j, and w = 4i − j.

Find u + (v − w)

Find 4v + 2u

For the following exercises, use the given vectors to
compute u + v, u − v, and 2u − 3v.

u = 〈 2, − 3 〉 , v = 〈 1, 5 〉

u = 〈 −3, 4 〉 , v = 〈 −2, 1 〉

Let v = −4i + 3j. Find a vector that is half the length
and points in the same direction as  v.

Let v = 5i + 2j. Find a vector that is twice the length
and points in the opposite direction as  v.

For the following exercises, find a unit vector in the same
direction as the given vector.

a = 3i + 4j

b = −2i + 5j

c = 10i – j

d = − 1
3i + 5

2 j

u = 100i + 200j

u = −14i + 2j

For the following exercises, find the magnitude and
direction of the vector,  0 ≤ θ < 2π.

〈 0, 4 〉

〈 6, 5 〉

〈 2, −5 〉
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〈 −4, −6 〉

Given u = 3i − 4j and v = −2i + 3j, calculate  u ⋅ v.

Given u = −i − j and v = i + 5j, calculate  u ⋅ v.

Given  u = 〈 −2, 4 〉   and  v = 〈 −3, 1 〉 ,
calculate  u ⋅ v.

Given u = 〈 −1, 6 〉 and v = 〈 6, − 1 〉 ,
calculate  u ⋅ v.

Graphical

For the following exercises, given  v,   draw v, 3v and  12v.

〈 2, −1 〉

〈 −1, 4 〉

〈 −3, −2 〉

For the following exercises, use the vectors shown to sketch
u + v, u − v, and 2u.

For the following exercises, use the vectors shown to sketch
2u + v.

For the following exercises, use the vectors shown to sketch
u − 3v.
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For the following exercises, write the vector shown in
component form.

Given initial point  P1 = (2, 1)  and terminal point

 P2 = (−1, 2),  write the vector  v  in terms of  i  and   j,  
then draw the vector on the graph.

Given initial point  P1 = (4, − 1)  and terminal point

 P2 = (−3, 2),  write the vector  v  in terms of  i  and   j. 
Draw the points and the vector on the graph.

Given initial point  P1 = (3, 3)  and terminal point

 P2 = (−3, 3),  write the vector  v  in terms of  i  and   j. 
Draw the points and the vector on the graph.

Extensions
For the following exercises, use the given magnitude and
direction in standard position, write the vector in
component form.

|v| = 6, θ = 45 °

|v| = 8, θ = 220°

|v| = 2, θ = 300°

|v| = 5, θ = 135°

A 60-pound box is resting on a ramp that is inclined 12°.
Rounding to the nearest tenth,

a. Find the magnitude of the normal (perpendicular)
component of the force.

b. Find the magnitude of the component of the force
that is parallel to the ramp.

A 25-pound box is resting on a ramp that is inclined
8°. Rounding to the nearest tenth,

a. Find the magnitude of the normal (perpendicular)
component of the force.

b. Find the magnitude of the component of the force
that is parallel to the ramp.

Find the magnitude of the horizontal and vertical
components of a vector with magnitude 8 pounds pointed in
a direction of 27° above the horizontal. Round to the
nearest hundredth.

Find the magnitude of the horizontal and vertical
components of the vector with magnitude 4 pounds pointed
in a direction of 127° above the horizontal. Round to the
nearest hundredth.

Find the magnitude of the horizontal and vertical
components of a vector with magnitude 5 pounds pointed in
a direction of 55° above the horizontal. Round to the
nearest hundredth.

Find the magnitude of the horizontal and vertical
components of the vector with magnitude 1 pound pointed
in a direction of 8° above the horizontal. Round to the
nearest hundredth.

Real-World Applications

A woman leaves home and walks 3 miles west, then 2
miles southwest. How far from home is she, and in what
direction must she walk to head directly home?

A boat leaves the marina and sails 6 miles north, then
2 miles northeast. How far from the marina is the boat, and
in what direction must it sail to head directly back to the
marina?

A man starts walking from home and walks 4 miles
east, 2 miles southeast, 5 miles south, 4 miles southwest,
and 2 miles east. How far has he walked? If he walked
straight home, how far would he have to walk?

A woman starts walking from home and walks 4
miles east, 7 miles southeast, 6 miles south, 5 miles
southwest, and 3 miles east. How far has she walked? If she
walked straight home, how far would she have to walk?

A man starts walking from home and walks 3 miles at
20° north of west, then 5 miles at 10° west of south, then 4
miles at 15° north of east. If he walked straight home, how
far would he have to the walk, and in what direction?
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A woman starts walking from home and walks 6
miles at 40° north of east, then 2 miles at 15° east of south,
then 5 miles at 30° south of west. If she walked straight
home, how far would she have to walk, and in what
direction?

An airplane is heading north at an airspeed of 600 km/
hr, but there is a wind blowing from the southwest at 80 km/
hr. How many degrees off course will the plane end up
flying, and what is the plane’s speed relative to the ground?

An airplane is heading north at an airspeed of 500 km/
hr, but there is a wind blowing from the northwest at 50 km/
hr. How many degrees off course will the plane end up
flying, and what is the plane’s speed relative to the ground?

An airplane needs to head due north, but there is a
wind blowing from the southwest at 60 km/hr. The plane
flies with an airspeed of 550 km/hr. To end up flying due
north, how many degrees west of north will the pilot need
to fly the plane?

An airplane needs to head due north, but there is a
wind blowing from the northwest at 80 km/hr. The plane
flies with an airspeed of 500 km/hr. To end up flying due
north, how many degrees west of north will the pilot need
to fly the plane?

As part of a video game, the point  (5, 7)  is rotated
counterclockwise about the origin through an angle of 35°.
Find the new coordinates of this point.

As part of a video game, the point  (7, 3)  is rotated
counterclockwise about the origin through an angle of 40°.
Find the new coordinates of this point.

Two children are throwing a ball back and forth
straight across the back seat of a car. The ball is being
thrown 10 mph relative to the car, and the car is traveling 25
mph down the road. If one child doesn't catch the ball, and
it flies out the window, in what direction does the ball fly
(ignoring wind resistance)?

Two children are throwing a ball back and forth
straight across the back seat of a car. The ball is being
thrown 8 mph relative to the car, and the car is traveling 45
mph down the road. If one child doesn't catch the ball, and
it flies out the window, in what direction does the ball fly
(ignoring wind resistance)?

A 50-pound object rests on a ramp that is inclined
19°. Find the magnitude of the components of the force
parallel to and perpendicular to (normal) the ramp to the
nearest tenth of a pound.

Suppose a body has a force of 10 pounds acting on it
to the right, 25 pounds acting on it upward, and 5 pounds
acting on it 45° from the horizontal. What single force is the
resultant force acting on the body?

Suppose a body has a force of 10 pounds acting on it
to the right, 25 pounds acting on it ─135° from the
horizontal, and 5 pounds acting on it directed 150° from the
horizontal. What single force is the resultant force acting on
the body?

The condition of equilibrium is when the sum of the
forces acting on a body is the zero vector. Suppose a body
has a force of 2 pounds acting on it to the right, 5 pounds
acting on it upward, and 3 pounds acting on it 45° from the
horizontal. What single force is needed to produce a state of
equilibrium on the body?

Suppose a body has a force of 3 pounds acting on it to
the left, 4 pounds acting on it upward, and 2 pounds acting
on it 30° from the horizontal. What single force is needed to
produce a state of equilibrium on the body? Draw the
vector.
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altitude

ambiguous case

Archimedes’ spiral

argument

cardioid

convex limaҫon

De Moivre’s Theorem

dimpled limaҫon

dot product

Generalized Pythagorean Theorem

initial point

inner-loop limaçon

Law of Cosines

Law of Sines

lemniscate

magnitude

modulus

oblique triangle

one-loop limaҫon

parameter

polar axis

CHAPTER 10 REVIEW

KEY TERMS
a perpendicular line from one vertex of a triangle to the opposite side, or in the case of an obtuse triangle, to the

line containing the opposite side, forming two right triangles

a scenario in which more than one triangle is a valid solution for a given oblique SSA triangle

a polar curve given by  r = θ. When multiplied by a constant, the equation appears as  r = aθ. As
 r = θ,   the curve continues to widen in a spiral path over the domain.

the angle associated with a complex number; the angle between the line from the origin to the point and the
positive real axis

a member of the limaçon family of curves, named for its resemblance to a heart; its equation is given as
 r = a ± bcos θ  and  r = a ± bsin θ,  where  ab = 1

a type of one-loop limaçon represented by  r = a ± bcos θ  and  r = a ± bsin θ  such that  ab ≥ 2

formula used to find the  nth  power or nth roots of a complex number; states that, for a positive
integer  n, zn   is found by raising the modulus to the  nth  power and multiplying the angles by  n 

a type of one-loop limaçon represented by  r = a ± bcos θ  and  r = a ± bsin θ  such that  1 < a
b < 2

given two vectors, the sum of the product of the horizontal components and the product of the vertical
components

an extension of the Law of Cosines; relates the sides of an oblique triangle and is
used for SAS and SSS triangles

the origin of a vector

a polar curve similar to the cardioid, but with an inner loop; passes through the pole twice;
represented by  r = a ± bcos θ  and  r = a ± bsin θ where  a < b

states that the square of any side of a triangle is equal to the sum of the squares of the other two sides
minus twice the product of the other two sides and the cosine of the included angle

states that the ratio of the measurement of one angle of a triangle to the length of its opposite side is equal to
the remaining two ratios of angle measure to opposite side; any pair of proportions may be used to solve for a missing
angle or side

a polar curve resembling a figure 8 and given by the equation  r2 = a2 cos 2θ  and  r2 = a2 sin 2θ,   a ≠ 0

the length of a vector; may represent a quantity such as speed, and is calculated using the Pythagorean
Theorem

the absolute value of a complex number, or the distance from the origin to the point  (x, y);   also called the

amplitude

any triangle that is not a right triangle

a polar curve represented by  r = a ± bcos θ  and  r = a ± bsin θ  such that a > 0, b > 0, and

 ab > 1; may be dimpled or convex; does not pass through the pole

a variable, often representing time, upon which  x  and  y  are both dependent

on the polar grid, the equivalent of the positive x-axis on the rectangular grid
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polar coordinates

polar equation

polar form of a complex number

pole

resultant

rose curve

scalar

scalar multiplication

standard position

terminal point

unit vector

vector

vector addition

on the polar grid, the coordinates of a point labeled  (r, θ),  where  θ  indicates the angle of rotation
from the polar axis and  r  represents the radius, or the distance of the point from the pole in the direction of  θ

an equation describing a curve on the polar grid.

a complex number expressed in terms of an angle θ and its distance from the origin

 r;   can be found by using conversion formulas  x = rcos θ,   y = rsin θ,    and  r = x2 + y2

the origin of the polar grid

a vector that results from addition or subtraction of two vectors, or from scalar multiplication

a polar equation resembling a flower, given by the equations  r = acos nθ  and  r = asin nθ;  when  n  is
even there are  2n  petals, and the curve is highly symmetrical; when  n  is odd there are n petals.

a quantity associated with magnitude but not direction; a constant

the product of a constant and each component of a vector

the placement of a vector with the initial point at  (0, 0)  and the terminal point  (a, b),   represented
by the change in the x-coordinates and the change in the y-coordinates of the original vector

the end point of a vector, usually represented by an arrow indicating its direction

a vector that begins at the origin and has magnitude of 1; the horizontal unit vector runs along the x-axis and is
defined as  v1 = 〈 1, 0 〉   the vertical unit vector runs along the y-axis and is defined as  v2 = 〈 0, 1 〉 .

a quantity associated with both magnitude and direction, represented as a directed line segment with a starting point
(initial point) and an end point (terminal point)

the sum of two vectors, found by adding corresponding components

KEY EQUATIONS

Law of Sines

sin α
a = sin β

b = sin γ
c

a
sin α = b

sin β = c
sin γ

Area for oblique triangles

Area = 1
2bcsin α

       = 1
2acsin β

       = 1
2absin γ

Law of Cosines

a2 = b2 + c2 − 2bccos α
b2 = a2 + c2 − 2accos β
c2 = a2 + b2 − 2abcos γ

Heron’s formula
    Area = s(s − a)(s − b)(s − c)

where s = (a + b + c)
2
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Conversion formulas

cos θ = x
r → x = rcos θ

sin θ = y
r → y = rsin θ

       r2 = x2 + y2

tan θ = y
x

KEY CONCEPTS
10.1 Non-right Triangles: Law of Sines

• The Law of Sines can be used to solve oblique triangles, which are non-right triangles.

• According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its opposite side
equals the other two ratios of angle measure to opposite side.

• There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose the
appropriate equation to find the requested solution. See Example 10.1.

• The ambiguous case arises when an oblique triangle can have different outcomes.

• There are three possible cases that arise from SSA arrangement—a single solution, two possible solutions, and no
solution. See Example 10.2 and Example 10.3.

• The Law of Sines can be used to solve triangles with given criteria. See Example 10.4.

• The general area formula for triangles translates to oblique triangles by first finding the appropriate height value.
See Example 10.5.

• There are many trigonometric applications. They can often be solved by first drawing a diagram of the given
information and then using the appropriate equation. See Example 10.6.

10.2 Non-right Triangles: Law of Cosines

• The Law of Cosines defines the relationship among angle measurements and lengths of sides in oblique triangles.

• The Generalized Pythagorean Theorem is the Law of Cosines for two cases of oblique triangles: SAS and SSS.
Dropping an imaginary perpendicular splits the oblique triangle into two right triangles or forms one right triangle,
which allows sides to be related and measurements to be calculated. See Example 10.7 and Example 10.8.

• The Law of Cosines is useful for many types of applied problems. The first step in solving such problems is
generally to draw a sketch of the problem presented. If the information given fits one of the three models (the three
equations), then apply the Law of Cosines to find a solution. See Example 10.9 and Example 10.10.

• Heron’s formula allows the calculation of area in oblique triangles. All three sides must be known to apply Heron’s
formula. See Example 10.11 and See Example 10.12.

10.3 Polar Coordinates

• The polar grid is represented as a series of concentric circles radiating out from the pole, or origin.

• To plot a point in the form  (r, θ),  θ > 0,  move in a counterclockwise direction from the polar axis by an angle of
 θ,   and then extend a directed line segment from the pole the length of  r  in the direction of  θ.  If  θ  is negative,
move in a clockwise direction, and extend a directed line segment the length of  r  in the direction of  θ. See
Example 10.13.

• If  r  is negative, extend the directed line segment in the opposite direction of  θ.  See Example 10.14.

• To convert from polar coordinates to rectangular coordinates, use the formulas  x = rcos θ  and  y = rsin θ.  See

Example 10.15 and Example 10.16.
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• To convert from rectangular coordinates to polar coordinates, use one or more of the formulas:

 cos θ = x
r , sin θ = y

r , tan θ = y
x,   and  r = x2 + y2.  See Example 10.17.

• Transforming equations between polar and rectangular forms means making the appropriate substitutions based
on the available formulas, together with algebraic manipulations. See Example 10.18, Example 10.19, and
Example 10.20.

• Using the appropriate substitutions makes it possible to rewrite a polar equation as a rectangular equation, and then
graph it in the rectangular plane. See Example 10.21, Example 10.22, and Example 10.23.

10.4 Polar Coordinates: Graphs

• It is easier to graph polar equations if we can test the equations for symmetry with respect to the line  θ = π
2,   the

polar axis, or the pole.

• There are three symmetry tests that indicate whether the graph of a polar equation will exhibit symmetry. If an
equation fails a symmetry test, the graph may or may not exhibit symmetry. See Example 10.24.

• Polar equations may be graphed by making a table of values for  θ  and  r.

• The maximum value of a polar equation is found by substituting the value  θ  that leads to the maximum value of the
trigonometric expression.

• The zeros of a polar equation are found by setting  r = 0  and solving for  θ.  See Example 10.25.

• Some formulas that produce the graph of a circle in polar coordinates are given by  r = acos θ  and  r = asin θ.  See
Example 10.26.

• The formulas that produce the graphs of a cardioid are given by  r = a ± bcos θ  and  r = a ± bsin θ,   for

 a > 0,   b > 0,   and  ab = 1.  See Example 10.27.

• The formulas that produce the graphs of a one-loop limaçon are given by  r = a ± bcos θ  and  r = a ± bsin θ  for

 1 < a
b < 2.  See Example 10.28.

• The formulas that produce the graphs of an inner-loop limaçon are given by  r = a ± bcos θ  and  r = a ± bsin θ
for  a > 0,   b > 0,   and  a < b.  See Example 10.29.

• The formulas that produce the graphs of a lemniscates are given by  r2 = a2 cos 2θ  and  r2 = a2 sin 2θ,  where
 a ≠ 0. See Example 10.30.

• The formulas that produce the graphs of rose curves are given by  r = acos nθ  and  r = asin nθ,  where  a ≠ 0;   if
 n  is even, there are  2n  petals, and if  n  is odd, there are  n  petals. See Example 10.31 and Example 10.32.

• The formula that produces the graph of an Archimedes’ spiral is given by  r = θ,   θ ≥ 0.  See Example 10.33.

10.5 Polar Form of Complex Numbers

• Complex numbers in the form  a + bi  are plotted in the complex plane similar to the way rectangular coordinates are
plotted in the rectangular plane. Label the x-axis as the real axis and the y-axis as the imaginary axis. See Example
10.34.

• The absolute value of a complex number is the same as its magnitude. It is the distance from the origin to the point:

 |z| = a2 + b2.  See Example 10.35 and Example 10.36.

• To write complex numbers in polar form, we use the formulas  x = rcos θ, y = rsin θ,   and  r = x2 + y2. Then,

 z = r(cos θ + isin θ).  See Example 10.37 and Example 10.38.
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• To convert from polar form to rectangular form, first evaluate the trigonometric functions. Then, multiply through
by  r.  See Example 10.39 and Example 10.40.

• To find the product of two complex numbers, multiply the two moduli and add the two angles. Evaluate the
trigonometric functions, and multiply using the distributive property. See Example 10.41.

• To find the quotient of two complex numbers in polar form, find the quotient of the two moduli and the difference
of the two angles. See Example 10.42.

• To find the power of a complex number  zn,   raise  r  to the power  n, and multiply  θ  by  n.  See Example
10.43.

• Finding the roots of a complex number is the same as raising a complex number to a power, but using a rational
exponent. See Example 10.44.

10.6 Parametric Equations

• Parameterizing a curve involves translating a rectangular equation in two variables,  x  and  y,   into two equations in

three variables, x, y, and t. Often, more information is obtained from a set of parametric equations. See Example
10.45, Example 10.46, and Example 10.47.

• Sometimes equations are simpler to graph when written in rectangular form. By eliminating  t,   an equation in  x 
and  y  is the result.

• To eliminate  t,   solve one of the equations for  t,   and substitute the expression into the second equation. See
Example 10.48, Example 10.49, Example 10.50, and Example 10.51.

• Finding the rectangular equation for a curve defined parametrically is basically the same as eliminating the
parameter. Solve for  t  in one of the equations, and substitute the expression into the second equation. See Example
10.52.

• There are an infinite number of ways to choose a set of parametric equations for a curve defined as a rectangular
equation.

• Find an expression for  x  such that the domain of the set of parametric equations remains the same as the original
rectangular equation. See Example 10.53.

10.7 Parametric Equations: Graphs

• When there is a third variable, a third parameter on which  x  and  y  depend, parametric equations can be used.

• To graph parametric equations by plotting points, make a table with three columns labeled  t, x(t),   and  y(t). 
Choose values for  t  in increasing order. Plot the last two columns for  x  and  y.  See Example 10.54 and Example
10.55.

• When graphing a parametric curve by plotting points, note the associated t-values and show arrows on the graph
indicating the orientation of the curve. See Example 10.56 and Example 10.57.

• Parametric equations allow the direction or the orientation of the curve to be shown on the graph. Equations that are
not functions can be graphed and used in many applications involving motion. See Example 10.58.

• Projectile motion depends on two parametric equations:  x = (v0 cos θ)t  and  y = − 16t2 + (v0 sin θ)t + h.  Initial

velocity is symbolized as  v0. θ represents the initial angle of the object when thrown, and  h  represents the height

at which the object is propelled.

10.8 Vectors

• The position vector has its initial point at the origin. See Example 10.59.

• If the position vector is the same for two vectors, they are equal. See Example 10.60.
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• Vectors are defined by their magnitude and direction. See Example 10.61.

• If two vectors have the same magnitude and direction, they are equal. See Example 10.62.

• Vector addition and subtraction result in a new vector found by adding or subtracting corresponding elements. See
Example 10.63.

• Scalar multiplication is multiplying a vector by a constant. Only the magnitude changes; the direction stays the
same. See Example 10.64 and Example 10.65.

• Vectors are comprised of two components: the horizontal component along the positive x-axis, and the vertical
component along the positive y-axis. See Example 10.66.

• The unit vector in the same direction of any nonzero vector is found by dividing the vector by its magnitude.

• The magnitude of a vector in the rectangular coordinate system is  |v| = a2 + b2.  See Example 10.67.

• In the rectangular coordinate system, unit vectors may be represented in terms of i and j where  i  represents the

horizontal component and   j  represents the vertical component. Then, v = ai + bj is a scalar multiple of  v  by real

numbers  a and b.  See Example 10.68 and Example 10.69.

• Adding and subtracting vectors in terms of i and j consists of adding or subtracting corresponding coefficients of i
and corresponding coefficients of j. See Example 10.70.

• A vector v = ai + bj is written in terms of magnitude and direction as  v = |v|cos θi + |v|sin θ j.  See Example 10.71.

• The dot product of two vectors is the product of the  i  terms plus the product of the   j  terms. See Example 10.72.

• We can use the dot product to find the angle between two vectors. Example 10.73 and Example 10.74.

• Dot products are useful for many types of physics applications. See Example 10.75.

CHAPTER 10 REVIEW EXERCISES
Non-right Triangles: Law of Sines

For the following exercises, assume  α  is opposite side
 a, β  is opposite side  b,   and  γ  is opposite side  c.  Solve

each triangle, if possible. Round each answer to the nearest
tenth.

574. β = 50°, a = 105, b = 45

575. α = 43.1°, a = 184.2, b = 242.8

576. Solve the triangle.

577. Find the area of the triangle.

578. A pilot is flying over a straight highway. He
determines the angles of depression to two mileposts, 2.1
km apart, to be 25° and 49°, as shown in Figure 10.129.
Find the distance of the plane from point  A  and the
elevation of the plane.

Figure 10.129

Non-right Triangles: Law of Cosines
579. Solve the triangle, rounding to the nearest tenth,
assuming  α  is opposite side  a, β  is opposite side  b,   and

 γ  s opposite side c :  a = 4,  b = 6, c = 8.

580. Solve the triangle in Figure 10.130, rounding to the
nearest tenth.
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Figure 10.130

581. Find the area of a triangle with sides of length 8.3,
6.6, and 9.1.

582. To find the distance between two cities, a satellite
calculates the distances and angle shown in Figure 10.131
(not to scale). Find the distance between the cities. Round
answers to the nearest tenth.

Figure 10.131

Polar Coordinates
583. Plot the point with polar coordinates  ⎛⎝3, π

6
⎞
⎠.

584. Plot the point with polar coordinates  ⎛⎝5, − 2π
3

⎞
⎠

585. Convert  ⎛⎝6, − 3π
4

⎞
⎠  to rectangular coordinates.

586. Convert  ⎛⎝−2, 3π
2

⎞
⎠  to rectangular coordinates.

587. Convert (7, − 2) to polar coordinates.

588. Convert (−9, − 4) to polar coordinates.

For the following exercises, convert the given Cartesian
equation to a polar equation.

589. x = − 2

590. x2 + y2 = 64

591. x2 + y2 = − 2y

For the following exercises, convert the given polar
equation to a Cartesian equation.

592. r = 7cos θ

593. r = −2
4cos θ + sin θ

For the following exercises, convert to rectangular form
and graph.

594. θ = 3π
4

595. r = 5sec θ

Polar Coordinates: Graphs

For the following exercises, test each equation for
symmetry.

596. r = 4 + 4sin θ

597. r = 7

598. Sketch a graph of the polar equation  r = 1 − 5sin θ. 
Label the axis intercepts.

599. Sketch a graph of the polar equation  r = 5sin(7θ).

600. Sketch a graph of the polar equation  r = 3 − 3cos θ

Polar Form of Complex Numbers

For the following exercises, find the absolute value of each
complex number.

601. −2 + 6i

602. 4 − 3i

Write the complex number in polar form.

603. 5 + 9i

604. 1
2 − 3

2 i

For the following exercises, convert the complex number
from polar to rectangular form.

605. z = 5cis⎛
⎝
5π
6

⎞
⎠
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606. z = 3cis(40°)

For the following exercises, find the product  z1 z2   in polar

form.

607. z1 = 2cis(89°)

z2 = 5cis(23°)

608. z1 = 10cis⎛
⎝
π
6

⎞
⎠

z2 = 6cis⎛
⎝
π
3

⎞
⎠

For the following exercises, find the quotient  z1
z2
  in polar

form.

609. z1 = 12cis(55°)

z2 = 3cis(18°)

610. z1 = 27cis⎛
⎝
5π
3

⎞
⎠

z2 = 9cis⎛
⎝
π
3

⎞
⎠

For the following exercises, find the powers of each
complex number in polar form.

611. Find  z4  when  z = 2cis(70°)

612. Find  z2  when  z = 5cis⎛
⎝
3π
4

⎞
⎠

For the following exercises, evaluate each root.

613. Evaluate the cube root of  z when  z = 64cis(210°).

614. Evaluate the square root of  z when  z = 25cis⎛
⎝
3π
2

⎞
⎠.

For the following exercises, plot the complex number in the
complex plane.

615. 6 − 2i

616. −1 + 3i

Parametric Equations

For the following exercises, eliminate the parameter  t  to
rewrite the parametric equation as a Cartesian equation.

617.
⎧

⎩
⎨
x(t) = 3t − 1
y(t) = t

618.
⎧

⎩
⎨

x(t) = − cos t
y(t) = 2sin2 t  

619. Parameterize (write a parametric equation for) each
Cartesian equation by using  x(t) = acos t  and

 y(t) = bsin t  for  x2

25 + y2

16 = 1.

620. Parameterize the line from  ( − 2, 3)  to  (4, 7)  so
that the line is at  ( − 2, 3)  at  t = 0  and  (4, 7)  at  t = 1.

Parametric Equations: Graphs

For the following exercises, make a table of values for
each set of parametric equations, graph the equations, and
include an orientation; then write the Cartesian equation.

621.
⎧

⎩
⎨x(t) = 3t2

y(t) = 2t − 1

622.
⎧

⎩
⎨

x(t) = et

y(t) = − 2e5 t

623.
⎧

⎩
⎨
x(t) = 3cos t
y(t) = 2sin t

624. A ball is launched with an initial velocity of 80 feet
per second at an angle of 40° to the horizontal. The ball is
released at a height of 4 feet above the ground.

a. Find the parametric equations to model the path
of the ball.
b. Where is the ball after 3 seconds?
c. How long is the ball in the air?

Vectors

For the following exercises, determine whether the two
vectors,  u  and  v,   are equal, where  u  has an initial point
 P1   and a terminal point  P2,   and  v  has an initial point

 P3   and a terminal point  P4.

625. P1 = (−1, 4), P2 = (3, 1), P3 = (5, 5) and

 P4 = (9, 2)

626. P1 = (6, 11), P2 = (−2, 8), P3 = (0, − 1)  and

 P4 = (−8, 2)

For the following exercises, use the vectors
 u = 2i − j,v = 4i − 3 j,  and  w = − 2i + 5 j  to evaluate

the expression.

627. u − v
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628. 2v − u + w

For the following exercises, find a unit vector in the same
direction as the given vector.

629. a = 8i − 6j

630. b = −3i − j

For the following exercises, find the magnitude and
direction of the vector.

631. 〈 6, −2 〉

632. 〈 −3, −3 〉

For the following exercises, calculate  u ⋅ v.

633. u = −2i + j and v = 3i + 7j

634. u = i + 4j and v = 4i + 3j

635. Given v = 〈−3, 4 〉 draw v, 2v, and  12 v.

636. Given the vectors shown in Figure 10.132, sketch
u + v, u − v and 3v.

Figure 10.132

637. Given initial point  P1 = (3, 2)  and terminal point

 P2 = (−5, − 1),  write the vector  v  in terms of   i   and

  j. Draw the points and the vector on the graph.

CHAPTER 10 PRACTICE TEST
638. Assume  α  is opposite side  a, β  is opposite side  b,  
and  γ  is opposite side  c.  Solve the triangle, if possible,

and round each answer to the nearest tenth, given
 β = 68°, b = 21, c = 16.

639. Find the area of the triangle in Figure 10.133.
Round each answer to the nearest tenth. Figure 10.133
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640. A pilot flies in a straight path for 2 hours. He then
makes a course correction, heading 15° to the right of his
original course, and flies 1 hour in the new direction. If he
maintains a constant speed of 575 miles per hour, how far
is he from his starting position?

641. Convert  (2, 2)  to polar coordinates, and then plot
the point.

642. Convert  ⎛⎝2, π
3

⎞
⎠  to rectangular coordinates.

643. Convert the polar equation to a Cartesian equation:
 x2 + y2 = 5y.

644. Convert to rectangular form and graph:
r = − 3csc θ.

645. Test the equation for symmetry:  r = − 4sin⎛
⎝2θ).

646. Graph  r = 3 + 3cos θ.

647. Graph  r = 3 − 5sin θ.

648. Find the absolute value of the complex number
5 − 9i.

649. Write the complex number in polar form:  4 + i.

650. Convert the complex number from polar to

rectangular form:  z = 5cis⎛
⎝
2π
3

⎞
⎠.

Given  z1 = 8cis(36°)  and  z2 = 2cis(15°), evaluate each

expression.

651. z1 z2

652.
z1
z2

653. (z2)3

654. z1

655. Plot the complex number  −5 − i  in the complex
plane.

656. Eliminate the parameter  t  to rewrite the following
parametric equations as a Cartesian equation:

 
⎧

⎩
⎨

x(t) = t + 1
y(t) = 2t2 .

657. Parameterize (write a parametric equation for) the
following Cartesian equation by using  x(t) = acos t  and

 y(t) = bsin t : x2

36 + y2

100 = 1.

658. Graph the set of parametric equations and find the

Cartesian equation:  
⎧

⎩
⎨
x(t) = − 2sin t
y(t) = 5cos t .

659. A ball is launched with an initial velocity of 95 feet
per second at an angle of 52° to the horizontal. The ball is
released at a height of 3.5 feet above the ground.

a. Find the parametric equations to model the path
of the ball.
b. Where is the ball after 2 seconds?
c. How long is the ball in the air?

For the following exercises, use the vectors u = i − 3j and v
= 2i + 3j.

660. Find 2u − 3v.

661. Calculate  u ⋅ v.

662. Find a unit vector in the same direction as  v.

663. Given vector  v  has an initial point  P1 = (2, 2)  and

terminal point  P2 = (−1, 0),  write the vector  v  in terms

of  i  and   j. On the graph, draw  v,   and  − v.
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11 | SYSTEMS OF
EQUATIONS AND
INEQUALITIES

Figure 11.1 Enigma machines like this one, once owned by Italian dictator Benito Mussolini, were used by government and
military officials for enciphering and deciphering top-secret communications during World War II. (credit: Dave Addey, Flickr)
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11.5 Matrices and Matrix Operations

11.6 Solving Systems with Gaussian Elimination

11.7 Solving Systems with Inverses

11.8 Solving Systems with Cramer's Rule
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Introduction
By 1943, it was obvious to the Nazi regime that defeat was imminent unless it could build a weapon with unlimited
destructive power, one that had never been seen before in the history of the world. In September, Adolf Hitler ordered
German scientists to begin building an atomic bomb. Rumors and whispers began to spread from across the ocean. Refugees
and diplomats told of the experiments happening in Norway. However, Franklin D. Roosevelt wasn’t sold, and even doubted
British Prime Minister Winston Churchill’s warning. Roosevelt wanted undeniable proof. Fortunately, he soon received
the proof he wanted when a group of mathematicians cracked the “Enigma” code, proving beyond a doubt that Hitler was
building an atomic bomb. The next day, Roosevelt gave the order that the United States begin work on the same.

The Enigma is perhaps the most famous cryptographic device ever known. It stands as an example of the pivotal role
cryptography has played in society. Now, technology has moved cryptanalysis to the digital world.

Many ciphers are designed using invertible matrices as the method of message transference, as finding the inverse of a
matrix is generally part of the process of decoding. In addition to knowing the matrix and its inverse, the receiver must also
know the key that, when used with the matrix inverse, will allow the message to be read.

In this chapter, we will investigate matrices and their inverses, and various ways to use matrices to solve systems of
equations. First, however, we will study systems of equations on their own: linear and nonlinear, and then partial fractions.
We will not be breaking any secret codes here, but we will lay the foundation for future courses.

11.1 | Systems of Linear Equations: Two Variables

Learning Objectives

In this section, you will:

11.1.1 Solve systems of equations by graphing.
11.1.2 Solve systems of equations by substitution.
11.1.3 Solve systems of equations by addition.
11.1.4 Identify inconsistent systems of equations containing two variables.
11.1.5 Express the solution of a system of dependent equations containing two variables.

Figure 11.2 (credit: Thomas Sørenes)

A skateboard manufacturer introduces a new line of boards. The manufacturer tracks its costs, which is the amount it spends
to produce the boards, and its revenue, which is the amount it earns through sales of its boards. How can the company
determine if it is making a profit with its new line? How many skateboards must be produced and sold before a profit is
possible? In this section, we will consider linear equations with two variables to answer these and similar questions.

Introduction to Systems of Equations
In order to investigate situations such as that of the skateboard manufacturer, we need to recognize that we are dealing with
more than one variable and likely more than one equation. A system of linear equations consists of two or more linear
equations made up of two or more variables such that all equations in the system are considered simultaneously. To find
the unique solution to a system of linear equations, we must find a numerical value for each variable in the system that will
satisfy all equations in the system at the same time. Some linear systems may not have a solution and others may have an
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infinite number of solutions. In order for a linear system to have a unique solution, there must be at least as many equations
as there are variables. Even so, this does not guarantee a unique solution.

In this section, we will look at systems of linear equations in two variables, which consist of two equations that contain two
different variables. For example, consider the following system of linear equations in two variables.

2x + y =  15
3x – y =  5

The solution to a system of linear equations in two variables is any ordered pair that satisfies each equation independently.
In this example, the ordered pair (4, 7) is the solution to the system of linear equations. We can verify the solution by
substituting the values into each equation to see if the ordered pair satisfies both equations. Shortly we will investigate
methods of finding such a solution if it exists.

2(4) + (7) = 15 True
3(4) − (7) = 5    True

In addition to considering the number of equations and variables, we can categorize systems of linear equations by the
number of solutions. A consistent system of equations has at least one solution. A consistent system is considered to be an
independent system if it has a single solution, such as the example we just explored. The two lines have different slopes
and intersect at one point in the plane. A consistent system is considered to be a dependent system if the equations have
the same slope and the same y-intercepts. In other words, the lines coincide so the equations represent the same line. Every
point on the line represents a coordinate pair that satisfies the system. Thus, there are an infinite number of solutions.

Another type of system of linear equations is an inconsistent system, which is one in which the equations represent two
parallel lines. The lines have the same slope and different y-intercepts. There are no points common to both lines; hence,
there is no solution to the system.

Types of Linear Systems

There are three types of systems of linear equations in two variables, and three types of solutions.

• An independent system has exactly one solution pair  (x, y). The point where the two lines intersect is the

only solution.

• An inconsistent system has no solution. Notice that the two lines are parallel and will never intersect.

• A dependent system has infinitely many solutions. The lines are coincident. They are the same line, so every
coordinate pair on the line is a solution to both equations.

Figure 11.3 compares graphical representations of each type of system.

Figure 11.3
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11.1

Given a system of linear equations and an ordered pair, determine whether the ordered pair is a solution.

1. Substitute the ordered pair into each equation in the system.

2. Determine whether true statements result from the substitution in both equations; if so, the ordered pair is
a solution.

Example 11.1

Determining Whether an Ordered Pair Is a Solution to a System of Equations

Determine whether the ordered pair  (5, 1)  is a solution to the given system of equations.

 x + 3y = 8
 2x − 9 = y

Solution
Substitute the ordered pair  (5, 1)  into both equations.

  (5) + 3(1) = 8
    8 = 8 True

  2(5) − 9 = (1)
  1=1 True

The ordered pair  (5, 1)  satisfies both equations, so it is the solution to the system.

Analysis
We can see the solution clearly by plotting the graph of each equation. Since the solution is an ordered pair that
satisfies both equations, it is a point on both of the lines and thus the point of intersection of the two lines. See
Figure 11.4.

Figure 11.4

Determine whether the ordered pair  (8, 5)  is a solution to the following system.

5x−4y = 20
  2x + 1 = 3y
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Solving Systems of Equations by Graphing
There are multiple methods of solving systems of linear equations. For a system of linear equations in two variables, we can
determine both the type of system and the solution by graphing the system of equations on the same set of axes.

Example 11.2

Solving a System of Equations in Two Variables by Graphing

Solve the following system of equations by graphing. Identify the type of system.

2x + y = −8
   x − y = −1

Solution
Solve the first equation for  y.

2x + y = −8
                          y = −2x−8

Solve the second equation for  y.

x − y = −1
               y = x + 1

Graph both equations on the same set of axes as in Figure 11.5.

Figure 11.5

The lines appear to intersect at the point  (−3,−2). We can check to make sure that this is the solution to the
system by substituting the ordered pair into both equations.

2(−3) + (−2) = −8
                 −8 = −8 True
  (−3) − (−2) = −1
                 −1 = −1 True

The solution to the system is the ordered pair  (−3,−2), so the system is independent.
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11.2 Solve the following system of equations by graphing.

  2x − 5y = −25
−4x + 5y = 35

Can graphing be used if the system is inconsistent or dependent?

Yes, in both cases we can still graph the system to determine the type of system and solution. If the two lines
are parallel, the system has no solution and is inconsistent. If the two lines are identical, the system has infinite
solutions and is a dependent system.

Solving Systems of Equations by Substitution
Solving a linear system in two variables by graphing works well when the solution consists of integer values, but if our
solution contains decimals or fractions, it is not the most precise method. We will consider two more methods of solving
a system of linear equations that are more precise than graphing. One such method is solving a system of equations by the
substitution method, in which we solve one of the equations for one variable and then substitute the result into the second
equation to solve for the second variable. Recall that we can solve for only one variable at a time, which is the reason the
substitution method is both valuable and practical.

Given a system of two equations in two variables, solve using the substitution method.

1. Solve one of the two equations for one of the variables in terms of the other.

2. Substitute the expression for this variable into the second equation, then solve for the remaining variable.

3. Substitute that solution into either of the original equations to find the value of the first variable. If
possible, write the solution as an ordered pair.

4. Check the solution in both equations.

Example 11.3

Solving a System of Equations in Two Variables by Substitution

Solve the following system of equations by substitution.

 − x + y = −5
 2x − 5y = 1

Solution
First, we will solve the first equation for  y.

−x + y = −5
  y = x−5

Now we can substitute the expression  x−5  for  y  in the second equation.

          2x − 5y = 1
2x − 5(x − 5) = 1
  2x − 5x + 25 = 1

− 3x = −24
x = 8

Now, we substitute  x = 8  into the first equation and solve for  y.
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11.3

−(8) + y = −5
                 y = 3

Our solution is  (8, 3).

Check the solution by substituting  (8, 3)  into both equations.

          − x + y = − 5
  − (8) + (3) = − 5 True
           2x − 5y = 1
   2(8) − 5(3) = 1 True

Solve the following system of equations by substitution.

x = y + 3
4 = 3x−2y

Can the substitution method be used to solve any linear system in two variables?

Yes, but the method works best if one of the equations contains a coefficient of 1 or –1 so that we do not have to
deal with fractions.

Solving Systems of Equations in Two Variables by the Addition
Method
A third method of solving systems of linear equations is the addition method. In this method, we add two terms with the
same variable, but opposite coefficients, so that the sum is zero. Of course, not all systems are set up with the two terms of
one variable having opposite coefficients. Often we must adjust one or both of the equations by multiplication so that one
variable will be eliminated by addition.

Given a system of equations, solve using the addition method.

1. Write both equations with x- and y-variables on the left side of the equal sign and constants on the right.

2. Write one equation above the other, lining up corresponding variables. If one of the variables in the
top equation has the opposite coefficient of the same variable in the bottom equation, add the equations
together, eliminating one variable. If not, use multiplication by a nonzero number so that one of the
variables in the top equation has the opposite coefficient of the same variable in the bottom equation, then
add the equations to eliminate the variable.

3. Solve the resulting equation for the remaining variable.

4. Substitute that value into one of the original equations and solve for the second variable.

5. Check the solution by substituting the values into the other equation.

Example 11.4

Solving a System by the Addition Method

Solve the given system of equations by addition.
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 x + 2y = −1
−x + y = 3

Solution
Both equations are already set equal to a constant. Notice that the coefficient of  x  in the second equation, –1, is
the opposite of the coefficient of  x  in the first equation, 1. We can add the two equations to eliminate  x without
needing to multiply by a constant.

 x + 2y = − 1
−x + y = 3

3y = 2

Now that we have eliminated  x, we can solve the resulting equation for  y.

3y = 2

  y = 2
3

Then, we substitute this value for  y  into one of the original equations and solve for  x.

   − x + y = 3

− x + 2
3 = 3

− x = 3 − 2
3

− x = 7
3

              x = − 7
3

The solution to this system is  ⎛⎝−7
3, 2

3
⎞
⎠.

Check the solution in the first equation.

              x + 2y = −1
⎛
⎝−

7
3

⎞
⎠ + 2⎛

⎝
2
3

⎞
⎠ =

− 7
3 + 4

3 =

− 3
3 =

−1 = −1 True

Analysis
We gain an important perspective on systems of equations by looking at the graphical representation. See Figure
11.6 to find that the equations intersect at the solution. We do not need to ask whether there may be a second
solution because observing the graph confirms that the system has exactly one solution.
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Figure 11.6

Example 11.5

Using the Addition Method When Multiplication of One Equation Is Required

Solve the given system of equations by the addition method.

3x + 5y = −11

   x − 2y = 11

Solution
Adding these equations as presented will not eliminate a variable. However, we see that the first equation has  3x 
in it and the second equation has  x.  So if we multiply the second equation by  −3, the x-terms will add to zero.

       x−2y = 11
−3(x−2y) = −3(11) Multiply both sides by −3.
 −3x + 6y = −33 Use the distributive property.

Now, let’s add them.

   3x + 5y = −11
−3x + 6y = −33_______________
         11y = −44
             y = −4

For the last step, we substitute  y = −4  into one of the original equations and solve for  x.

           3x + 5y = − 11
  3x + 5( − 4) = − 11
            3x − 20 = − 11

                3x = 9
                   x = 3

Our solution is the ordered pair  (3, −4).  See Figure 11.7. Check the solution in the original second equation.

          x − 2y = 11
(3) − 2( − 4) = 3 + 8
                    = 11 True
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11.4

Figure 11.7

Solve the system of equations by addition.

2x−7y = 2
  3x + y = −20

Example 11.6

Using the Addition Method When Multiplication of Both Equations Is Required

Solve the given system of equations in two variables by addition.

    2x + 3y = −16
 5x−10y = 30

Solution
One equation has  2x  and the other has  5x. The least common multiple is  10x  so we will have to multiply both
equations by a constant in order to eliminate one variable. Let’s eliminate  x  by multiplying the first equation by
−5  and the second equation by  2.

− 5(2x + 3y) = − 5(−16)
    − 10x − 15y = 80
      2(5x − 10y) = 2(30)
         10x − 20y = 60

Then, we add the two equations together.

−10x−15y = 80   
     10x−20y = 60________________

  −35y = 140
             y = −4

Substitute  y = −4  into the original first equation.
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2x + 3(−4) = −16
           2x − 12 = −16
                     2x = −4
                        x = −2

The solution is  (−2, −4). Check it in the other equation.

          5x−10y = 30
5(−2)−10(−4) = 30
         −10 + 40 = 30
                    30 = 30

See Figure 11.8.

Figure 11.8

Example 11.7

Using the Addition Method in Systems of Equations Containing Fractions

Solve the given system of equations in two variables by addition.

x
3 + y

6 = 3

x
2 − y

4 =   1

Solution
First clear each equation of fractions by multiplying both sides of the equation by the least common denominator.

6⎛
⎝
x
3 + y

6
⎞
⎠ = 6(3)

    2x + y = 18

4⎛
⎝
x
2 − y

4
⎞
⎠ = 4(1)

    2x − y = 4
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11.5

Now multiply the second equation by  −1  so that we can eliminate the x-variable.

−1(2x − y) = −1(4)
    −2x + y = −4

Add the two equations to eliminate the x-variable and solve the resulting equation.

  2x + y = 18
−2x + y = −4_____________

  2y = 14
     y = 7

Substitute  y = 7  into the first equation.

2x + (7) = 18
         2x = 11
           x = 11

2
= 7.5

The solution is  ⎛⎝11
2 , 7⎞

⎠. Check it in the other equation.

x
2 − y

4 = 1
11
2
2 − 7

4 = 1

 11
4 − 7

4 = 1

 44 = 1

Solve the system of equations by addition.

2x + 3y = 8
  3x + 5y = 10

Identifying Inconsistent Systems of Equations Containing Two
Variables
Now that we have several methods for solving systems of equations, we can use the methods to identify inconsistent
systems. Recall that an inconsistent system consists of parallel lines that have the same slope but different  y -intercepts.

They will never intersect. When searching for a solution to an inconsistent system, we will come up with a false statement,
such as  12 = 0.

Example 11.8

Solving an Inconsistent System of Equations

Solve the following system of equations.
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        x = 9−2y
x + 2y = 13

Solution
We can approach this problem in two ways. Because one equation is already solved for  x, the most obvious step
is to use substitution.

                 x + 2y = 13
 (9 − 2y) + 2y = 13
                 9 + 0y = 13
                              9 = 13

Clearly, this statement is a contradiction because  9 ≠ 13. Therefore, the system has no solution.

The second approach would be to first manipulate the equations so that they are both in slope-intercept form. We
manipulate the first equation as follows.

  x = 9−2y
2y = − x + 9

  y = − 1
2x + 9

2

We then convert the second equation expressed to slope-intercept form.

x + 2y = 13
      2y = − x + 13

         y = − 1
2x + 13

2

Comparing the equations, we see that they have the same slope but different y-intercepts. Therefore, the lines are
parallel and do not intersect.

y = − 1
2x + 9

2

y = − 1
2x + 13

2

Analysis
Writing the equations in slope-intercept form confirms that the system is inconsistent because all lines will
intersect eventually unless they are parallel. Parallel lines will never intersect; thus, the two lines have no points
in common. The graphs of the equations in this example are shown in Figure 11.9.

Figure 11.9
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11.6 Solve the following system of equations in two variables.

2y−2x = 2
2y−2x = 6

Expressing the Solution of a System of Dependent Equations
Containing Two Variables
Recall that a dependent system of equations in two variables is a system in which the two equations represent the same line.
Dependent systems have an infinite number of solutions because all of the points on one line are also on the other line. After
using substitution or addition, the resulting equation will be an identity, such as  0 = 0.

Example 11.9

Finding a Solution to a Dependent System of Linear Equations

Find a solution to the system of equations using the addition method.

  x + 3y = 2
3x + 9y = 6

Solution
With the addition method, we want to eliminate one of the variables by adding the equations. In this case, let’s
focus on eliminating  x.  If we multiply both sides of the first equation by  −3, then we will be able to eliminate
the  x -variable.

             x + 3y = 2
(−3)(x + 3y) = (−3)(2)

        −3x − 9y = − 6

Now add the equations.

 − 3x − 9y = −6
+       3x + 9y = 6______________

              0 = 0

We can see that there will be an infinite number of solutions that satisfy both equations.

Analysis
If we rewrote both equations in the slope-intercept form, we might know what the solution would look like before
adding. Let’s look at what happens when we convert the system to slope-intercept form.

  x + 3y = 2
        3y = − x + 2

          y = − 1
3x + 2

3
3x + 9y = 6
        9y = −3x + 6

          y = − 3
9x + 6

9
          y = − 1

3x + 2
3

See Figure 11.10. Notice the results are the same. The general solution to the system is  ⎛⎝x, −1
3x + 2

3
⎞
⎠.
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11.7

Figure 11.10

Solve the following system of equations in two variables.
    y−2x = 5

−3y + 6x = −15

Using Systems of Equations to Investigate Profits
Using what we have learned about systems of equations, we can return to the skateboard manufacturing problem at the
beginning of the section. The skateboard manufacturer’s revenue function is the function used to calculate the amount of
money that comes into the business. It can be represented by the equation  R = xp, where  x = quantity and  p = price.

The revenue function is shown in orange in Figure 11.11.

The cost function is the function used to calculate the costs of doing business. It includes fixed costs, such as rent and
salaries, and variable costs, such as utilities. The cost function is shown in blue in Figure 11.11. The  x -axis represents
quantity in hundreds of units. The y-axis represents either cost or revenue in hundreds of dollars.

Figure 11.11

The point at which the two lines intersect is called the break-even point. We can see from the graph that if 700 units are
produced, the cost is $3,300 and the revenue is also $3,300. In other words, the company breaks even if they produce and
sell 700 units. They neither make money nor lose money.
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The shaded region to the right of the break-even point represents quantities for which the company makes a profit. The
shaded region to the left represents quantities for which the company suffers a loss. The profit function is the revenue
function minus the cost function, written as  P(x) = R(x) − C(x). Clearly, knowing the quantity for which the cost equals
the revenue is of great importance to businesses.

Example 11.10

Finding the Break-Even Point and the Profit Function Using Substitution

Given the cost function  C(x) = 0.85x + 35,000  and the revenue function  R(x) = 1.55x, find the break-even
point and the profit function.

Solution
Write the system of equations using  y  to replace function notation.

y = 0.85x + 35,000
y = 1.55x

Substitute the expression  0.85x + 35,000  from the first equation into the second equation and solve for  x.

0.85x + 35,000 = 1.55x
  35,000 = 0.7x
  50,000 = x

Then, we substitute  x = 50,000  into either the cost function or the revenue function.

1.55(50,000) = 77,500

The break-even point is  (50,000, 77,500).

The profit function is found using the formula  P(x) = R(x) − C(x).

P(x) = 1.55x − (0.85x + 35, 000)
= 0.7x − 35, 000

The profit function is  P(x) = 0.7x−35,000.

Analysis
The cost to produce 50,000 units is $77,500, and the revenue from the sales of 50,000 units is also $77,500. To
make a profit, the business must produce and sell more than 50,000 units. See Figure 11.12.
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Figure 11.12

We see from the graph in Figure 11.13 that the profit function has a negative value until  x = 50,000, when the
graph crosses the x-axis. Then, the graph emerges into positive y-values and continues on this path as the profit
function is a straight line. This illustrates that the break-even point for businesses occurs when the profit function
is 0. The area to the left of the break-even point represents operating at a loss.

Figure 11.13

Example 11.11

Writing and Solving a System of Equations in Two Variables
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11.8

The cost of a ticket to the circus is  $25.00  for children and  $50.00  for adults. On a certain day, attendance at the
circus is  2,000  and the total gate revenue is  $70,000. How many children and how many adults bought tickets?

Solution
Let c = the number of children and a = the number of adults in attendance.

The total number of people is  2,000. We can use this to write an equation for the number of people at the circus
that day.

c + a = 2,000

The revenue from all children can be found by multiplying  $25.00  by the number of children,  25c. The revenue
from all adults can be found by multiplying  $50.00  by the number of adults,  50a. The total revenue is $70,000. 
We can use this to write an equation for the revenue.

25c + 50a = 70,000

We now have a system of linear equations in two variables.

         c + a = 2,000
25c + 50a = 70,000

In the first equation, the coefficient of both variables is 1. We can quickly solve the first equation for either  c  or
 a. We will solve for  a.

c + a = 2,000
  a = 2,000 − c

Substitute the expression  2,000 − c  in the second equation for  a  and solve for  c.

  25c + 50(2,000 − c) = 70,000
25c + 100,000 − 50c = 70,000

 − 25c = −30,000
  c = 1,200

Substitute  c = 1,200  into the first equation to solve for  a.

1,200 + a = 2,000
              a = 800

We find that  1,200  children and  800  adults bought tickets to the circus that day.

Meal tickets at the circus cost  $4.00  for children and  $12.00  for adults. If  1,650 meal tickets were
bought for a total of  $14,200, how many children and how many adults bought meal tickets?

Access these online resources for additional instruction and practice with systems of linear equations.

• Solving Systems of Equations Using Substitution (http://openstaxcollege.org/l/syssubst)

• Solving Systems of Equations Using Elimination (http://openstaxcollege.org/l/syselim)

• Applications of Systems of Equations (http://openstaxcollege.org/l/sysapp)
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11.1 EXERCISES
Verbal

Can a system of linear equations have exactly two
solutions? Explain why or why not.

If you are performing a break-even analysis for a
business and their cost and revenue equations are
dependent, explain what this means for the company’s
profit margins.

If you are solving a break-even analysis and get a
negative break-even point, explain what this signifies for
the company?

If you are solving a break-even analysis and there is no
break-even point, explain what this means for the company.
How should they ensure there is a break-even point?

Given a system of equations, explain at least two
different methods of solving that system.

Algebraic
For the following exercises, determine whether the given
ordered pair is a solution to the system of equations.

5x − y = 4 
x + 6y = 2 and  (4, 0)

−3x − 5y = 13
 − x + 4y = 10

and (−6, 1)

3x + 7y = 1 
2x + 4y = 0

and  (2, 3)

−2x + 5y = 7
  2x + 9y = 7

and (−1, 1)

x + 8y = 43 
3x−2y = −1

and  (3, 5)

For the following exercises, solve each system by
substitution.

  x + 3y = 5
2x + 3y = 4

 3x−2y = 18
5x + 10y = −10

4x + 2y = −10
3x + 9y = 0

2x + 4y = −3.8
9x−5y = 1.3

−2x + 3y = 1.2
−3x − 6y = 1.8

   x−0.2y = 1
−10x + 2y = 5

    3x + 5y = 9
30x + 50y = −90

 −3x + y = 2
12x−4y = −8

1
2x + 1

3y = 16

1
6x + 1

4y = 9

−1
4x + 3

2y = 11

−1
8x + 1

3y = 3

For the following exercises, solve each system by addition.

−2x + 5y = −42
  7x + 2y = 30

6x−5y = −34
2x + 6y = 4

    5x − y = −2.6
−4x−6y = 1.4

7x−2y = 3
4x + 5y = 3.25

 −x + 2y = −1
5x−10y = 6

      7x + 6y = 2
−28x−24y = −8

5
6x + 1

4y = 0

1
8x − 1

2y = − 43
120

  13x + 1
9y = 2

9
−1

2x + 4
5y = − 1

3
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

−0.2x + 0.4y = 0.6
           x−2y = −3

−0.1x + 0.2y = 0.6
      5x−10y = 1

For the following exercises, solve each system by any
method.

5x + 9y = 16
  x + 2y = 4

6x−8y = −0.6
3x + 2y = 0.9

5x−2y = 2.25
7x−4y = 3

x − 5
12y = − 55

12
−6x + 5

2y = 55
2

7x−4y = 7
6

2x + 4y = 1
3

3x + 6y = 11
2x + 4y = 9

7
3x − 1

6y = 2

−21
6 x + 3

12y = −3

1
2x + 1

3y = 1
3

3
2x + 1

4y = − 1
8

2.2x + 1.3y = −0.1
4.2x + 4.2y = 2.1

 0.1x + 0.2y = 2
0.35x−0.3y = 0

Graphical
For the following exercises, graph the system of equations
and state whether the system is consistent, inconsistent, or
dependent and whether the system has one solution, no
solution, or infinite solutions.

3x − y = 0.6
x−2y = 1.3

−x + 2y = 4

 2x−4y = 1

  x + 2y = 7
2x + 6y = 12

3x−5y = 7
  x−2y = 3

  3x−2y = 5
−9x + 6y = −15

Technology
For the following exercises, use the intersect function on a
graphing device to solve each system. Round all answers to
the nearest hundredth.

   0.1x + 0.2y = 0.3
−0.3x + 0.5y = 1

−0.01x + 0.12y = 0.62
    0.15x + 0.20y = 0.52

   0.5x + 0.3y = 4
0.25x−0.9y = 0.46

     0.15x + 0.27y = 0.39
−0.34x + 0.56y = 1.8

−0.71x + 0.92y = 0.13
  0.83x + 0.05y = 2.1

Extensions
For the following exercises, solve each system in terms
of  A, B, C, D, E, and  F where  A – F  are nonzero
numbers. Note that  A ≠ B  and  AE ≠ BD.

x + y = A
x − y = B

x + Ay = 1
x + By = 1

Ax + y = 0
Bx + y = 1

Ax + By = C
x + y = 1
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55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

Ax + By = C
Dx + Ey = F

Real-World Applications
For the following exercises, solve for the desired quantity.

A stuffed animal business has a total cost of production
 C = 12x + 30  and a revenue function  R = 20x.  Find the
break-even point.

A fast-food restaurant has a cost of production
 C(x) = 11x + 120  and a revenue function  R(x) = 5x. 
When does the company start to turn a profit?

A cell phone factory has a cost of production
 C(x) = 150x + 10, 000  and a revenue function
 R(x) = 200x. What is the break-even point?

A musician charges  C(x) = 64x + 20,000, where  x 
is the total number of attendees at the concert. The venue
charges $80 per ticket. After how many people buy tickets
does the venue break even, and what is the value of the total
tickets sold at that point?

A guitar factory has a cost of production
 C(x) = 75x + 50,000.  If the company needs to break
even after 150 units sold, at what price should they sell each
guitar? Round up to the nearest dollar, and write the
revenue function.

For the following exercises, use a system of linear
equations with two variables and two equations to solve.

Find two numbers whose sum is 28 and difference is
13.

A number is 9 more than another number. Twice the
sum of the two numbers is 10. Find the two numbers.

The startup cost for a restaurant is $120,000, and each
meal costs $10 for the restaurant to make. If each meal is
then sold for $15, after how many meals does the restaurant
break even?

A moving company charges a flat rate of $150, and an
additional $5 for each box. If a taxi service would charge
$20 for each box, how many boxes would you need for it to
be cheaper to use the moving company, and what would be
the total cost?

A total of 1,595 first- and second-year college students
gathered at a pep rally. The number of freshmen exceeded
the number of sophomores by 15. How many freshmen and
sophomores were in attendance?

276 students enrolled in a freshman-level chemistry
class. By the end of the semester, 5 times the number of

students passed as failed. Find the number of students who
passed, and the number of students who failed.

There were 130 faculty at a conference. If there were
18 more women than men attending, how many of each
gender attended the conference?

A jeep and BMW enter a highway running east-west at
the same exit heading in opposite directions. The jeep
entered the highway 30 minutes before the BMW did, and
traveled 7 mph slower than the BMW. After 2 hours from
the time the BMW entered the highway, the cars were 306.5
miles apart. Find the speed of each car, assuming they were
driven on cruise control.

If a scientist mixed 10% saline solution with 60%
saline solution to get 25 gallons of 40% saline solution,
how many gallons of 10% and 60% solutions were mixed?

An investor earned triple the profits of what she earned
last year. If she made $500,000.48 total for both years, how
much did she earn in profits each year?

An investor who dabbles in real estate invested 1.1
million dollars into two land investments. On the first
investment, Swan Peak, her return was a 110% increase on
the money she invested. On the second investment,
Riverside Community, she earned 50% over what she
invested. If she earned $1 million in profits, how much did
she invest in each of the land deals?

If an investor invests a total of $25,000 into two bonds,
one that pays 3% simple interest, and the other that pays
 27

8%  interest, and the investor earns $737.50 annual

interest, how much was invested in each account?

If an investor invests $23,000 into two bonds, one that
pays 4% in simple interest, and the other paying 2% simple
interest, and the investor earns $710.00 annual interest,
how much was invested in each account?

CDs cost $5.96 more than DVDs at All Bets Are Off
Electronics. How much would 6 CDs and 2 DVDs cost if 5
CDs and 2 DVDs cost $127.73?

A store clerk sold 60 pairs of sneakers. The high-tops
sold for $98.99 and the low-tops sold for $129.99. If the
receipts for the two types of sales totaled $6,404.40, how
many of each type of sneaker were sold?

A concert manager counted 350 ticket receipts the day
after a concert. The price for a student ticket was $12.50,
and the price for an adult ticket was $16.00. The register
confirms that $5,075 was taken in. How many student
tickets and adult tickets were sold?

Admission into an amusement park for 4 children and 2
adults is $116.90. For 6 children and 3 adults, the admission
is $175.35. Assuming a different price for children and
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adults, what is the price of the child’s ticket and the price of
the adult ticket?
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11.2 | Systems of Linear Equations: Three Variables

Learning Objectives

In this section, you will:

11.2.1 Solve systems of three equations in three variables.
11.2.2 Identify inconsistent systems of equations containing three variables.
11.2.3 Express the solution of a system of dependent equations containing three variables.

Figure 11.14 (credit: “Elembis,” Wikimedia Commons)

John received an inheritance of $12,000 that he divided into three parts and invested in three ways: in a money-market fund
paying 3% annual interest; in municipal bonds paying 4% annual interest; and in mutual funds paying 7% annual interest.
John invested $4,000 more in municipal funds than in municipal bonds. He earned $670 in interest the first year. How much
did John invest in each type of fund?

Understanding the correct approach to setting up problems such as this one makes finding a solution a matter of following a
pattern. We will solve this and similar problems involving three equations and three variables in this section. Doing so uses
similar techniques as those used to solve systems of two equations in two variables. However, finding solutions to systems
of three equations requires a bit more organization and a touch of visual gymnastics.

Solving Systems of Three Equations in Three Variables
In order to solve systems of equations in three variables, known as three-by-three systems, the primary tool we will be using
is called Gaussian elimination, named after the prolific German mathematician Karl Friedrich Gauss. While there is no
definitive order in which operations are to be performed, there are specific guidelines as to what type of moves can be made.
We may number the equations to keep track of the steps we apply. The goal is to eliminate one variable at a time to achieve
upper triangular form, the ideal form for a three-by-three system because it allows for straightforward back-substitution to
find a solution  (x, y, z), which we call an ordered triple. A system in upper triangular form looks like the following:

Ax + By + Cz = D
         Ey + Fz = G
                 Hz = K

The third equation can be solved for  z, and then we back-substitute to find  y  and  x. To write the system in upper triangular

form, we can perform the following operations:

1. Interchange the order of any two equations.

2. Multiply both sides of an equation by a nonzero constant.

3. Add a nonzero multiple of one equation to another equation.
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The solution set to a three-by-three system is an ordered triple  ⎧⎩⎨(x, y, z)⎫

⎭
⎬. Graphically, the ordered triple defines the point

that is the intersection of three planes in space. You can visualize such an intersection by imagining any corner in a
rectangular room. A corner is defined by three planes: two adjoining walls and the floor (or ceiling). Any point where two
walls and the floor meet represents the intersection of three planes.

Number of Possible Solutions

Figure 11.15 and Figure 11.16 illustrate possible solution scenarios for three-by-three systems.

• Systems that have a single solution are those which, after elimination, result in a solution set consisting of an
ordered triple  ⎧⎩⎨(x, y, z)⎫

⎭
⎬. Graphically, the ordered triple defines a point that is the intersection of three planes

in space.

• Systems that have an infinite number of solutions are those which, after elimination, result in an expression
that is always true, such as  0 = 0. Graphically, an infinite number of solutions represents a line or coincident
plane that serves as the intersection of three planes in space.

• Systems that have no solution are those that, after elimination, result in a statement that is a contradiction, such
as  3 = 0. Graphically, a system with no solution is represented by three planes with no point in common.

Figure 11.15 (a)Three planes intersect at a single point,
representing a three-by-three system with a single solution. (b)
Three planes intersect in a line, representing a three-by-three
system with infinite solutions.

Figure 11.16 All three figures represent three-by-three
systems with no solution. (a) The three planes intersect with
each other, but not at a common point. (b) Two of the planes are
parallel and intersect with the third plane, but not with each
other. (c) All three planes are parallel, so there is no point of
intersection.

Example 11.12

Determining Whether an Ordered Triple Is a Solution to a System

Determine whether the ordered triple  (3, −2, 1)  is a solution to the system.
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      x + y + z = 2
 6x − 4y + 5z = 31
5x + 2y + 2z = 13

Solution
We will check each equation by substituting in the values of the ordered triple for  x, y, and  z.

x + y + z = 2
(3) + (−2) + (1) = 2

True

6x−4y + 5z = 31
6(3)−4(−2) + 5(1) = 31

18 + 8 + 5 = 31
True

5x + 2y + 2z = 13
5(3) + 2(−2) + 2(1) = 13

15−4 + 2 = 13
True

The ordered triple  (3, −2, 1)  is indeed a solution to the system.

Given a linear system of three equations, solve for three unknowns.

1. Pick any pair of equations and solve for one variable.

2. Pick another pair of equations and solve for the same variable.

3. You have created a system of two equations in two unknowns. Solve the resulting two-by-two system.

4. Back-substitute known variables into any one of the original equations and solve for the missing variable.

Example 11.13

Solving a System of Three Equations in Three Variables by Elimination

Find a solution to the following system:

        x−2y + 3z = 9 (1)
   − x + 3y − z = −6 (2)
       2x−5y + 5z = 17 (3)

Solution
There will always be several choices as to where to begin, but the most obvious first step here is to eliminate  x 
by adding equations (1) and (2).

     x − 2y + 3z = 9 (1)
  − x + 3y − z = −6  (2)
            y + 2z = 3     (3)

The second step is multiplying equation (1) by  −2  and adding the result to equation (3). These two steps will
eliminate the variable  x.

−2x + 4y − 6z = −18 (1) multiplied by − 2
    2x − 5y + 5z = 17 (3)____________________________________
            − y − z = −1   (5)

In equations (4) and (5), we have created a new two-by-two system. We can solve for  z  by adding the two
equations.
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y + 2z = 3        (4)
−y − z = − 1  (5)

  z = 2        (6)

Choosing one equation from each new system, we obtain the upper triangular form:

x−2y + 3z = 9 (1)
        y + 2z = 3 (4)
                z = 2 (6)

Next, we back-substitute  z = 2  into equation (4) and solve for  y.

y + 2(2) = 3
     y + 4 = 3
            y = −1

Finally, we can back-substitute  z = 2  and  y = −1  into equation (1). This will yield the solution for  x.

x−2(−1) + 3(2) = 9
            x + 2 + 6 = 9

x = 1

The solution is the ordered triple  (1, −1, 2).  See Figure 11.17.

Figure 11.17

Example 11.14

Solving a Real-World Problem Using a System of Three Equations in Three
Variables

In the problem posed at the beginning of the section, John invested his inheritance of $12,000 in three different
funds: part in a money-market fund paying 3% interest annually; part in municipal bonds paying 4% annually;
and the rest in mutual funds paying 7% annually. John invested $4,000 more in mutual funds than he invested in
municipal bonds. The total interest earned in one year was $670. How much did he invest in each type of fund?

Solution

1236 Chapter 11 Systems of Equations and Inequalities

This content is available for free at https://cnx.org/content/col11758/1.5



To solve this problem, we use all of the information given and set up three equations. First, we assign a variable
to each of the three investment amounts:

x = amount invested in money-market fund
y = amount invested in municipal bonds
z = amount invested in mutual funds

The first equation indicates that the sum of the three principal amounts is $12,000.

x + y + z = 12,000

We form the second equation according to the information that John invested $4,000 more in mutual funds than
he invested in municipal bonds.

z = y + 4,000

The third equation shows that the total amount of interest earned from each fund equals $670.

0.03x + 0.04y + 0.07z = 670

Then, we write the three equations as a system.

                    x + y + z = 12,000
                      − y + z = 4,000
0.03x + 0.04y + 0.07z = 670

To make the calculations simpler, we can multiply the third equation by 100. Thus,

  x +    y + z = 12,000 (1)
       − y + z = 4,000 (2)
3x + 4y + 7z = 67,000 (3)

Step 1. Interchange equation (2) and equation (3) so that the two equations with three variables will line up.

  x +   y  +   z = 12,000
3x + 4y  + 7z = 67,000
        − y  +   z = 4,000

Step 2. Multiply equation (1) by  −3  and add to equation (2). Write the result as row 2.

x + y + z = 12,000
     y + 4z = 31,000
  − y + z = 4,000

Step 3. Add equation (2) to equation (3) and write the result as equation (3).

x + y +   z = 12,000
      y + 4z = 31,000
            5z = 35,000

Step 4. Solve for  z  in equation (3). Back-substitute that value in equation (2) and solve for  y. Then, back-

substitute the values for  z  and  y  into equation (1) and solve for  x.
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5z = 35,000
z = 7,000

       y + 4(7,000) = 31,000
y = 3,000

x + 3,000 + 7,000 = 12,000
x = 2,000

John invested $2,000 in a money-market fund, $3,000 in municipal bonds, and $7,000 in mutual funds.

Solve the system of equations in three variables.

2x + y−2z = −1
3x−3y − z = 5
x−2y + 3z = 6

Identifying Inconsistent Systems of Equations Containing Three
Variables
Just as with systems of equations in two variables, we may come across an inconsistent system of equations in three
variables, which means that it does not have a solution that satisfies all three equations. The equations could represent three
parallel planes, two parallel planes and one intersecting plane, or three planes that intersect the other two but not at the same
location. The process of elimination will result in a false statement, such as  3 = 7  or some other contradiction.

Example 11.15

Solving an Inconsistent System of Three Equations in Three Variables

Solve the following system.

       x−3y + z = 4 (1)
 − x + 2y−5z = 3 (2)
5x−13y + 13z = 8 (3)

Solution
Looking at the coefficients of  x,  we can see that we can eliminate  x  by adding equation (1) to equation (2).

     x−3y + z = 4    (1)
−x + 2y−5z = 3    (2)
        − y−4z = 7    (4)

Next, we multiply equation (1) by  −5  and add it to equation (3).

−5x + 15y − 5z = −20 (1) multiplied by −5
5x − 13y + 13z = 8 (3)______________________________________
             2y + 8z = −12 (5)

Then, we multiply equation (4) by 2 and add it to equation (5).
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−2y − 8z = 14     (4) multiplied by 2
    2y + 8z = − 12  (5)_______________________________________
                       0 = 2

 

The final equation  0 = 2  is a contradiction, so we conclude that the system of equations in inconsistent and,
therefore, has no solution.

Analysis
In this system, each plane intersects the other two, but not at the same location. Therefore, the system is
inconsistent.

Solve the system of three equations in three variables.

   x + y + z = 2
        y−3z = 1
2x + y + 5z = 0

Expressing the Solution of a System of Dependent Equations
Containing Three Variables
We know from working with systems of equations in two variables that a dependent system of equations has an infinite
number of solutions. The same is true for dependent systems of equations in three variables. An infinite number of solutions
can result from several situations. The three planes could be the same, so that a solution to one equation will be the solution
to the other two equations. All three equations could be different but they intersect on a line, which has infinite solutions.
Or two of the equations could be the same and intersect the third on a line.

Example 11.16

Finding the Solution to a Dependent System of Equations

Find the solution to the given system of three equations in three variables.

  2x + y−3z = 0 (1)
4x + 2y−6z = 0 (2)
     x − y + z = 0 (3)

Solution
First, we can multiply equation (1) by  −2  and add it to equation (2).

−4x−2y + 6z = 0    equation (1) multiplied by −2
    4x + 2y−6z = 0                   (2)____________________________________________

                                     0 = 0

We do not need to proceed any further. The result we get is an identity,  0 = 0, which tells us that this system has
an infinite number of solutions. There are other ways to begin to solve this system, such as multiplying equation
(3) by  −2, and adding it to equation (1). We then perform the same steps as above and find the same result,
 0 = 0.

When a system is dependent, we can find general expressions for the solutions. Adding equations (1) and (3), we
have
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2x + y−3z = 0
   x − y + z = 0_____________

  3x−2z = 0

We then solve the resulting equation for  z.

3x−2z = 0
          z = 3

2x

We back-substitute the expression for  z  into one of the equations and solve for  y.

2x + y − 3⎛
⎝
3
2x⎞

⎠ = 0

     2x + y − 9
2x = 0

y = 9
2x − 2x

y = 5
2x

So the general solution is  ⎛⎝x, 5
2x, 3

2x⎞
⎠.  In this solution,  x  can be any real number. The values of  y  and  z  are

dependent on the value selected for  x.

Analysis
As shown in Figure 11.18, two of the planes are the same and they intersect the third plane on a line. The
solution set is infinite, as all points along the intersection line will satisfy all three equations.

Figure 11.18

Does the generic solution to a dependent system always have to be written in terms of  x?

No, you can write the generic solution in terms of any of the variables, but it is common to write it in terms of x
and if needed  x  and  y.

Solve the following system.

     x + y + z = 7
 3x − 2y − z = 4
 x + 6y + 5z = 24
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Access these online resources for additional instruction and practice with systems of equations in three variables.

• Ex 1: System of Three Equations with Three Unknowns Using Elimination
(http://openstaxcollege.org/l/systhree)

• Ex. 2: System of Three Equations with Three Unknowns Using Elimination
(http://openstaxcollege.org/l/systhelim)
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11.2 EXERCISES
Verbal

Can a linear system of three equations have exactly two
solutions? Explain why or why not

If a given ordered triple solves the system of equations,
is that solution unique? If so, explain why. If not, give an
example where it is not unique.

If a given ordered triple does not solve the system of
equations, is there no solution? If so, explain why. If not,
give an example.

Using the method of addition, is there only one way to
solve the system?

Can you explain whether there can be only one method
to solve a linear system of equations? If yes, give an
example of such a system of equations. If not, explain why
not.

Algebraic
For the following exercises, determine whether the ordered
triple given is the solution to the system of equations.

2x−6y + 6z = −12
  x + 4y + 5z = −1
−x + 2y + 3z = −1 

and  (0, 1, −1)

 6x − y + 3z = 6
3x + 5y + 2z = 0 
           x + y = 0

and (3, −3, −5)

6x−7y + z = 2
−x − y + 3z = 4 
  2x + y − z = 1

and  (4, 2, −6)

     x − y = 0
      x − z = 5
x − y + z = −1 

and  (4, 4, −1)

−x − y + 2z = 3
 5x + 8y−3z = 4
−x + 3y−5z = −5 

and  (4, 1, −7)

For the following exercises, solve each system by
substitution.

3x−4y + 2z = −15
  2x + 4y + z = 16
 2x + 3y + 5z = 20

5x−2y + 3z = 20
2x−4y−3z = −9
  x + 6y−8z = 21

 5x + 2y + 4z = 9
−3x + 2y + z = 10
 4x−3y + 5z = −3

4x−3y + 5z = 31
−x + 2y + 4z = 20
   x + 5y−2z = −29

  5x−2y + 3z = 4
−4x + 6y−7z = −1
    3x + 2y − z = 4

    4x + 6y + 9z = 0
−5x + 2y−6z = 3

  7x−4y + 3z = −3

For the following exercises, solve each system by Gaussian
elimination.

    2x − y + 3z = 17
−5x + 4y−2z = −46
           2y + 5z = −7

5x−6y + 3z = 50
− x + 4y = 10

         2x − z = 10

    2x + 3y−6z = 1
−4x−6y + 12z = −2
      x + 2y + 5z = 10

 4x + 6y−2z = 8
 6x + 9y−3z = 12
−2x−3y + z = −4

 2x + 3y−4z = 5
−3x + 2y + z = 11
−x + 5y + 3z = 4

10x + 2y−14z = 8
  −x−2y−4z = −1
−12x−6y + 6z = −12
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    x + y + z = 14
      2y + 3z = −14
−16y−24z = −112

  5x−3y + 4z = −1
−4x + 2y−3z = 0
 −x + 5y + 7z = −11

       x + y + z = 0
   2x − y + 3z = 0
             x − z = 0

3x + 2y−5z = 6
5x−4y + 3z = −12
4x + 5y−2z = 15

    x + y + z = 0
2x − y + 3z = 0
          x − z = 1

3x − 1
2y − z = − 1

2
         4x + z = 3
    − x + 3

2y = 5
2

    6x−5y + 6z = 38
1
5x − 1

2y + 3
5z = 1

 −4x − 3
2y − z = −74

    12x − 1
5y + 2

5z = − 13
10

    14x − 2
5y − 1

5z = − 7
20

−1
2x − 3

4y − 1
2z = − 5

4

−1
3x − 1

2y − 1
4z = 3

4

−1
2x − 1

4y − 1
2z = 2

−1
4x − 3

4y − 1
2z = − 1

2

1
2x − 1

4y + 3
4z = 0

1
4x − 1

10y + 2
5z = −2

1
8x + 1

5y − 1
8z = 2

  45x − 7
8y + 1

2z = 1

−4
5x − 3

4y + 1
3z = −8

−2
5x − 7

8y + 1
2z = −5

−1
3x − 1

8y + 1
6z = − 4

3

−2
3x − 7

8y + 1
3z = − 23

3
−1

3x − 5
8y + 5

6z = 0

−1
4x − 5

4y + 5
2z = −5

−1
2x − 5

3y + 5
4z = 55

12
−1

3x − 1
3y + 1

3z = 5
3

1
40x + 1

60y + 1
80z = 1

100
 − 1

2x − 1
3y − 1

4z = − 1
5

   38x + 3
12y + 3

16z = 3
20

0.1x−0.2y + 0.3z = 2
0.5x−0.1y + 0.4z = 8
0.7x−0.2y + 0.3z = 8

0.2x + 0.1y−0.3z = 0.2
0.8x + 0.4y−1.2z = 0.1
1.6x + 0.8y−2.4z = 0.2

1.1x + 0.7y−3.1z = −1.79
2.1x + 0.5y−1.6z = −0.13
0.5x + 0.4y−0.5z = −0.07

0.5x−0.5y + 0.5z = 10
0.2x−0.2y + 0.2z = 4
0.1x−0.1y + 0.1z = 2

0.1x + 0.2y + 0.3z = 0.37
0.1x−0.2y−0.3z = −0.27
0.5x−0.1y−0.3z = −0.03

0.5x−0.5y−0.3z = 0.13
0.4x−0.1y−0.3z = 0.11
0.2x−0.8y−0.9z = −0.32

0.5x + 0.2y−0.3z = 1
0.4x−0.6y + 0.7z = 0.8
0.3x−0.1y−0.9z = 0.6
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0.3x + 0.3y + 0.5z = 0.6
0.4x + 0.4y + 0.4z = 1.8
0.4x + 0.2y + 0.1z = 1.6

0.8x + 0.8y + 0.8z = 2.4
0.3x−0.5y + 0.2z = 0
0.1x + 0.2y + 0.3z = 0.6

Extensions
For the following exercises, solve the system for  x, y, and

 z.

                 x + y + z = 3
x−1

2 + y−3
2 + z + 1

2 = 0

x−2
3 + y + 4

3 + z−3
3 = 2

3

5x−3y − z + 1
2 = 1

2

6x + y−9
2 + 2z = −3

  x + 8
2 −4y + z = 4

x + 4
7 − y−1

6 + z + 2
3 = 1

x−2
4 + y + 1

8 − z + 8
12 = 0

x + 6
3 − y + 2

3 + z + 4
2 = 3

x−3
6 + y + 2

2 − z−3
3 = 2

x + 2
4 + y−5

2 + z + 4
2 = 1

x + 6
2 − y−3

2 + z + 1 = 9

    x−1
3 + y + 3

4 + z + 2
6 = 1

                4x + 3y−2z = 11
0.02x + 0.015y−0.01z = 0.065

Real-World Applications

Three even numbers sum up to 108. The smaller is
half the larger and the middle number is  34   the larger. What

are the three numbers?

Three numbers sum up to 147. The smallest number is
half the middle number, which is half the largest number.
What are the three numbers?

At a family reunion, there were only blood relatives,
consisting of children, parents, and grandparents, in

attendance. There were 400 people total. There were twice
as many parents as grandparents, and 50 more children than
parents. How many children, parents, and grandparents
were in attendance?

An animal shelter has a total of 350 animals
comprised of cats, dogs, and rabbits. If the number of
rabbits is 5 less than one-half the number of cats, and there
are 20 more cats than dogs, how many of each animal are at
the shelter?

Your roommate, Sarah, offered to buy groceries for
you and your other roommate. The total bill was $82. She
forgot to save the individual receipts but remembered that
your groceries were $0.05 cheaper than half of her
groceries, and that your other roommate’s groceries were
$2.10 more than your groceries. How much was each of
your share of the groceries?

Your roommate, John, offered to buy household
supplies for you and your other roommate. You live near
the border of three states, each of which has a different sales
tax. The total amount of money spent was $100.75. Your
supplies were bought with 5% tax, John’s with 8% tax, and
your third roommate’s with 9% sales tax. The total amount
of money spent without taxes is $93.50. If your supplies
before tax were $1 more than half of what your third
roommate’s supplies were before tax, how much did each
of you spend? Give your answer both with and without
taxes.

Three coworkers work for the same employer. Their
jobs are warehouse manager, office manager, and truck
driver. The sum of the annual salaries of the warehouse
manager and office manager is $82,000. The office
manager makes $4,000 more than the truck driver annually.
The annual salaries of the warehouse manager and the truck
driver total $78,000. What is the annual salary of each of
the co-workers?

At a carnival, $2,914.25 in receipts were taken at the
end of the day. The cost of a child’s ticket was $20.50, an
adult ticket was $29.75, and a senior citizen ticket was
$15.25. There were twice as many senior citizens as adults
in attendance, and 20 more children than senior citizens.
How many children, adult, and senior citizen tickets were
sold?

A local band sells out for their concert. They sell all
1,175 tickets for a total purse of $28,112.50. The tickets
were priced at $20 for student tickets, $22.50 for children,
and $29 for adult tickets. If the band sold twice as many
adult as children tickets, how many of each type was sold?

In a bag, a child has 325 coins worth $19.50. There
were three types of coins: pennies, nickels, and dimes. If
the bag contained the same number of nickels as dimes,
how many of each type of coin was in the bag?

1244 Chapter 11 Systems of Equations and Inequalities

This content is available for free at https://cnx.org/content/col11758/1.5



139.

140.

141.

142.

143.

144.

145.

146.

147.

Last year, at Haven’s Pond Car Dealership, for a particular
model of BMW, Jeep, and Toyota, one could purchase
all three cars for a total of $140,000. This year, due to
inflation, the same cars would cost $151,830. The cost of
the BMW increased by 8%, the Jeep by 5%, and the Toyota
by 12%. If the price of last year’s Jeep was $7,000 less than
the price of last year’s BMW, what was the price of each of
the three cars last year?

A recent college graduate took advantage of his
business education and invested in three investments
immediately after graduating. He invested $80,500 into
three accounts, one that paid 4% simple interest, one that
paid  31

8%  simple interest, and one that paid  21
2%  simple

interest. He earned $2,670 interest at the end of one year. If
the amount of the money invested in the second account
was four times the amount invested in the third account,
how much was invested in each account?

You inherit one million dollars. You invest it all in
three accounts for one year. The first account pays 3%
compounded annually, the second account pays 4%
compounded annually, and the third account pays 2%
compounded annually. After one year, you earn $34,000 in
interest. If you invest four times the money into the account
that pays 3% compared to 2%, how much did you invest in
each account?

You inherit one hundred thousand dollars. You invest
it all in three accounts for one year. The first account pays
4% compounded annually, the second account pays 3%
compounded annually, and the third account pays 2%
compounded annually. After one year, you earn $3,650 in
interest. If you invest five times the money in the account
that pays 4% compared to 3%, how much did you invest in
each account?

The top three countries in oil consumption in a certain
year are as follows: the United States, Japan, and China. In
millions of barrels per day, the three top countries
consumed 39.8% of the world’s consumed oil. The United
States consumed 0.7% more than four times China’s
consumption. The United States consumed 5% more than
triple Japan’s consumption. What percent of the world oil
consumption did the United States, Japan, and China
consume?[1]

The top three countries in oil production in the same
year are Saudi Arabia, the United States, and Russia. In
millions of barrels per day, the top three countries produced
31.4% of the world’s produced oil. Saudi Arabia and the
United States combined for 22.1% of the world’s

production, and Saudi Arabia produced 2% more oil than
Russia. What percent of the world oil production did Saudi
Arabia, the United States, and Russia produce?[2]

The top three sources of oil imports for the United
States in the same year were Saudi Arabia, Mexico, and
Canada. The three top countries accounted for 47% of oil
imports. The United States imported 1.8% more from Saudi
Arabia than they did from Mexico, and 1.7% more from
Saudi Arabia than they did from Canada. What percent of
the United States oil imports were from these three
countries?[3]

The top three oil producers in the United States in a
certain year are the Gulf of Mexico, Texas, and Alaska. The
three regions were responsible for 64% of the United States
oil production. The Gulf of Mexico and Texas combined for
47% of oil production. Texas produced 3% more than
Alaska. What percent of United States oil production came
from these regions?[4]

At one time, in the United States, 398 species of
animals were on the endangered species list. The top groups
were mammals, birds, and fish, which comprised 55% of
the endangered species. Birds accounted for 0.7% more
than fish, and fish accounted for 1.5% more than mammals.
What percent of the endangered species came from
mammals, birds, and fish?

Meat consumption in the United States can be broken
into three categories: red meat, poultry, and fish. If fish
makes up 4% less than one-quarter of poultry consumption,
and red meat consumption is 18.2% higher than poultry
consumption, what are the percentages of meat
consumption?[5]

1. “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.
2. “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.
3. “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.
4. “USA: The coming global oil crisis,” accessed April 6, 2014, http://www.oilcrisis.com/us/.
5. “The United States Meat Industry at a Glance,” accessed April 6, 2014, http://www.meatami.com/ht/d/sp/i/47465/pid/
47465.
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11.3 | Systems of Nonlinear Equations and Inequalities:
Two Variables

Learning Objectives

In this section, you will:

11.3.1 Solve a system of nonlinear equations using substitution.
11.3.2 Solve a system of nonlinear equations using elimination.
11.3.3 Graph a nonlinear inequality.
11.3.4 Graph a system of nonlinear inequalities.

Halley’s Comet (Figure 11.19) orbits the sun about once every 75 years. Its path can be considered to be a very elongated
ellipse. Other comets follow similar paths in space. These orbital paths can be studied using systems of equations. These
systems, however, are different from the ones we considered in the previous section because the equations are not linear.

Figure 11.19 Halley’s Comet (credit: "NASA
Blueshift"/Flickr)

In this section, we will consider the intersection of a parabola and a line, a circle and a line, and a circle and an ellipse. The
methods for solving systems of nonlinear equations are similar to those for linear equations.

Solving a System of Nonlinear Equations Using Substitution
A system of nonlinear equations is a system of two or more equations in two or more variables containing at least one
equation that is not linear. Recall that a linear equation can take the form  Ax + By + C = 0. Any equation that cannot be

written in this form in nonlinear. The substitution method we used for linear systems is the same method we will use for
nonlinear systems. We solve one equation for one variable and then substitute the result into the second equation to solve
for another variable, and so on. There is, however, a variation in the possible outcomes.

Intersection of a Parabola and a Line
There are three possible types of solutions for a system of nonlinear equations involving a parabola and a line.

Possible Types of Solutions for Points of Intersection of a Parabola and a Line

Figure 11.20 illustrates possible solution sets for a system of equations involving a parabola and a line.

• No solution. The line will never intersect the parabola.

• One solution. The line is tangent to the parabola and intersects the parabola at exactly one point.

• Two solutions. The line crosses on the inside of the parabola and intersects the parabola at two points.
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Figure 11.20

Given a system of equations containing a line and a parabola, find the solution.

1. Solve the linear equation for one of the variables.

2. Substitute the expression obtained in step one into the parabola equation.

3. Solve for the remaining variable.

4. Check your solutions in both equations.

Example 11.17

Solving a System of Nonlinear Equations Representing a Parabola and a Line

Solve the system of equations.

x − y = −1

          y = x2 + 1

Solution
Solve the first equation for  x  and then substitute the resulting expression into the second equation.

x − y = −1
      x = y−1 Solve for x.

      y = x2 + 1

      y = (y−1)2 + 1 Substitute expression for x.

Expand the equation and set it equal to zero.

y = (y−1)2

  = (y2 −2y + 1) + 1

  = y2 −2y + 2

0 = y2 −3y + 2
  = (y−2)(y−1)
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Solving for  y  gives  y = 2  and  y = 1. Next, substitute each value for  y  into the first equation to solve for  x. 
Always substitute the value into the linear equation to check for extraneous solutions.

   x − y = −1
x − (2) = −1
         x = 1

x − (1) = −1
         x = 0

The solutions are  (1, 2)  and  (0, 1), which can be verified by substituting these  (x, y)  values into both of the

original equations. See Figure 11.21.

Figure 11.21

Could we have substituted values for  y  into the second equation to solve for  x  in Example 11.17?

Yes, but because  x  is squared in the second equation this could give us extraneous solutions for  x.

For  y = 1

  y = x2 + 1

    y = x2 + 1

 x2 = 0
  x = ± 0 = 0

This gives us the same value as in the solution.

For  y = 2

  y = x2 + 1

   2 = x2 + 1
x2 = 1
  x = ± 1 = ± 1

Notice that  −1  is an extraneous solution.

Solve the given system of equations by substitution.

   3x − y = −2

2x2 − y = 0
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Intersection of a Circle and a Line
Just as with a parabola and a line, there are three possible outcomes when solving a system of equations representing a circle
and a line.

Possible Types of Solutions for the Points of Intersection of a Circle and a Line

Figure 11.22 illustrates possible solution sets for a system of equations involving a circle and a line.

• No solution. The line does not intersect the circle.

• One solution. The line is tangent to the circle and intersects the circle at exactly one point.

• Two solutions. The line crosses the circle and intersects it at two points.

Figure 11.22

Given a system of equations containing a line and a circle, find the solution.

1. Solve the linear equation for one of the variables.

2. Substitute the expression obtained in step one into the equation for the circle.

3. Solve for the remaining variable.

4. Check your solutions in both equations.

Example 11.18

Finding the Intersection of a Circle and a Line by Substitution

Find the intersection of the given circle and the given line by substitution.

x2 + y2 = 5
                y = 3x−5

Solution
One of the equations has already been solved for  y. We will substitute  y = 3x−5  into the equation for the circle.

              x2 + (3x−5)2 = 5
x2 + 9x2 −30x + 25 = 5
           10x2 −30x + 20 = 0
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Now, we factor and solve for  x.

 10(x2 − 3x + 2) = 0
10(x − 2)(x − 1) = 0

              x = 2
              x = 1

Substitute the two x-values into the original linear equation to solve for  y.

y = 3(2)−5
= 1

y = 3(1)−5
= −2

The line intersects the circle at  (2, 1)  and  (1, −2), which can be verified by substituting these  (x, y)  values into

both of the original equations. See Figure 11.23.

Figure 11.23

Solve the system of nonlinear equations.

x2 + y2 = 10
  x−3y = −10

Solving a System of Nonlinear Equations Using Elimination
We have seen that substitution is often the preferred method when a system of equations includes a linear equation and a
nonlinear equation. However, when both equations in the system have like variables of the second degree, solving them
using elimination by addition is often easier than substitution. Generally, elimination is a far simpler method when the
system involves only two equations in two variables (a two-by-two system), rather than a three-by-three system, as there
are fewer steps. As an example, we will investigate the possible types of solutions when solving a system of equations
representing a circle and an ellipse.

Possible Types of Solutions for the Points of Intersection of a Circle and an Ellipse

Figure 11.24 illustrates possible solution sets for a system of equations involving a circle and an ellipse.
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• No solution. The circle and ellipse do not intersect. One shape is inside the other or the circle and the ellipse
are a distance away from the other.

• One solution. The circle and ellipse are tangent to each other, and intersect at exactly one point.

• Two solutions. The circle and the ellipse intersect at two points.

• Three solutions. The circle and the ellipse intersect at three points.

• Four solutions. The circle and the ellipse intersect at four points.

Figure 11.24

Example 11.19

Solving a System of Nonlinear Equations Representing a Circle and an Ellipse

Solve the system of nonlinear equations.

x2 + y2 = 26    (1)

3x2 + 25y2 = 100 (2)

Solution
Let’s begin by multiplying equation (1) by  −3, and adding it to equation (2).

  ( − 3)(x2 + y2) = ( − 3)(26)

      − 3x2 − 3y2 = − 78

         3x2 + 25y2 = 100
      22y2 = 22

After we add the two equations together, we solve for  y.

y2 = 1
   y = ± 1 = ± 1

Substitute  y = ± 1  into one of the equations and solve for  x.
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    x2 + (1)2 = 26
         x2 + 1 = 26
               x2 = 25
                 x = ± 25 = ± 5

x2 + (−1)2 = 26
         x2 + 1 = 26

x2 = 25 = ± 5

There are four solutions:  (5, 1), (−5, 1), (5, −1), and (−5, −1).  See Figure 11.25.

Figure 11.25

Find the solution set for the given system of nonlinear equations.

4x2 + y2 = 13

   x2 + y2 = 10

Graphing a Nonlinear Inequality
All of the equations in the systems that we have encountered so far have involved equalities, but we may also encounter
systems that involve inequalities. We have already learned to graph linear inequalities by graphing the corresponding
equation, and then shading the region represented by the inequality symbol. Now, we will follow similar steps to graph a
nonlinear inequality so that we can learn to solve systems of nonlinear inequalities. A nonlinear inequality is an inequality
containing a nonlinear expression. Graphing a nonlinear inequality is much like graphing a linear inequality.

Recall that when the inequality is greater than,  y > a, or less than,  y < a, the graph is drawn with a dashed line. When

the inequality is greater than or equal to,  y ≥ a, or less than or equal to,  y ≤ a, the graph is drawn with a solid line. The

graphs will create regions in the plane, and we will test each region for a solution. If one point in the region works, the
whole region works. That is the region we shade. See Figure 11.26.
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Figure 11.26 (a) an example of  y > a;   (b) an example of  y ≥ a;   (c) an example of  y < a;   (d) an example of  y ≤ a 

Given an inequality bounded by a parabola, sketch a graph.

1. Graph the parabola as if it were an equation. This is the boundary for the region that is the solution set.

2. If the boundary is included in the region (the operator is   ≤   or   ≥ ), the parabola is graphed as a solid
line.

3. If the boundary is not included in the region (the operator is < or >), the parabola is graphed as a dashed
line.

4. Test a point in one of the regions to determine whether it satisfies the inequality statement. If the statement
is true, the solution set is the region including the point. If the statement is false, the solution set is the
region on the other side of the boundary line.

5. Shade the region representing the solution set.

Example 11.20

Graphing an Inequality for a Parabola

Graph the inequality  y > x2 + 1.

Solution

First, graph the corresponding equation  y = x2 + 1.  Since  y > x2 + 1  has a greater than symbol, we draw the

graph with a dashed line. Then we choose points to test both inside and outside the parabola. Let’s test the points
(0, 2)  and  (2, 0). One point is clearly inside the parabola and the other point is clearly outside.
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y > x2 + 1

2 > (0)2 + 1
2 > 1 True

0 > (2)2 + 1
0 > 5 False

The graph is shown in Figure 11.27. We can see that the solution set consists of all points inside the parabola,
but not on the graph itself.

Figure 11.27

Graphing a System of Nonlinear Inequalities
Now that we have learned to graph nonlinear inequalities, we can learn how to graph systems of nonlinear inequalities. A
system of nonlinear inequalities is a system of two or more inequalities in two or more variables containing at least one
inequality that is not linear. Graphing a system of nonlinear inequalities is similar to graphing a system of linear inequalities.
The difference is that our graph may result in more shaded regions that represent a solution than we find in a system of
linear inequalities. The solution to a nonlinear system of inequalities is the region of the graph where the shaded regions of
the graph of each inequality overlap, or where the regions intersect, called the feasible region.

Given a system of nonlinear inequalities, sketch a graph.

1. Find the intersection points by solving the corresponding system of nonlinear equations.

2. Graph the nonlinear equations.

3. Find the shaded regions of each inequality.

4. Identify the feasible region as the intersection of the shaded regions of each inequality or the set of points
common to each inequality.

Example 11.21

Graphing a System of Inequalities

Graph the given system of inequalities.
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x2 − y ≤ 0   
2x2 + y ≤ 12

Solution
These two equations are clearly parabolas. We can find the points of intersection by the elimination process: Add
both equations and the variable  y will be eliminated. Then we solve for  x.

x2 − y = 0

2x2 + y = 12____________

      3x2 = 12
        x2 = 4
          x = ± 2

Substitute the x-values into one of the equations and solve for  y.

x2 − y = 0

(2)2 − y = 0
4 − y = 0

y = 4

(−2)2 − y = 0
4 − y = 0

y = 4

The two points of intersection are  (2, 4)  and  (−2, 4). Notice that the equations can be rewritten as follows.

    x2 − y ≤ 0

             x2 ≤ y

               y ≥ x2

2x2 + y ≤ 12

                y ≤ −2x2 + 12

Graph each inequality. See Figure 11.28. The feasible region is the region between the two equations bounded
by  2x2 + y ≤ 12  on the top and  x2 − y ≤ 0  on the bottom.
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Figure 11.28

Graph the given system of inequalities.

      y ≥ x2 − 1
x − y ≥ − 1

Access these online resources for additional instruction and practice with nonlinear equations.

• Solve a System of Nonlinear Equations Using Substitution (http://openstaxcollege.org/l/
nonlinsub)

• Solve a System of Nonlinear Equations Using Elimination (http://openstaxcollege.org/l/
nonlinelim)
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11.3 EXERCISES
Verbal

Explain whether a system of two nonlinear equations
can have exactly two solutions. What about exactly three?
If not, explain why not. If so, give an example of such a
system, in graph form, and explain why your choice gives
two or three answers.

When graphing an inequality, explain why we only
need to test one point to determine whether an entire region
is the solution?

When you graph a system of inequalities, will there
always be a feasible region? If so, explain why. If not, give
an example of a graph of inequalities that does not have a
feasible region. Why does it not have a feasible region?

If you graph a revenue and cost function, explain how
to determine in what regions there is profit.

If you perform your break-even analysis and there is
more than one solution, explain how you would determine
which x-values are profit and which are not.

Algebraic
For the following exercises, solve the system of nonlinear
equations using substitution.

   x + y = 4

x2 + y2 = 9

         y = x−3

x2 + y2 = 9

         y = x

x2 + y2 = 9

         y = − x

x2 + y2 = 9

         x = 2
x2 − y2 = 9

For the following exercises, solve the system of nonlinear
equations using elimination.

4x2 −9y2 = 36

4x2 + 9y2 = 36

x2 + y2 = 25

x2 − y2 = 1

2x2 + 4y2 = 4

2x2 −4y2 = 25x−10

y2 − x2 = 9
3x2 + 2y2 = 8

x2 + y2 + 1
16 = 2500

y = 2x2

For the following exercises, use any method to solve the
system of nonlinear equations.

−2x2 + y = −5

    6x − y = 9

−x2 + y = 2

 − x + y = 2

x2 + y2 = 1

          y = 20x2 −1

x2 + y2 = 1

          y = − x2

2x3 − x2 = y

           y = 1
2 − x

     9x2 + 25y2 = 225

(x−6)2 + y2 = 1

x4 − x2 = y

  x2 + y = 0

2x3 − x2 = y

    x2 + y = 0

For the following exercises, use any method to solve the
nonlinear system.

x2 + y2 = 9

         y = 3 − x2

x2 − y2 = 9
          x = 3
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199.

x2 − y2 = 9
          y = 3

x2 − y2 = 9
    x − y = 0

−x2 + y = 2
−4x + y = −1

−x2 + y = 2
         2y = − x

x2 + y2 = 25

x2 − y2 = 36

x2 + y2 = 1

        y2 = x2

16x2 −9y2 + 144 = 0

                y2 + x2 = 16

      3x2 − y2 = 12

(x−1)2 + y2 = 1

      3x2 − y2 = 12

(x−1)2 + y2 = 4

3x2 − y2 = 12

   x2 + y2 = 16

 x2 − y2 − 6x − 4y − 11 = 0

   − x2 + y2 = 5

x2 + y2 −6y = 7

          x2 + y = 1

x2 + y2 = 6
        xy = 1

Graphical
For the following exercises, graph the inequality.

x2 + y < 9

x2 + y2 < 4

For the following exercises, graph the system of
inequalities. Label all points of intersection.

x2 + y < 1
y > 2x

x2 + y < −5
y > 5x + 10

x2 + y2 < 25
3x2 − y2 > 12

x2 − y2 > −4

x2 + y2 < 12

x2 + 3y2 > 16
3x2 − y2 < 1

Extensions
For the following exercises, graph the inequality.

y ≥ ex

y ≤ ln(x) + 5

y ≤ − log(x)
y ≤ ex

For the following exercises, find the solutions to the
nonlinear equations with two variables.

4
x2 + 1

y2 = 24

5
x2 − 2

y2 + 4 = 0

6
x2 − 1

y2 = 8

1
x2 − 6

y2 = 1
8

x2 − xy + y2 −2 = 0
               x + 3y = 4

x2 − xy−2y2 −6 = 0

               x2 + y2 = 1

x2 + 4xy−2y2 −6 = 0
x = y + 2
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201.

202.

203.

204.

205.

Technology
For the following exercises, solve the system of
inequalities. Use a calculator to graph the system to confirm
the answer.

xy < 1
y > x

x2 + y < 3
y > 2x

Real-World Applications
For the following exercises, construct a system of nonlinear
equations to describe the given behavior, then solve for the
requested solutions.

Two numbers add up to 300. One number is twice the
square of the other number. What are the numbers?

The squares of two numbers add to 360. The second
number is half the value of the first number squared. What
are the numbers?

A laptop company has discovered their cost and
revenue functions for each day:  C(x) = 3x2 −10x + 200 
and  R(x) = −2x2 + 100x + 50.  If they want to make a
profit, what is the range of laptops per day that they should
produce? Round to the nearest number which would
generate profit.

A cell phone company has the following cost and
revenue functions:  C(x) = 8x2 −600x + 21,500  and

 R(x) = −3x2 + 480x. What is the range of cell phones
they should produce each day so there is profit? Round to
the nearest number that generates profit.
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11.4 | Partial Fractions

Learning Objectives

In this section, you will:

11.4.1 Decompose P( x ) Q( x ) , where Q( x ) has only nonrepeated linear factors.
11.4.2 Decompose P( x ) Q( x ) , where Q( x ) has repeated linear factors.
11.4.3 Decompose P( x ) Q( x ) , where Q( x ) has a nonrepeated irreducible quadratic factor.
11.4.4 Decompose P( x ) Q( x ) , where Q( x ) has a repeated irreducible quadratic factor.

Earlier in this chapter, we studied systems of two equations in two variables, systems of three equations in three variables,
and nonlinear systems. Here we introduce another way that systems of equations can be utilized—the decomposition of
rational expressions.

Fractions can be complicated; adding a variable in the denominator makes them even more so. The methods studied in this
section will help simplify the concept of a rational expression.

Decomposing  P(x)
Q(x)  Where Q(x) Has Only Nonrepeated Linear Factors

Recall the algebra regarding adding and subtracting rational expressions. These operations depend on finding a common
denominator so that we can write the sum or difference as a single, simplified rational expression. In this section, we will
look at partial fraction decomposition, which is the undoing of the procedure to add or subtract rational expressions. In other
words, it is a return from the single simplified rational expression to the original expressions, called the partial fractions.

For example, suppose we add the following fractions:

2
x−3 + −1

x + 2

We would first need to find a common denominator,  (x + 2)(x−3).

Next, we would write each expression with this common denominator and find the sum of the terms.

2
x − 3

⎛
⎝
x + 2
x + 2

⎞
⎠ + −1

x + 2
⎛
⎝
x − 3
x − 3

⎞
⎠ =

2x + 4 − x + 3
(x + 2)(x − 3) = x + 7

x2 − x − 6

Partial fraction decomposition is the reverse of this procedure. We would start with the solution and rewrite (decompose) it
as the sum of two fractions.

x + 7
x2 − x−6

Simplifie  sum

= 2
x−3 + −1

x + 2
Partial fraction decomposition

We will investigate rational expressions with linear factors and quadratic factors in the denominator where the degree of the
numerator is less than the degree of the denominator. Regardless of the type of expression we are decomposing, the first
and most important thing to do is factor the denominator.

When the denominator of the simplified expression contains distinct linear factors, it is likely that each of the original
rational expressions, which were added or subtracted, had one of the linear factors as the denominator. In other words, using
the example above, the factors of  x2 − x−6  are  (x−3)(x + 2),   the denominators of the decomposed rational expression.
So we will rewrite the simplified form as the sum of individual fractions and use a variable for each numerator. Then, we
will solve for each numerator using one of several methods available for partial fraction decomposition.

1260 Chapter 11 Systems of Equations and Inequalities

This content is available for free at https://cnx.org/content/col11758/1.5



Partial Fraction Decomposition of  P(x)
Q(x) : Q(x) Has Nonrepeated Linear Factors

The partial fraction decomposition of  P(x)
Q(x)  when  Q(x)  has nonrepeated linear factors and the degree of  P(x)  is less

than the degree of  Q(x)  is

P(x)
Q(x) = A1

⎛
⎝a1 x + b1

⎞
⎠
+ A2

⎛
⎝a2 x + b2

⎞
⎠
+ A3

⎛
⎝a3 x + b3

⎞
⎠

+ ⋅ ⋅ ⋅ + An
⎛
⎝an x + bn

⎞
⎠
.

Given a rational expression with distinct linear factors in the denominator, decompose it.

1. Use a variable for the original numerators, usually  A, B,  or  C,   depending on the number of factors,
placing each variable over a single factor. For the purpose of this definition, we use  An   for each
numerator

P(x)
Q(x) = A1

⎛
⎝a1 x + b1

⎞
⎠
+ A2

⎛
⎝a2 x + b2

⎞
⎠
+ ⋯ + An

⎛
⎝an x + bn

⎞
⎠

2. Multiply both sides of the equation by the common denominator to eliminate fractions.

3. Expand the right side of the equation and collect like terms.

4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a
system of equations to solve for the numerators.

Example 11.22

Decomposing a Rational Function with Distinct Linear Factors

Decompose the given rational expression with distinct linear factors.

3x
(x + 2)(x−1)

Solution
We will separate the denominator factors and give each numerator a symbolic label, like  A, B , or  C.

3x
(x + 2)(x−1) = A

(x + 2) + B
(x−1)

Multiply both sides of the equation by the common denominator to eliminate the fractions:

(x + 2)(x−1)⎡⎣
3x

(x + 2)(x−1)
⎤
⎦ = (x + 2)(x−1)⎡⎣

A
(x + 2)

⎤
⎦ + (x + 2)(x−1)⎡⎣

B
(x−1)

⎤
⎦

The resulting equation is

3x = A(x−1) + B(x + 2)

Expand the right side of the equation and collect like terms.

3x = Ax − A + Bx + 2B
3x = (A + B)x − A + 2B

Set up a system of equations associating corresponding coefficients.

3 =     A + B
0 = − A + 2B

Chapter 11 Systems of Equations and Inequalities 1261



11.16

Add the two equations and solve for  B.

3 =      A + B
0 = − A + 2B

3  =      0  + 3B
1 = B

Substitute  B = 1  into one of the original equations in the system.

3 = A + 1
2 = A

Thus, the partial fraction decomposition is

3x
(x + 2)(x−1) = 2

(x + 2) + 1
(x−1)

Another method to use to solve for  A  or  B  is by considering the equation that resulted from eliminating the
fractions and substituting a value for  x  that will make either the A- or B-term equal 0. If we let  x = 1,   the
A- term becomes 0 and we can simply solve for  B.

      3x = A(x − 1) + B(x + 2)
3(1) = A[(1) − 1] + B[(1) + 2]

        3 = 0 + 3B
        1 = B

Next, either substitute  B = 1  into the equation and solve for  A,   or make the B-term 0 by substituting  x = −2 
into the equation.

         3x = A(x − 1) + B(x + 2)
  3( − 2) = A[( − 2) − 1] + B[( − 2) + 2]

 − 6 = − 3A + 0
       −6

−3 = A

           2 = A

We obtain the same values for  A  and  B  using either method, so the decompositions are the same using either
method.

3x
(x + 2)(x−1) = 2

(x + 2) + 1
(x−1)

Although this method is not seen very often in textbooks, we present it here as an alternative that may make some
partial fraction decompositions easier. It is known as the Heaviside method, named after Charles Heaviside, a
pioneer in the study of electronics.

Find the partial fraction decomposition of the following expression.
x

(x−3)(x−2)

Decomposing  P(x)
Q(x)  Where Q(x) Has Repeated Linear Factors

Some fractions we may come across are special cases that we can decompose into partial fractions with repeated linear
factors. We must remember that we account for repeated factors by writing each factor in increasing powers.
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Partial Fraction Decomposition of  P(x)
Q(x) : Q(x) Has Repeated Linear Factors

The partial fraction decomposition of  P(x)
Q(x),  when  Q(x)  has a repeated linear factor occurring  n  times and the degree

of  P(x)  is less than the degree of  Q(x),   is

P(x)
Q(x) = A1

(ax + b) + A2
(ax + b)2 + A3

(ax + b)3 + ⋅ ⋅ ⋅ + An
(ax + b)n

Write the denominator powers in increasing order.

Given a rational expression with repeated linear factors, decompose it.

1. Use a variable like  A, B,   or  C  for the numerators and account for increasing powers of the
denominators.

P(x)
Q(x) = A1

(ax + b) + A2
(ax + b)2 +  . . . + An

(ax + b)n

2. Multiply both sides of the equation by the common denominator to eliminate fractions.

3. Expand the right side of the equation and collect like terms.

4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a
system of equations to solve for the numerators.

Example 11.23

Decomposing with Repeated Linear Factors

Decompose the given rational expression with repeated linear factors.

−x2 + 2x + 4
x3 −4x2 + 4x

Solution

The denominator factors are  x(x−2)2. To allow for the repeated factor of  (x−2),   the decomposition will include

three denominators:  x, (x−2),   and  (x−2)2. Thus,

−x2 + 2x + 4
x3 −4x2 + 4x

= A
x + B

(x−2) + C
(x−2)2

Next, we multiply both sides by the common denominator.

x(x−2)2
⎡

⎣
⎢−x2 + 2x + 4

x(x−2)2

⎤

⎦
⎥ =

⎡

⎣
⎢A

x + B
(x−2) + C

(x−2)2

⎤

⎦
⎥x(x−2)2

                − x2 + 2x + 4 = A(x−2)2 + Bx(x−2) + Cx

On the right side of the equation, we expand and collect like terms.

−x2 + 2x + 4 = A(x2 − 4x + 4) + B(x2 − 2x) + Cx
                      = Ax2 − 4Ax + 4A + Bx2 − 2Bx + Cx
                      = (A + B)x2 + ( − 4A − 2B + C)x + 4A
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Next, we compare the coefficients of both sides. This will give the system of equations in three variables:

−x2 + 2x + 4 = (A + B)x2 + (−4A−2B + C)x + 4A
A + B = −1 (1)

−4A−2B + C = 2     (2)
4A = 4     (3)

Solving for  A , we have

4A = 4
  A = 1

Substitute  A = 1  into equation (1).

  A + B = −1
(1) + B = −1
         B = −2

Then, to solve for  C,   substitute the values for  A  and  B  into equation (2).

      −4A−2B + C = 2
−4(1)−2(−2) + C = 2

            −4 + 4 + C = 2
C = 2

Thus,

−x2 + 2x + 4
x3 −4x2 + 4x

= 1
x − 2

(x−2) + 2
(x−2)2

Find the partial fraction decomposition of the expression with repeated linear factors.

6x−11
(x−1)2

Decomposing  P(x)
Q(x),  Where Q(x) Has a Nonrepeated Irreducible

Quadratic Factor
So far, we have performed partial fraction decomposition with expressions that have had linear factors in the denominator,
and we applied numerators  A, B,   or  C  representing constants. Now we will look at an example where one of the factors
in the denominator is a quadratic expression that does not factor. This is referred to as an irreducible quadratic factor. In
cases like this, we use a linear numerator such as  Ax + B, Bx + C,   etc.

Decomposition of  P(x)
Q(x) : Q(x) Has a Nonrepeated Irreducible Quadratic Factor

The partial fraction decomposition of  P(x)
Q(x)   such that  Q(x)  has a nonrepeated irreducible quadratic factor and the

degree of  P(x)  is less than the degree of  Q(x)  is written as

P(x)
Q(x) = A1 x + B1

⎛
⎝a1 x2 + b1 x + c1

⎞
⎠

+ A2 x + B2
⎛
⎝a2 x2 + b2 x + c2

⎞
⎠

+ ⋅ ⋅ ⋅ + An x + Bn
⎛
⎝an x2 + bn x + cn

⎞
⎠

1264 Chapter 11 Systems of Equations and Inequalities

This content is available for free at https://cnx.org/content/col11758/1.5



The decomposition may contain more rational expressions if there are linear factors. Each linear factor will have a
different constant numerator:  A, B, C,   and so on.

Given a rational expression where the factors of the denominator are distinct, irreducible quadratic factors,
decompose it.

1. Use variables such as  A, B,   or  C  for the constant numerators over linear factors, and linear expressions
such as  A1 x + B1, A2 x + B2,   etc., for the numerators of each quadratic factor in the denominator.

P(x)
Q(x) = A

ax + b + A1 x + B1
⎛
⎝a1 x2 + b1 x + c1

⎞
⎠

+ A2 x + B2
⎛
⎝a2 x2 + b2 x + c2

⎞
⎠

+ ⋅ ⋅ ⋅ + An x + Bn
⎛
⎝an x2 + bn x + cn

⎞
⎠

2. Multiply both sides of the equation by the common denominator to eliminate fractions.

3. Expand the right side of the equation and collect like terms.

4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a
system of equations to solve for the numerators.

Example 11.24

Decomposing  P(x)
Q(x)  When Q(x) Contains a Nonrepeated Irreducible Quadratic

Factor

Find a partial fraction decomposition of the given expression.

8x2 + 12x−20
(x + 3)⎛

⎝x2 + x + 2⎞
⎠

Solution
We have one linear factor and one irreducible quadratic factor in the denominator, so one numerator will be a
constant and the other numerator will be a linear expression. Thus,

8x2 + 12x−20
(x + 3)⎛

⎝x2 + x + 2⎞
⎠

= A
(x + 3) + Bx + C

⎛
⎝x2 + x + 2⎞

⎠

We follow the same steps as in previous problems. First, clear the fractions by multiplying both sides of the
equation by the common denominator.

(x + 3)(x2 + x + 2)
⎡

⎣
⎢ 8x2 + 12x − 20
(x + 3)(x2 + x + 2)

⎤

⎦
⎥ =

⎡

⎣
⎢ A
(x + 3) + Bx + C

(x2 + x + 2)

⎤

⎦
⎥(x + 3)(x2 + x + 2)

                                       8x2 + 12x − 20 = A(x2 + x + 2) + (Bx + C)(x + 3)

Notice we could easily solve for  A  by choosing a value for  x  that will make the  Bx + C  term equal 0. Let
x = −3  and substitute it into the equation.

                   8x2 + 12x − 20 = A(x2 + x + 2) + (Bx + C)(x + 3)
   8( − 3)2 + 12( − 3) − 20 = A(( − 3)2 + ( − 3) + 2) + (B( − 3) + C)(( − 3) + 3)
                                        16 = 8A
                                         A = 2
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Now that we know the value of  A,   substitute it back into the equation. Then expand the right side and collect
like terms.

8x2 + 12x−20 = 2(x2 + x + 2) + (Bx + C)(x + 3)
8x2 + 12x−20 = 2x2 + 2x + 4 + Bx2 + 3B + Cx + 3C
8x2 + 12x−20 = (2 + B)x2 + (2 + 3B + C)x + (4 + 3C)

Setting the coefficients of terms on the right side equal to the coefficients of terms on the left side gives the system
of equations.

         2 + B = 8 (1)
2 + 3B + C = 12 (2)
       4 + 3C = −20 (3)

Solve for  B  using equation (1) and solve for  C  using equation (3).

   2 + B = 8 (1)
         B = 6

4 + 3C = −20 (3)
       3C = −24
         C = −8

Thus, the partial fraction decomposition of the expression is

8x2 + 12x−20
(x + 3)⎛

⎝x2 + x + 2⎞
⎠

= 2
(x + 3) + 6x−8

⎛
⎝x2 + x + 2⎞

⎠

Could we have just set up a system of equations to solve Example 11.24?

Yes, we could have solved it by setting up a system of equations without solving for  A  first. The expansion on the
right would be:

8x2 + 12x−20 = Ax2 + Ax + 2A + Bx2 + 3B + Cx + 3C

8x2 + 12x−20 = (A + B)x2 + (A + 3B + C)x + (2A + 3C)
So the system of equations would be:

         A + B = 8
A + 3B + C = 12
     2A + 3C = −20

Find the partial fraction decomposition of the expression with a nonrepeating irreducible quadratic
factor.

5x2 −6x + 7
(x−1)⎛

⎝x2 + 1⎞
⎠

Decomposing  P(x)
Q(x)  When Q(x) Has a Repeated Irreducible Quadratic

Factor
Now that we can decompose a simplified rational expression with an irreducible quadratic factor, we will learn how to
do partial fraction decomposition when the simplified rational expression has repeated irreducible quadratic factors. The
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decomposition will consist of partial fractions with linear numerators over each irreducible quadratic factor represented in
increasing powers.

Decomposition of  P(x)
Q(x)  When Q(x) Has a Repeated Irreducible Quadratic Factor

The partial fraction decomposition of  P(x)
Q(x),  when  Q(x)  has a repeated irreducible quadratic factor and the degree of

 P(x)  is less than the degree of  Q(x),   is

P(x)
⎛
⎝ax2 + bx + c⎞

⎠
n = A1 x + B1

⎛
⎝ax2 + bx + c⎞

⎠
+ A2 x + B2

⎛
⎝ax2 + bx + c⎞

⎠
2 + A3 x + B3

⎛
⎝ax2 + bx + c⎞

⎠
3 + ⋅ ⋅ ⋅ + An x + Bn

⎛
⎝ax2 + bx + c⎞

⎠
n

Write the denominators in increasing powers.

Given a rational expression that has a repeated irreducible factor, decompose it.

1. Use variables like  A, B,   or  C  for the constant numerators over linear factors, and linear expressions such
as  A1 x + B1, A2 x + B2,   etc., for the numerators of each quadratic factor in the denominator written in

increasing powers, such as

P(x)
Q(x) = A

ax + b + A1 x + B1
(ax2 + bx + c)

+ A2 x + B2
(ax2 + bx + c)2 + ⋯ +  An + Bn

(ax2 + bx + c)n

2. Multiply both sides of the equation by the common denominator to eliminate fractions.

3. Expand the right side of the equation and collect like terms.

4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a
system of equations to solve for the numerators.

Example 11.25

Decomposing a Rational Function with a Repeated Irreducible Quadratic Factor in
the Denominator

Decompose the given expression that has a repeated irreducible factor in the denominator.

x4 + x3 + x2 − x + 1

x⎛
⎝x2 + 1⎞

⎠
2

Solution

The factors of the denominator are  x, (x2 + 1),   and  (x2 + 1)2. Recall that, when a factor in the denominator is
a quadratic that includes at least two terms, the numerator must be of the linear form  Ax + B.  So, let’s begin the
decomposition.

x4 + x3 + x2 − x + 1

x⎛
⎝x2 + 1⎞

⎠
2 = A

x + Bx + C
⎛
⎝x2 + 1⎞

⎠
+ Dx + E

⎛
⎝x2 + 1⎞

⎠
2

We eliminate the denominators by multiplying each term by  x⎛
⎝x2 + 1⎞

⎠
2
. Thus,
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x4 + x3 + x2 − x + 1 = A⎛
⎝x2 + 1⎞

⎠
2

+ (Bx + C)(x)⎛
⎝x2 + 1⎞

⎠ + (Dx + E)(x)

Expand the right side.

    x4 + x3 + x2 − x + 1 = A(x4 + 2x2 + 1) + Bx4 + Bx2 + Cx3 + Cx + Dx2 + Ex

   = Ax4 + 2Ax2 + A + Bx4 + Bx2 + Cx3 + Cx + Dx2 + Ex

Now we will collect like terms.

x4 + x3 + x2 − x + 1 = (A + B)x4 + (C)x3 + (2A + B + D)x2 + (C + E)x + A

Set up the system of equations matching corresponding coefficients on each side of the equal sign.

         A + B = 1
                C = 1
2A + B + D = 1
         C + E = −1
                A = 1

We can use substitution from this point. Substitute  A = 1  into the first equation.

1 + B = 1
       B = 0

Substitute  A = 1  and  B = 0  into the third equation.

2(1) + 0 + D = 1
                  D = −1

Substitute  C = 1  into the fourth equation.

1 + E = −1
      E = −2

Now we have solved for all of the unknowns on the right side of the equal sign. We have  A = 1,   B = 0,
C = 1,   D = −1,   and  E = −2. We can write the decomposition as follows:

x4 + x3 + x2 − x + 1

x⎛
⎝x2 + 1⎞

⎠
2 = 1

x + 1
⎛
⎝x2 + 1⎞

⎠
− x + 2

⎛
⎝x2 + 1⎞

⎠
2

Find the partial fraction decomposition of the expression with a repeated irreducible quadratic factor.

x3 −4x2 + 9x−5
⎛
⎝x2 −2x + 3⎞

⎠
2

Access these online resources for additional instruction and practice with partial fractions.

• Partial Fraction Decomposition (http://openstaxcollege.org/l/partdecomp)

• Partial Fraction Decomposition With Repeated Linear Factors (http://openstaxcollege.org/
l/partdecomprlf)

• Partial Fraction Decomposition With Linear and Quadratic Factors
(http://openstaxcollege.org/l/partdecomlqu)
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224.
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226.
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229.

230.

231.

232.

233.

234.

235.

11.4 EXERCISES
Verbal

Can any quotient of polynomials be decomposed into
at least two partial fractions? If so, explain why, and if not,
give an example of such a fraction

Can you explain why a partial fraction decomposition
is unique? (Hint: Think about it as a system of equations.)

Can you explain how to verify a partial fraction
decomposition graphically?

You are unsure if you correctly decomposed the
partial fraction correctly. Explain how you could double-
check your answer.

Once you have a system of equations generated by the
partial fraction decomposition, can you explain another
method to solve it? For example if you had
  7x + 13
3x2 + 8x + 15

= A
x + 1 + B

3x + 5,  we eventually

simplify to  7x + 13 = A(3x + 5) + B(x + 1). Explain
how you could intelligently choose an  x -value that will
eliminate either  A  or  B  and solve for  A  and  B.

Algebraic
For the following exercises, find the decomposition of the
partial fraction for the nonrepeating linear factors.

5x + 16
x2 + 10x + 24

3x−79
x2 −5x−24

−x−24
x2 −2x−24

10x + 47
x2 + 7x + 10

x
6x2 + 25x + 25

32x−11
20x2 −13x + 2

x + 1
x2 + 7x + 10

5x
x2 −9

10x
x2 −25

6x
x2 −4

2x−3
x2 −6x + 5

4x−1
x2 − x−6

4x + 3
x2 + 8x + 15

3x−1
x2 −5x + 6

For the following exercises, find the decomposition of the
partial fraction for the repeating linear factors.

−5x−19
(x + 4)2

x
(x−2)2

7x + 14
(x + 3)2

−24x−27
(4x + 5)2

−24x−27
(6x−7)2

5 − x
(x−7)2

5x + 14
2x2 + 12x + 18

5x2 + 20x + 8
2x(x + 1)2

4x2 + 55x + 25
5x(3x + 5)2

54x3 + 127x2 + 80x + 16
2x2 (3x + 2)2

x3 −5x2 + 12x + 144
x2 ⎛

⎝x2 + 12x + 36⎞
⎠
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238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

For the following exercises, find the decomposition of the
partial fraction for the irreducible nonrepeating quadratic
factor.

4x2 + 6x + 11
(x + 2)⎛

⎝x2 + x + 3⎞
⎠

4x2 + 9x + 23
(x−1)⎛

⎝x2 + 6x + 11⎞
⎠

−2x2 + 10x + 4
(x−1)⎛

⎝x2 + 3x + 8⎞
⎠

x2 + 3x + 1
(x + 1)⎛

⎝x2 + 5x−2⎞
⎠

4x2 + 17x−1
(x + 3)⎛

⎝x2 + 6x + 1⎞
⎠

4x2

(x + 5)⎛
⎝x2 + 7x−5⎞

⎠

4x2 + 5x + 3
x3 −1

−5x2 + 18x−4
x3 + 8

3x2 −7x + 33
x3 + 27

x2 + 2x + 40
x3 −125

4x2 + 4x + 12
8x3 −27

−50x2 + 5x−3
125x3 −1

−2x3 −30x2 + 36x + 216
x4 + 216x

For the following exercises, find the decomposition of the
partial fraction for the irreducible repeating quadratic
factor.

3x3 + 2x2 + 14x + 15
⎛
⎝x2 + 4⎞

⎠
2

x3 + 6x2 + 5x + 9
⎛
⎝x2 + 1⎞

⎠
2

x3 − x2 + x−1
⎛
⎝x2 −3⎞

⎠
2

x2 + 5x + 5
(x + 2)2

x3 + 2x2 + 4x
⎛
⎝x2 + 2x + 9⎞

⎠
2

x2 + 25
⎛
⎝x2 + 3x + 25⎞

⎠
2

2x3 + 11x + 7x + 70
⎛
⎝2x2 + x + 14⎞

⎠
2

5x + 2

x⎛
⎝x2 + 4⎞

⎠
2

x4 + x3 + 8x2 + 6x + 36

x⎛
⎝x2 + 6⎞

⎠
2

2x−9
⎛
⎝x2 − x⎞

⎠
2

5x3 −2x + 1
⎛
⎝x2 + 2x⎞

⎠
2

Extensions
For the following exercises, find the partial fraction
expansion.

x2 + 4
(x + 1)3

x3 −4x2 + 5x + 4
(x−2)3

For the following exercises, perform the operation and then
find the partial fraction decomposition.

7
x + 8 + 5

x−2 − x−1
x2 −6x−16
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264.

1
x−4 − 3

x + 6 − 2x + 7
x2 + 2x−24

2x
x2 −16

− 1−2x
x2 + 6x + 8

− x−5
x2 −4x
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11.5 | Matrices and Matrix Operations

Learning Objectives

In this section, you will:

11.5.1 Find the sum and difference of two matrices.
11.5.2 Find scalar multiples of a matrix.
11.5.3 Find the product of two matrices.

Figure 11.29 (credit: “SD Dirk,” Flickr)

Two club soccer teams, the Wildcats and the Mud Cats, are hoping to obtain new equipment for an upcoming season. Table
11.1 shows the needs of both teams.

Wildcats Mud Cats

Goals 6 10

Balls 30 24

Jerseys 14 20

Table 11.1

A goal costs $300; a ball costs $10; and a jersey costs $30. How can we find the total cost for the equipment needed for
each team? In this section, we discover a method in which the data in the soccer equipment table can be displayed and used
for calculating other information. Then, we will be able to calculate the cost of the equipment.

Finding the Sum and Difference of Two Matrices
To solve a problem like the one described for the soccer teams, we can use a matrix, which is a rectangular array of numbers.
A row in a matrix is a set of numbers that are aligned horizontally. A column in a matrix is a set of numbers that are aligned
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vertically. Each number is an entry, sometimes called an element, of the matrix. Matrices (plural) are enclosed in [ ] or ( ),
and are usually named with capital letters. For example, three matrices named  A, B, and  C  are shown below.

A = ⎡
⎣
1 2
3 4

⎤
⎦, B =

⎡

⎣
⎢
1 2 7
0 −5 6
7 8 2

⎤

⎦
⎥, C =

⎡

⎣
⎢
−1
   0
   3
    

3
2
1

⎤

⎦
⎥

Describing Matrices
A matrix is often referred to by its size or dimensions:  m × n indicating  m  rows and  n  columns. Matrix entries are defined
first by row and then by column. For example, to locate the entry in matrix  A  identified as  ai j, we look for the entry in

row  i, column   j.  In matrix  A,   shown below, the entry in row 2, column 3 is  a23.

A =
⎡

⎣
⎢
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦
⎥

A square matrix is a matrix with dimensions  n × n, meaning that it has the same number of rows as columns. The  3×3 
matrix above is an example of a square matrix.

A row matrix is a matrix consisting of one row with dimensions  1 × n.

[a11 a12 a13]

A column matrix is a matrix consisting of one column with dimensions  m × 1.

⎡

⎣
⎢
a11
a21
a31

⎤

⎦
⎥

A matrix may be used to represent a system of equations. In these cases, the numbers represent the coefficients of the
variables in the system. Matrices often make solving systems of equations easier because they are not encumbered with
variables. We will investigate this idea further in the next section, but first we will look at basic matrix operations.

Matrices

A matrix is a rectangular array of numbers that is usually named by a capital letter:  A, B, C, and so on. Each entry in
a matrix is referred to as  ai j, such that  i  represents the row and   j  represents the column. Matrices are often referred

to by their dimensions:  m × n  indicating  m  rows and  n  columns.

Example 11.26

Finding the Dimensions of the Given Matrix and Locating Entries

Given matrix  A :

a. What are the dimensions of matrix  A?

b. What are the entries at  a31   and  a22?

A =
⎡

⎣
⎢
2 1 0
2 4 7
3 1 −2

⎤

⎦
⎥

Solution
a. The dimensions are  3 × 3 because there are three rows and three columns.
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b. Entry  a31   is the number at row 3, column 1, which is 3. The entry  a22   is the number at row 2, column

2, which is 4. Remember, the row comes first, then the column.

Adding and Subtracting Matrices
We use matrices to list data or to represent systems. Because the entries are numbers, we can perform operations on
matrices. We add or subtract matrices by adding or subtracting corresponding entries.

In order to do this, the entries must correspond. Therefore, addition and subtraction of matrices is only possible when the
matrices have the same dimensions. We can add or subtract a  3 × 3 matrix and another  3 × 3 matrix, but we cannot add
or subtract a  2 × 3 matrix and a  3 × 3 matrix because some entries in one matrix will not have a corresponding entry in
the other matrix.

Adding and Subtracting Matrices

Given matrices  A  and  B  of like dimensions, addition and subtraction of  A  and  B will produce matrix  C  or
matrix  D  of the same dimension.

A + B = C such that ai j + bi j = ci j

A − B = D such that ai j − bi j = di j

Matrix addition is commutative.

A + B = B + A

It is also associative.

(A + B) + C = A + (B + C)

Example 11.27

Finding the Sum of Matrices

Find the sum of  A  and  B, given

A = ⎡
⎣
a b
c d

⎤
⎦   and  B = ⎡

⎣
e f
g h

⎤
⎦

Solution
Add corresponding entries.

A + B = ⎡
⎣
a b
c d

⎤
⎦ + ⎡

⎣
e f
g h

⎤
⎦

= ⎡
⎣
a + e b + f
c + g d + h

⎤
⎦

Example 11.28
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Adding Matrix A and Matrix B

Find the sum of  A  and  B.

A = ⎡
⎣
4 1
3 2

⎤
⎦  and  B = ⎡

⎣
5 9
0 7

⎤
⎦

Solution
Add corresponding entries. Add the entry in row 1, column 1,  a11, of matrix  A  to the entry in row 1, column 1,

 b11, of  B. Continue the pattern until all entries have been added.

A + B = ⎡
⎣
4 1
3 2

⎤
⎦ + ⎡

⎣
5 9
0 7

⎤
⎦

         = ⎡
⎣
4 + 5 1 + 9
3 + 0 2 + 7

⎤
⎦

         = ⎡
⎣
9 10
3 9

⎤
⎦

Example 11.29

Finding the Difference of Two Matrices

Find the difference of  A  and  B.

A = ⎡
⎣
−2 3
0 1

⎤
⎦  and  B = ⎡

⎣
8 1
5 4

⎤
⎦

Solution
We subtract the corresponding entries of each matrix.

A − B = ⎡
⎣
−2 3

0 1
⎤
⎦ − ⎡

⎣
8 1
5 4

⎤
⎦

         = ⎡
⎣
−2 − 8 3 − 1

0 − 5 1 − 4
⎤
⎦

         = ⎡
⎣
−10 2
−5 −3

⎤
⎦

Example 11.30

Finding the Sum and Difference of Two 3 x 3 Matrices

Given  A  and  B :

a. Find the sum.

b. Find the difference.

A =
⎡

⎣
⎢

2 −10 −2
14 12 10
4 −2 2

⎤

⎦
⎥ and B =

⎡

⎣
⎢

6 10 −2
0 −12 −4

−5 2 −2

⎤

⎦
⎥

Chapter 11 Systems of Equations and Inequalities 1275



11.20

Solution
a. Add the corresponding entries.

A + B =
⎡

⎣
⎢

2   − 10   − 2
14   12   10
4   − 2   2

⎤

⎦
⎥ +

⎡

⎣
⎢

6   10   − 2
0   − 12   − 4

−5   2   − 2

⎤

⎦
⎥

=
⎡

⎣
⎢

2 + 6   − 10 + 10   − 2 − 2
14 + 0   12 − 12   10 − 4

4 − 5   − 2 + 2   2 − 2

⎤

⎦
⎥

=
⎡

⎣
⎢

8   0   − 4
14   0   6
−1   0   0

⎤

⎦
⎥

b. Subtract the corresponding entries.

A − B =
⎡

⎣
⎢

2 −10 −2
14 12 10
4 −2 2

⎤

⎦
⎥ −

⎡

⎣
⎢

6 10 −2
0 −12 −4

−5 2 −2

⎤

⎦
⎥

=
⎡

⎣
⎢

2 − 6   −10 − 10   −2 + 2
14 − 0   12 + 12   10 + 4
4 + 5   −2 − 2   2 + 2

⎤

⎦
⎥

=
⎡

⎣
⎢
−4   −20   0
14   24   14
9   −4   4

⎤

⎦
⎥

Add matrix  A  and matrix  B.

A =
⎡

⎣
⎢
2 6
1 0
1 −3

⎤

⎦
⎥  and  B =

⎡

⎣
⎢

3 −2
1 5

−4 3

⎤

⎦
⎥

Finding Scalar Multiples of a Matrix
Besides adding and subtracting whole matrices, there are many situations in which we need to multiply a matrix by a
constant called a scalar. Recall that a scalar is a real number quantity that has magnitude, but not direction. For example,
time, temperature, and distance are scalar quantities. The process of scalar multiplication involves multiplying each entry in
a matrix by a scalar. A scalar multiple is any entry of a matrix that results from scalar multiplication.

Consider a real-world scenario in which a university needs to add to its inventory of computers, computer tables, and chairs
in two of the campus labs due to increased enrollment. They estimate that 15% more equipment is needed in both labs. The
school’s current inventory is displayed in Table 11.2.

Lab A Lab B

Computers 15 27

Computer Tables 16 34

Chairs 16 34

Table 11.2

Converting the data to a matrix, we have
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C2013 =
⎡

⎣
⎢
15
16
16
       

27
34
34

⎤

⎦
⎥

To calculate how much computer equipment will be needed, we multiply all entries in matrix  C  by 0.15.

(0.15)C2013 =
⎡

⎣
⎢
⎢
(0.15)15
(0.15)16
(0.15)16

        
(0.15)27
(0.15)34
(0.15)34

⎤

⎦
⎥
⎥ =

⎡

⎣
⎢
2.25
2.4
2.4

     
4.05
5.1
5.1

⎤

⎦
⎥

We must round up to the next integer, so the amount of new equipment needed is

⎡

⎣
⎢
3
3
3
     

5
6
6

⎤

⎦
⎥

Adding the two matrices as shown below, we see the new inventory amounts.

⎡

⎣
⎢
15
16
16
       

27
34
34

⎤

⎦
⎥ +

⎡

⎣
⎢
3
3
3
     

5
6
6

⎤

⎦
⎥ =

⎡

⎣
⎢
18
19
19
     

32
40
40

⎤

⎦
⎥

This means

C2014 =
⎡

⎣
⎢
18
19
19
     

32
40
40

⎤

⎦
⎥

Thus, Lab A will have 18 computers, 19 computer tables, and 19 chairs; Lab B will have 32 computers, 40 computer tables,
and 40 chairs.

Scalar Multiplication

Scalar multiplication involves finding the product of a constant by each entry in the matrix. Given

A = ⎡
⎣
a11 a12
a21 a22

⎤
⎦

the scalar multiple  cA  is

cA = c⎡
⎣
a11 a12
a21 a22

⎤
⎦

    = ⎡
⎣
ca11 ca12
ca21 ca22

⎤
⎦

Scalar multiplication is distributive. For the matrices  A, B, and  C  with scalars  a  and  b,

a(A + B) = aA + aB
(a + b)A = aA + bA

Example 11.31

Multiplying the Matrix by a Scalar

Multiply matrix  A  by the scalar 3.

A = ⎡
⎣
8 1
5 4

⎤
⎦
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Solution
Multiply each entry in  A  by the scalar 3.

3A = 3⎡
⎣
8   1
5   4

⎤
⎦

=  ⎡
⎣
3 ⋅ 8   3 ⋅ 1
3 ⋅ 5   3 ⋅ 4

⎤
⎦

= ⎡
⎣
24 3
15 12

⎤
⎦

Given matrix  B, find  −2B where

B = ⎡
⎣
4 1
3 2

⎤
⎦

Example 11.32

Finding the Sum of Scalar Multiples

Find the sum  3A + 2B.

A =
⎡

⎣
⎢
1 −2 0
0 −1 2
4 3 −6

⎤

⎦
⎥ and B =

⎡

⎣
⎢
−1 2 1

0 −3 2
0 1 −4

⎤

⎦
⎥

Solution
First, find  3A, then  2B.

3A =
⎡

⎣
⎢
⎢
3 ⋅ 1   3(−2)   3 ⋅ 0
3 ⋅ 0   3(−1)   3 ⋅ 2
3 ⋅ 4   3 ⋅ 3   3(−6)

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢

3   −6   0
0   −3   6

12   9   −18

⎤

⎦
⎥

2B =
⎡

⎣
⎢
⎢
2(−1)   2 ⋅ 2   2 ⋅ 1
2 ⋅ 0   2(−3)   2 ⋅ 2
2 ⋅ 0   2 ⋅ 1   2(−4)

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
−2 4 2

0 −6 4
0 2 −8

⎤

⎦
⎥

Now, add  3A + 2B.
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3A + 2B =
⎡

⎣
⎢

3 −6 0
0 −3 6

12 9 −18

⎤

⎦
⎥ +

⎡

⎣
⎢
−2 4 2

0 −6 4
0 2 −8

⎤

⎦
⎥

             =
⎡

⎣
⎢

3 − 2   −6 + 4 0 + 2
0 + 0   −3 − 6 6 + 4

12 + 0   9 + 2 −18−8

⎤

⎦
⎥

             =
⎡

⎣
⎢

1   −2 2
0   −9 10

12   11 −26

⎤

⎦
⎥

Finding the Product of Two Matrices
In addition to multiplying a matrix by a scalar, we can multiply two matrices. Finding the product of two matrices is only
possible when the inner dimensions are the same, meaning that the number of columns of the first matrix is equal to the
number of rows of the second matrix. If  A  is an  m × r matrix and  B  is an  r × n matrix, then the product matrix  AB  is
an  m × n matrix. For example, the product  AB  is possible because the number of columns in  A  is the same as the number
of rows in  B.  If the inner dimensions do not match, the product is not defined.

We multiply entries of  A with entries of  B  according to a specific pattern as outlined below. The process of matrix
multiplication becomes clearer when working a problem with real numbers.

To obtain the entries in row  i  of  AB, we multiply the entries in row  i  of  A  by column   j  in  B  and add. For example,

given matrices  A  and  B, where the dimensions of  A  are  2 × 3  and the dimensions of  B  are  3 × 3, the product of  AB 
will be a  2 × 3 matrix.

A = ⎡
⎣
a11 a12 a13
a21 a22 a23

⎤
⎦ and B =

⎡

⎣
⎢
⎢
b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤

⎦
⎥
⎥

Multiply and add as follows to obtain the first entry of the product matrix  AB.

1. To obtain the entry in row 1, column 1 of  AB, multiply the first row in  A  by the first column in  B, and add.

[a11 a12 a13] ⋅
⎡

⎣
⎢
⎢
b11
b21
b31

⎤

⎦
⎥
⎥ = a11 ⋅ b11 + a12 ⋅ b21 + a13 ⋅ b31

2. To obtain the entry in row 1, column 2 of  AB, multiply the first row of  A  by the second column in  B, and add.

[a11 a12 a13] ⋅
⎡

⎣
⎢
⎢
b12
b22
b32

⎤

⎦
⎥
⎥ = a11 ⋅ b12 + a12 ⋅ b22 + a13 ⋅ b32

3. To obtain the entry in row 1, column 3 of  AB, multiply the first row of  A  by the third column in  B, and add.

[a11 a12 a13] ⋅
⎡

⎣
⎢
⎢
b13
b23
b33

⎤

⎦
⎥
⎥ = a11 ⋅ b13 + a12 ⋅ b23 + a13 ⋅ b33
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We proceed the same way to obtain the second row of  AB.  In other words, row 2 of  A  times column 1 of  B;   row 2 of  A 
times column 2 of  B;   row 2 of  A  times column 3 of  B. When complete, the product matrix will be

AB =
⎡

⎣
⎢
a11 ⋅ b11 + a12 ⋅ b21 + a13 ⋅ b31

a21 ⋅ b11 + a22 ⋅ b21 + a23 ⋅ b31
  
a11 ⋅ b12 + a12 ⋅ b22 + a13 ⋅ b32

a21 ⋅ b12 + a22 ⋅ b22 + a23 ⋅ b32
     

a11 ⋅ b13 + a12 ⋅ b23 + a13 ⋅ b33

a21 ⋅ b13 + a22 ⋅ b23 + a23 ⋅ b33

⎤

⎦
⎥

Properties of Matrix Multiplication

For the matrices  A, B, and  C  the following properties hold.

• Matrix multiplication is associative:  (AB)C = A(BC).

• Matrix multiplication is distributive:
 C(A + B) = CA + CB,

 (A + B)C = AC + BC.

Note that matrix multiplication is not commutative.

Example 11.33

Multiplying Two Matrices

Multiply matrix  A  and matrix  B.

A = ⎡
⎣
1 2
3 4

⎤
⎦  and  B = ⎡

⎣
5 6
7 8

⎤
⎦

Solution
First, we check the dimensions of the matrices. Matrix  A  has dimensions  2 × 2  and matrix  B  has dimensions
 2 × 2. The inner dimensions are the same so we can perform the multiplication. The product will have the
dimensions  2 × 2.

We perform the operations outlined previously.

Example 11.34

Multiplying Two Matrices

Given  A  and  B :

a. Find  AB.

b. Find  BA.
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A = ⎡
⎣
−1 2 3
   4 0 5

⎤
⎦ and  B =

⎡

⎣
⎢
  5
−4
  2
   
−1
  0
  3

⎤

⎦
⎥

Solution
a. As the dimensions of  A  are  2×3  and the dimensions of  B  are  3×2, these matrices can be multiplied

together because the number of columns in  A matches the number of rows in  B. The resulting product
will be a  2×2 matrix, the number of rows in  A  by the number of columns in  B.

AB = ⎡
⎣
−1 2 3

4 0 5
⎤
⎦   

⎡

⎣
⎢

5 −1
−4 0

2 3

⎤

⎦
⎥

     = ⎡
⎣
−1(5) + 2(−4) + 3(2)   −1(−1) + 2(0) + 3(3)

4(5) + 0(−4) + 5(2)   4(−1) + 0(0) + 5(3)
⎤
⎦

     = ⎡
⎣
−7 10
30 11

⎤
⎦

b. The dimensions of  B  are  3×2  and the dimensions of  A  are  2×3. The inner dimensions match so the
product is defined and will be a  3×3 matrix.

BA =
⎡

⎣
⎢

5 −1
−4 0

2 3

⎤

⎦
⎥   ⎡⎣

−1 2 3
4 0 5

⎤
⎦

     =
⎡

⎣
⎢
⎢
5(−1) + −1(4)   5(2) + −1(0)   5(3) + −1(5)
−4(−1) + 0(4)   −4(2) + 0(0)   −4(3) + 0(5)

2(−1) + 3(4)   2(2) + 3(0)   2(3) + 3(5)

⎤

⎦
⎥
⎥

     =
⎡

⎣
⎢
−9 10 10

4 −8 −12
10 4 21

⎤

⎦
⎥

Analysis
Notice that the products  AB  and  BA  are not equal.

AB = ⎡
⎣
−7 10
30 11

⎤
⎦ ≠

⎡

⎣
⎢
−9 10 10
4 −8 −12
10 4 21

⎤

⎦
⎥ = BA

This illustrates the fact that matrix multiplication is not commutative.

Is it possible for AB to be defined but not BA?

Yes, consider a matrix A with dimension  3 × 4  and matrix B with dimension  4 × 2. For the product AB the inner
dimensions are 4 and the product is defined, but for the product BA the inner dimensions are 2 and 3 so the product
is undefined.

Example 11.35

Using Matrices in Real-World Problems

Let’s return to the problem presented at the opening of this section. We have Table 11.3, representing the
equipment needs of two soccer teams.
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Wildcats Mud Cats

Goals 6 10

Balls 30 24

Jerseys 14 20

Table 11.3

We are also given the prices of the equipment, as shown in Table 11.4.

Goal $300

Ball $10

Jersey $30

Table 11.4

We will convert the data to matrices. Thus, the equipment need matrix is written as

E =
⎡

⎣
⎢

6
30
14
     

10
24
20

⎤

⎦
⎥

The cost matrix is written as

C = [300 10 30]

We perform matrix multiplication to obtain costs for the equipment.

CE = [300 10 30] ⋅
⎡

⎣
⎢

6 10
30 24
14 20

⎤

⎦
⎥

= ⎡
⎣300(6) + 10(30) + 30(14) 300(10) + 10(24) + 30(20)⎤

⎦

= ⎡
⎣2,520 3,840⎤

⎦

The total cost for equipment for the Wildcats is $2,520, and the total cost for equipment for the Mud Cats is
$3,840.

Given a matrix operation, evaluate using a calculator.

1. Save each matrix as a matrix variable  [A], [B], [C], ...

2. Enter the operation into the calculator, calling up each matrix variable as needed.

3. If the operation is defined, the calculator will present the solution matrix; if the operation is undefined, it
will display an error message.
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Example 11.36

Using a Calculator to Perform Matrix Operations

Find  AB − C  given

A =
⎡

⎣
⎢
−15 25 32

41 −7 −28
10 34 −2

⎤

⎦
⎥, B =

⎡

⎣
⎢

45 21 −37
−24 52 19

6 −48 −31

⎤

⎦
⎥, and C =

⎡

⎣
⎢
−100 −89 −98

25 −56 74
−67 42 −75

⎤

⎦
⎥.

Solution
On the matrix page of the calculator, we enter matrix  A  above as the matrix variable  [A], matrix  B  above as the
matrix variable  [B], and matrix  C  above as the matrix variable  [C].

On the home screen of the calculator, we type in the problem and call up each matrix variable as needed.

[A]×[B] − [C]

The calculator gives us the following matrix.

⎡

⎣
⎢

−983   − 462   136
1, 820   1, 897   − 856
−311   2, 032   413

⎤

⎦
⎥

Access these online resources for additional instruction and practice with matrices and matrix operations.

• Dimensions of a Matrix (http://openstaxcollege.org/l/matrixdimen)

• Matrix Addition and Subtraction (http://openstaxcollege.org/l/matrixaddsub)

• Matrix Operations (http://openstaxcollege.org/l/matrixoper)

• Matrix Multiplication (http://openstaxcollege.org/l/matrixmult)
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292.
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295.

296.

297.

11.5 EXERCISES
Verbal

Can we add any two matrices together? If so, explain
why; if not, explain why not and give an example of two
matrices that cannot be added together.

Can we multiply any column matrix by any row
matrix? Explain why or why not.

Can both the products  AB  and  BA  be defined? If so,
explain how; if not, explain why.

Can any two matrices of the same size be multiplied?
If so, explain why, and if not, explain why not and give an
example of two matrices of the same size that cannot be
multiplied together.

Does matrix multiplication commute? That is, does
AB = BA?   If so, prove why it does. If not, explain why it

does not.

Algebraic
For the following exercises, use the matrices below and
perform the matrix addition or subtraction. Indicate if the
operation is undefined.

A = ⎡
⎣
1 3
0 7

⎤
⎦, B = ⎡

⎣
2 14
22 6

⎤
⎦, C =

⎡

⎣
⎢

1 5
8 92

12 6

⎤

⎦
⎥, D =

⎡

⎣
⎢
10 14
7 2
5 61

⎤

⎦
⎥, E = ⎡

⎣
6 12

14 5
⎤
⎦, F =

⎡

⎣
⎢

0 9
78 17
15 4

⎤

⎦
⎥

A + B

C + D

A + C

B − E

C + F

D − B

For the following exercises, use the matrices below to
perform scalar multiplication.

A = ⎡
⎣

4 6
13 12

⎤
⎦, B =

⎡

⎣
⎢

3 9
21 12
0 64

⎤

⎦
⎥, C = ⎡

⎣
16 3 7 18
90 5 3 29

⎤
⎦, D =

⎡

⎣
⎢
18 12 13
8 14 6
7 4 21

⎤

⎦
⎥

5A

3B

−2B

−4C

1
2C

100D

For the following exercises, use the matrices below to
perform matrix multiplication.

A = ⎡
⎣
−1 5

3 2
⎤
⎦, B = ⎡

⎣
3 6 4

−8 0 12
⎤
⎦, C =

⎡

⎣
⎢

4 10
−2 6

5 9

⎤

⎦
⎥, D =

⎡

⎣
⎢
2 −3 12
9 3 1
0 8 −10

⎤

⎦
⎥

AB

BC

CA

BD

DC

CB

For the following exercises, use the matrices below to
perform the indicated operation if possible. If not possible,
explain why the operation cannot be performed.

A = ⎡
⎣
2 −5
6 7

⎤
⎦, B = ⎡

⎣
−9 6
−4 2

⎤
⎦, C = ⎡

⎣
0 9
7 1

⎤
⎦, D =

⎡

⎣
⎢
−8 7 −5

4 3 2
0 9 2

⎤

⎦
⎥, E =

⎡

⎣
⎢
4 5 3
7 −6 −5
1 0 9

⎤

⎦
⎥

A + B − C

4A + 5D

2C + B

3D + 4E

C−0.5D

100D−10E

For the following exercises, use the matrices below to
perform the indicated operation if possible. If not possible,
explain why the operation cannot be performed. (Hint:
 A2 = A ⋅ A )

A = ⎡
⎣
−10 20

5 25
⎤
⎦, B = ⎡

⎣
40 10

−20 30
⎤
⎦, C =

⎡

⎣
⎢
−1 0

0 −1
1 0

⎤

⎦
⎥

AB

BA

CA

BC
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312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

A2

B2

C2

B2 A2

A2 B2

(AB)2

(BA)2

For the following exercises, use the matrices below to
perform the indicated operation if possible. If not possible,
explain why the operation cannot be performed. (Hint:
 A2 = A ⋅ A )

A = ⎡
⎣
1 0
2 3

⎤
⎦, B = ⎡

⎣
−2 3 4
−1 1 −5

⎤
⎦, C =

⎡

⎣
⎢

0.5 0.1
1 0.2

−0.5 0.3

⎤

⎦
⎥, D =

⎡

⎣
⎢

1 0 −1
−6 7 5

4 2 1

⎤

⎦
⎥

AB

BA

BD

DC

D2

A2

D3

(AB)C

A(BC)

Technology
For the following exercises, use the matrices below to
perform the indicated operation if possible. If not possible,
explain why the operation cannot be performed. Use a
calculator to verify your solution.

A =
⎡

⎣
⎢
−2 0 9

1 8 −3
0.5 4 5

⎤

⎦
⎥, B =

⎡

⎣
⎢
0.5 3 0
−4 1 6

8 7 2

⎤

⎦
⎥, C =

⎡

⎣
⎢
1 0 1
0 1 0
1 0 1

⎤

⎦
⎥

AB

BA

CA

BC

ABC

Extensions
For the following exercises, use the matrix below to
perform the indicated operation on the given matrix.

B =
⎡

⎣
⎢
1 0 0
0 0 1
0 1 0

⎤

⎦
⎥

B2

B3

B4

B5

Using the above questions, find a formula for  Bn. 
Test the formula for  B201   and  B202, using a calculator.
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11.6 | Solving Systems with Gaussian Elimination

Learning Objectives

In this section, you will:

11.6.1 Write the augmented matrix of a system of equations.
11.6.2 Write the system of equations from an augmented matrix.
11.6.3 Perform row operations on a matrix.
11.6.4 Solve a system of linear equations using matrices.

Figure 11.30 German mathematician Carl Friedrich Gauss
(1777–1855).

Carl Friedrich Gauss lived during the late 18th century and early 19th century, but he is still considered one of the most
prolific mathematicians in history. His contributions to the science of mathematics and physics span fields such as algebra,
number theory, analysis, differential geometry, astronomy, and optics, among others. His discoveries regarding matrix
theory changed the way mathematicians have worked for the last two centuries.

We first encountered Gaussian elimination in Systems of Linear Equations: Two Variables. In this section, we will
revisit this technique for solving systems, this time using matrices.

Writing the Augmented Matrix of a System of Equations
A matrix can serve as a device for representing and solving a system of equations. To express a system in matrix form, we
extract the coefficients of the variables and the constants, and these become the entries of the matrix. We use a vertical line
to separate the coefficient entries from the constants, essentially replacing the equal signs. When a system is written in this
form, we call it an augmented matrix.

For example, consider the following  2 × 2  system of equations.
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3x + 4y = 7
4x−2y = 5

We can write this system as an augmented matrix:

⎡
⎣
3 4
4 −2

  |  75⎤
⎦

We can also write a matrix containing just the coefficients. This is called the coefficient matrix.

⎡
⎣
3 4
4 −2

⎤
⎦

A three-by-three system of equations such as

3x − y − z = 0
        x + y = 5
    2x−3z = 2

has a coefficient matrix

⎡

⎣
⎢
3 −1 −1
1 1 0
2 0 −3

⎤

⎦
⎥

and is represented by the augmented matrix

⎡

⎣
⎢
3 −1 −1
1 1 0
2 0 −3

  |  052⎤

⎦
⎥

Notice that the matrix is written so that the variables line up in their own columns: x-terms go in the first column, y-terms
in the second column, and z-terms in the third column. It is very important that each equation is written in standard form
 ax + by + cz = d  so that the variables line up. When there is a missing variable term in an equation, the coefficient is 0.

Given a system of equations, write an augmented matrix.

1. Write the coefficients of the x-terms as the numbers down the first column.

2. Write the coefficients of the y-terms as the numbers down the second column.

3. If there are z-terms, write the coefficients as the numbers down the third column.

4. Draw a vertical line and write the constants to the right of the line.

Example 11.37

Writing the Augmented Matrix for a System of Equations

Write the augmented matrix for the given system of equations.

   x + 2y − z = 3
 2x − y + 2z = 6
  x − 3y + 3z = 4

Solution
The augmented matrix displays the coefficients of the variables, and an additional column for the constants.

⎡

⎣
⎢
1 2 −1
2 −1 2
1 −3 3

  |  364⎤

⎦
⎥
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11.23

Write the augmented matrix of the given system of equations.

4x−3y = 11
3x + 2y = 4

Writing a System of Equations from an Augmented Matrix
We can use augmented matrices to help us solve systems of equations because they simplify operations when the systems
are not encumbered by the variables. However, it is important to understand how to move back and forth between formats
in order to make finding solutions smoother and more intuitive. Here, we will use the information in an augmented matrix
to write the system of equations in standard form.

Example 11.38

Writing a System of Equations from an Augmented Matrix Form

Find the system of equations from the augmented matrix.

⎡

⎣
⎢

1 −3 −5
2 −5 −4

−3 5 4
  | −2

5
6

⎤

⎦
⎥

Solution
When the columns represent the variables  x,   y,   and  z,

⎡

⎣
⎢

1 −3 −5
2 −5 −4

−3 5 4
  | −2

5
6

⎤

⎦
⎥ →

  x − 3y − 5z = − 2
    2x − 5y − 4z = 5
−3x + 5y + 4z = 6

Write the system of equations from the augmented matrix.

⎡

⎣
⎢
1 −1   1
2 −1   3
0   1   1

   |   5  1−9

⎤

⎦
⎥

Performing Row Operations on a Matrix
Now that we can write systems of equations in augmented matrix form, we will examine the various row operations that
can be performed on a matrix, such as addition, multiplication by a constant, and interchanging rows.

Performing row operations on a matrix is the method we use for solving a system of equations. In order to solve the system
of equations, we want to convert the matrix to row-echelon form, in which there are ones down the main diagonal from
the upper left corner to the lower right corner, and zeros in every position below the main diagonal as shown.

Row-echelon form
⎡

⎣
⎢
1 a b
0 1 d
0 0 1

⎤

⎦
⎥

We use row operations corresponding to equation operations to obtain a new matrix that is row-equivalent in a simpler
form. Here are the guidelines to obtaining row-echelon form.

1. In any nonzero row, the first nonzero number is a 1. It is called a leading 1.

2. Any all-zero rows are placed at the bottom on the matrix.

3. Any leading 1 is below and to the right of a previous leading 1.

4. Any column containing a leading 1 has zeros in all other positions in the column.
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To solve a system of equations we can perform the following row operations to convert the coefficient matrix to row-echelon
form and do back-substitution to find the solution.

1. Interchange rows. (Notation:  Ri   ↔   R j )

2. Multiply a row by a constant. (Notation:  cRi )

3. Add the product of a row multiplied by a constant to another row. (Notation:  Ri + cR j)

Each of the row operations corresponds to the operations we have already learned to solve systems of equations in three
variables. With these operations, there are some key moves that will quickly achieve the goal of writing a matrix in row-
echelon form. To obtain a matrix in row-echelon form for finding solutions, we use Gaussian elimination, a method that
uses row operations to obtain a 1 as the first entry so that row 1 can be used to convert the remaining rows.

Gaussian Elimination

The Gaussian elimination method refers to a strategy used to obtain the row-echelon form of a matrix. The goal is to
write matrix  A with the number 1 as the entry down the main diagonal and have all zeros below.

A =
⎡

⎣
⎢
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦
⎥ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯After Gaussian elimination A =

⎡

⎣
⎢
⎢
1   b12   b13
0   1   b23
0   0   1

⎤

⎦
⎥
⎥

The first step of the Gaussian strategy includes obtaining a 1 as the first entry, so that row 1 may be used to alter the
rows below.

Given an augmented matrix, perform row operations to achieve row-echelon form.

1. The first equation should have a leading coefficient of 1. Interchange rows or multiply by a constant, if
necessary.

2. Use row operations to obtain zeros down the first column below the first entry of 1.

3. Use row operations to obtain a 1 in row 2, column 2.

4. Use row operations to obtain zeros down column 2, below the entry of 1.

5. Use row operations to obtain a 1 in row 3, column 3.

6. Continue this process for all rows until there is a 1 in every entry down the main diagonal and there are
only zeros below.

7. If any rows contain all zeros, place them at the bottom.

Example 11.39

Solving a  2×2 System by Gaussian Elimination

Solve the given system by Gaussian elimination.

2x + 3y = 6

    x − y = 1
2

Solution
First, we write this as an augmented matrix.
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⎡

⎣
⎢2 3
1 −1

  | 6
1
2

⎤

⎦
⎥

We want a 1 in row 1, column 1. This can be accomplished by interchanging row 1 and row 2.

R1 ↔ R2 →
⎡

⎣
⎢1 −1
2 3 | 1

2
6

⎤

⎦
⎥

We now have a 1 as the first entry in row 1, column 1. Now let’s obtain a 0 in row 2, column 1. This can be
accomplished by multiplying row 1 by  −2, and then adding the result to row 2.

−2R1 + R2 = R2 →
⎡

⎣
⎢1 −1
0 5 | 1

2
5

⎤

⎦
⎥

We only have one more step, to multiply row 2 by  15.

1
5R2 = R2 →

⎡

⎣
⎢1 −1
0 1 | 1

2
1

⎤

⎦
⎥

Use back-substitution. The second row of the matrix represents  y = 1. Back-substitute  y = 1  into the first

equation.

x − (1) = 1
2

         x = 3
2

The solution is the point ⎛
⎝
3
2, 1⎞

⎠.

Solve the given system by Gaussian elimination.

4x + 3y = 11
  x−3y = −1

Example 11.40

Using Gaussian Elimination to Solve a System of Equations

Use Gaussian elimination to solve the given  2 × 2  system of equations.

  2x + y = 1
4x + 2y = 6

Solution
Write the system as an augmented matrix.

⎡
⎣
2 1
4 2

  | 1
6

⎤
⎦
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Obtain a 1 in row 1, column 1. This can be accomplished by multiplying the first row by  12.

1
2R1 = R1 →

⎡

⎣
⎢1 1

2
4 2

  |  126⎤

⎦
⎥

Next, we want a 0 in row 2, column 1. Multiply row 1 by  −4  and add row 1 to row 2.

−4R1 + R2 = R2 →
⎡

⎣
⎢1 1

2
0 0

  |  124⎤

⎦
⎥

The second row represents the equation  0 = 4. Therefore, the system is inconsistent and has no solution.

Example 11.41

Solving a Dependent System

Solve the system of equations.

3x + 4y = 12
6x + 8y = 24

Solution
Perform row operations on the augmented matrix to try and achieve row-echelon form.

A = ⎡
⎣
3 4
6 8 | 12

24
⎤
⎦

−1
2R2 + R1 = R1 → ⎡

⎣
0 0
6 8 |    024

⎤
⎦

R1 ↔ R2 → ⎡
⎣
6 8
0 0 | 24

   0
⎤
⎦

The matrix ends up with all zeros in the last row:  0y = 0. Thus, there are an infinite number of solutions and the

system is classified as dependent. To find the generic solution, return to one of the original equations and solve
for  y.

3x + 4y = 12
         4y = 12−3x

           y = 3 − 3
4x

So the solution to this system is  ⎛⎝x, 3 − 3
4x⎞

⎠.

Example 11.42
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Performing Row Operations on a 3×3 Augmented Matrix to Obtain Row-Echelon
Form

Perform row operations on the given matrix to obtain row-echelon form.

⎡

⎣
⎢

1 −3 4
2 −5 6

−3 3 4
  | 3

6
6

⎤

⎦
⎥

Solution
The first row already has a 1 in row 1, column 1. The next step is to multiply row 1 by  −2  and add it to row 2.
Then replace row 2 with the result.

−2R1 + R2 = R2 →
⎡

⎣
⎢

1 −3 4
0 1 −2

−3 3 4 | 3
0
6

⎤

⎦
⎥

Next, obtain a zero in row 3, column 1.

3R1 + R3 = R3 →
⎡

⎣
⎢
1 −3 4
0 1 −2
0 −6 16 | 3

0
15

⎤

⎦
⎥

Next, obtain a zero in row 3, column 2.

6R2 + R3 = R3 →
⎡

⎣
⎢
1 −3 4
0 1 −2
0 0 4 | 3

0
15

⎤

⎦
⎥

The last step is to obtain a 1 in row 3, column 3.

1
2R3 = R3 →

⎡

⎣
⎢
⎢1 −3 4
0 1 −2
0 0 1

  |  3
−6
21
2

⎤

⎦
⎥
⎥

Write the system of equations in row-echelon form.

  x − 2y + 3z = 9
     − x + 3y = − 4
2x − 5y + 5z = 17

Solving a System of Linear Equations Using Matrices
We have seen how to write a system of equations with an augmented matrix, and then how to use row operations and back-
substitution to obtain row-echelon form. Now, we will take row-echelon form a step farther to solve a 3 by 3 system of
linear equations. The general idea is to eliminate all but one variable using row operations and then back-substitute to solve
for the other variables.

Example 11.43

Solving a System of Linear Equations Using Matrices

Solve the system of linear equations using matrices.
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x    −     y   +     z =     8
2x  +    3y   −    z = −2
3x   −    2y  − 9z =     9

Solution
First, we write the augmented matrix.

⎡

⎣
⎢
1 −1 1
2 3 −1
3 −2 −9

   |  8
−2

9

⎤

⎦
⎥

Next, we perform row operations to obtain row-echelon form.

−2R1 + R2 = R2 →
⎡

⎣
⎢
1 −1 1
0 5 −3
3 −2 −9 | 8

−18
9

⎤

⎦
⎥ −3R1 + R3 = R3 →

⎡

⎣
⎢
⎢
⎢
⎢1 −1 1

0 5 −3

0 1 −12 | 8

−18

−15

⎤

⎦
⎥
⎥
⎥
⎥

The easiest way to obtain a 1 in row 2 of column 1 is to interchange  R2   and  R3.

Interchange R2  and R3 →
⎡

⎣
⎢
1 −1 1 8
0 1 −12 −15
0 5 −3 −18

⎤

⎦
⎥

Then

−5R2 + R3 = R3 →
⎡

⎣
⎢
1 −1 1
0 1 −12
0 0 57 | 8

−15
57

⎤

⎦
⎥ − 1

57R3 = R3 →

⎡

⎣
⎢
⎢
⎢
⎢
⎢1 −1 1

0 1 −12

0 0 1 | 8

−15

1

⎤

⎦
⎥
⎥
⎥
⎥
⎥

The last matrix represents the equivalent system.

 x − y + z = 8
   y − 12z = −15
            z = 1

Using back-substitution, we obtain the solution as  (4, −3, 1).

Example 11.44

Solving a Dependent System of Linear Equations Using Matrices

Solve the following system of linear equations using matrices.

−x−2y + z = −1
 2x + 3y = 2    

y−2z = 0    
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Solution
Write the augmented matrix.

⎡

⎣
⎢
−1 −2 1

2 3 0
0 1 −2

  | −1
2
0

⎤

⎦
⎥

First, multiply row 1 by  −1  to get a 1 in row 1, column 1. Then, perform row operations to obtain row-echelon
form.

−R1 →
⎡

⎣
⎢
1 2 −1 1
2 3 0 2
0 1 −2 0

⎤

⎦
⎥

R2 ↔ R3 →
⎡

⎣
⎢
1 2 −1
0 1 −2
2 3 0

  | 1
0
2

⎤

⎦
⎥

−2R1 + R3 = R3 →
⎡

⎣
⎢
1 2 −1
0 1 −2
0 −1 2 | 1

0
0

⎤

⎦
⎥

R2 + R3 = R3 →
⎡

⎣
⎢
1 2 −1
0 1 −2
0 0 0 | 2

1
0

⎤

⎦
⎥

The last matrix represents the following system.

 x + 2y − z = 1
       y − 2z = 0
              0 = 0

We see by the identity  0 = 0  that this is a dependent system with an infinite number of solutions. We then find
the generic solution. By solving the second equation for  y  and substituting it into the first equation we can solve

for  z  in terms of  x.

     x + 2y − z = 1
y = 2z

x + 2(2z) − z = 1
           x + 3z = 1
                  z = 1 − x

3

Now we substitute the expression for  z  into the second equation to solve for  y  in terms of  x.

  y − 2z = 0

  z = 1 − x
3

y − 2⎛
⎝
1 − x

3
⎞
⎠ = 0

  y = 2 − 2x
3

The generic solution is  ⎛⎝x, 2−2x
3 , 1 − x

3
⎞
⎠.
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11.26 Solve the system using matrices.
x + 4y − z = 4

2x + 5y + 8z = 15
x + 3y−3z = 1

Can any system of linear equations be solved by Gaussian elimination?

Yes, a system of linear equations of any size can be solved by Gaussian elimination.

Given a system of equations, solve with matrices using a calculator.

1. Save the augmented matrix as a matrix variable  [A],  [B],  [C],  … .

2. Use the ref( function in the calculator, calling up each matrix variable as needed.

Example 11.45

Solving Systems of Equations with Matrices Using a Calculator

Solve the system of equations.

 5x + 3y + 9z = −1
−2x + 3y − z = −2
−x−4y + 5z = 1    

Solution
Write the augmented matrix for the system of equations.

⎡

⎣
⎢

5 3 9
−2 3 −1
−1 −4 5

  |  5
−2
−1

⎤

⎦
⎥

On the matrix page of the calculator, enter the augmented matrix above as the matrix variable  [A].

[A] =
⎡

⎣
⎢

5 3 9 −1
−2 3 −1 −2
−1 −4 5 1

⎤

⎦
⎥

Use the ref( function in the calculator, calling up the matrix variable  [A].

ref([A])

Evaluate.

⎡

⎣
⎢
⎢
⎢
⎢1   35   95

1
5

0   1   13
21 −4

7
0   0   1 − 24

187

⎤

⎦
⎥
⎥
⎥
⎥

→

x + 3
5y + 9

5z = − 1
5

       y + 13
21z = − 4

7
                  z = − 24

187

Using back-substitution, the solution is  ⎛⎝ 61
187, − 92

187, − 24
187

⎞
⎠.
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Example 11.46

Applying 2 × 2 Matrices to Finance

Carolyn invests a total of $12,000 in two municipal bonds, one paying 10.5% interest and the other paying 12%
interest. The annual interest earned on the two investments last year was $1,335. How much was invested at each
rate?

Solution
We have a system of two equations in two variables. Let  x =   the amount invested at 10.5% interest, and  y =
the amount invested at 12% interest.

                x + y = 12,000
0.105x + 0.12y = 1,335

As a matrix, we have

⎡
⎣

1 1
0.105 0.12

  |  12,000
1,335

⎤
⎦

Multiply row 1 by  −0.105  and add the result to row 2.

⎡
⎣
1 1
0 0.015

  |  12,000
75

⎤
⎦

Then,

0.015y = 75
         y = 5,000

So  12,000−5,000 = 7,000.

Thus, $5,000 was invested at 12% interest and $7,000 at 10.5% interest.

Example 11.47

Applying 3 × 3 Matrices to Finance

Ava invests a total of $10,000 in three accounts, one paying 5% interest, another paying 8% interest, and the third
paying 9% interest. The annual interest earned on the three investments last year was $770. The amount invested
at 9% was twice the amount invested at 5%. How much was invested at each rate?

Solution
We have a system of three equations in three variables. Let  x  be the amount invested at 5% interest, let  y  be the

amount invested at 8% interest, and let  z  be the amount invested at 9% interest. Thus,

x + y + z = 10, 000
0.05x + 0.08y + 0.09z = 770

2x − z = 0

As a matrix, we have
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11.27

⎡

⎣
⎢

1 1 1
0.05 0.08 0.09

2 0 −1
  |  10, 000

770
0

⎤

⎦
⎥

Now, we perform Gaussian elimination to achieve row-echelon form.

−0.05R1 + R2 = R2 →
⎡

⎣
⎢
1 1 1
0 0.03 0.04
2 0 −1 | 10,000

270
0

⎤

⎦
⎥

      −2R1 + R3 = R3 →
⎡

⎣
⎢
1 1 1
0 0.03 0.04
0 −2 −3 | 10,000

270
−20,000

⎤

⎦
⎥

                 1
0.03R2 = R2 →

⎡

⎣
⎢
⎢
0 1 1
0 1 4

3
0 −2 −3 | 10,000

9,000
−20,000

⎤

⎦
⎥
⎥

            2R2 + R3 = R3 →

⎡

⎣
⎢
⎢
⎢
1 1 1
0 1 4

3
0 0 −1

3 | 10,000
9,000

−2,000

⎤

⎦
⎥
⎥
⎥

The third row tells us  − 1
3z = −2,000;   thus  z = 6,000.

The second row tells us  y + 4
3z = 9,000.  Substituting  z = 6,000, we get

y + 4
3(6,000) = 9,000

y + 8,000 = 9,000
y = 1,000

The first row tells us  x + y + z = 10, 000.  Substituting  y = 1, 000  and  z = 6, 000, we get

x + 1, 000 + 6, 000 = 10,000
                              x = 3,000   

The answer is $3,000 invested at 5% interest, $1,000 invested at 8%, and $6,000 invested at 9% interest.

A small shoe company took out a loan of $1,500,000 to expand their inventory. Part of the money was
borrowed at 7%, part was borrowed at 8%, and part was borrowed at 10%. The amount borrowed at 10% was
four times the amount borrowed at 7%, and the annual interest on all three loans was $130,500. Use matrices to
find the amount borrowed at each rate.

Access these online resources for additional instruction and practice with solving systems of linear equations using
Gaussian elimination.

• Solve a System of Two Equations Using an Augmented Matrix
(http://openstaxcollege.org/l/system2augmat)

• Solve a System of Three Equations Using an Augmented Matrix
(http://openstaxcollege.org/l/system3augmat)

• Augmented Matrices on the Calculator (http://openstaxcollege.org/l/augmatcalc)
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11.6 EXERCISES
Verbal

Can any system of linear equations be written as an
augmented matrix? Explain why or why not. Explain how
to write that augmented matrix.

Can any matrix be written as a system of linear
equations? Explain why or why not. Explain how to write
that system of equations.

Is there only one correct method of using row
operations on a matrix? Try to explain two different row
operations possible to solve the augmented matrix
⎡
⎣
9 3
1 −2

  | 0
6

⎤
⎦.

Can a matrix whose entry is 0 on the diagonal be
solved? Explain why or why not. What would you do to
remedy the situation?

Can a matrix that has 0 entries for an entire row have
one solution? Explain why or why not.

Algebraic
For the following exercises, write the augmented matrix for
the linear system.

8x−37y = 8
2x + 12y = 3

   16y = 4
9x − y = 2

 3x + 2y + 10z = 3
−6x + 2y + 5z = 13
             4x + z = 18

  x + 5y + 8z = 19
     12x + 3y = 4
3x + 4y + 9z = −7

6x + 12y + 16z = 4
  19x−5y + 3z = −9
             x + 2y = −8

For the following exercises, write the linear system from
the augmented matrix.

⎡
⎣
−2 5

6 −18
  |  5

26
⎤
⎦

⎡
⎣

3 4
10 17

  |  10
439

⎤
⎦

⎡

⎣
⎢

3 2 0
−1 −9 4

8 5 7
  |  3

−1
8

⎤

⎦
⎥

⎡

⎣
⎢

8 29 1
−1 7 5

0 0 3
  |  43

38
10

⎤

⎦
⎥

⎡

⎣
⎢
4 5 −2
0 1 58
8 7 −3

  | 12
2

−5

⎤

⎦
⎥

For the following exercises, solve the system by Gaussian
elimination.

⎡
⎣
1 0
0 0

  | 3
0

⎤
⎦

⎡
⎣
1 0
1 0

  | 1
2

⎤
⎦

⎡
⎣
1 2
4 5

  | 3
6

⎤
⎦

⎡
⎣
−1 2

4 −5
  |  −3

6
⎤
⎦

⎡
⎣
−2 0

0 2
  |  1

−1
⎤
⎦

  2x − 3y = − 9
5x + 4y = 58

6x + 2y = −4
3x + 4y = −17

2x + 3y = 12
  4x + y = 14

−4x−3y = −2
  3x−5y = −13

−5x + 8y = 3
 10x + 6y = 5

   3x + 4y = 12
−6x−8y = −24

−60x + 45y = 12
  20x−15y = −4

11x + 10y = 43
15x + 20y = 65
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353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369.

370.

371.

372.

373.

 2x − y = 2
3x + 2y = 17

−1.06x−2.25y = 5.51
−5.03x−1.08y = 5.40

3
4x − 3

5y = 4

1
4x + 2

3y = 1

1
4x − 2

3y = −1

1
2x + 1

3y = 3

⎡

⎣
⎢
1 0 0
0 1 1
0 0 1

  |  31
45
87

⎤

⎦
⎥

⎡

⎣
⎢
1 0 1
1 1 0
0 1 1

  |  50
20

−90

⎤

⎦
⎥

⎡

⎣
⎢
1 2 3
0 5 6
0 0 8

  |  479⎤

⎦
⎥

⎡

⎣
⎢
−0.1 0.3 −0.1
−0.4 0.2 0.1

0.6 0.1 0.7
  |  0.2

0.8
−0.8

⎤

⎦
⎥

 −2x + 3y − 2z = 3
      4x + 2y − z = 9
     4x − 8y + 2z = −6

      x + y − 4z = −4
  5x − 3y − 2z = 0
  2x + 6y + 7z = 30

      2x + 3y + 2z = 1
  −4x − 6y − 4z = −2
 10x + 15y + 10z = 5

    x + 2y − z = 1
−x − 2y + 2z = −2
3x + 6y − 3z = 5

     x + 2y − z = 1
−x−2y + 2z = −2
 3x + 6y−3z = 3

   x + y = 2
   x + z = 1
−y − z = −3

x + y + z = 100
    x + 2z = 125
−y + 2z = 25

1
4x − 2

3z = − 1
2

1
5x + 1

3y = 4
7

1
5y − 1

3z = 2
9

−1
2x + 1

2y + 1
7z = − 53

14
   12x − 1

2y + 1
4z = 3

    14x + 1
5y + 1

3z = 23
15

−1
2x − 1

3y + 1
4z = − 29

6
   15x + 1

6y − 1
7z = 431

210
−1

8x + 1
9y + 1

10z = − 49
45

Extensions
For the following exercises, use Gaussian elimination to
solve the system.

x−1
7 + y−2

8 + z−3
4 = 0

                     x + y + z = 6

     x + 2
3 + 2y + z−3

3 = 5

x−1
4 − y + 1

4 + 3z = −1

  x + 5
2 + y + 7

4 − z = 4

         x + y − z−2
2 = 1

      x−3
4 − y−1

3 + 2z = −1

x + 5
2 + y + 5

2 + z + 5
2 = 8

                     x + y + z = 1

x−3
10 + y + 3

2 −2z = 3

 x + 5
4 − y−1

8 + z = 3
2

x−1
4 + y + 4

2 + 3z = 3
2
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375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

     x−3
4 − y−1

3 + 2z = −1

x + 5
2 + y + 5

2 + z + 5
2 = 7

x + y + z = 1

Real-World Applications
For the following exercises, set up the augmented matrix
that describes the situation, and solve for the desired
solution.

Every day, a cupcake store sells 5,000 cupcakes in
chocolate and vanilla flavors. If the chocolate flavor is 3
times as popular as the vanilla flavor, how many of each
cupcake sell per day?

At a competing cupcake store, $4,520 worth of
cupcakes are sold daily. The chocolate cupcakes cost $2.25
and the red velvet cupcakes cost $1.75. If the total number
of cupcakes sold per day is 2,200, how many of each flavor
are sold each day?

You invested $10,000 into two accounts: one that has
simple 3% interest, the other with 2.5% interest. If your
total interest payment after one year was $283.50, how
much was in each account after the year passed?

You invested $2,300 into account 1, and $2,700 into
account 2. If the total amount of interest after one year is
$254, and account 2 has 1.5 times the interest rate of
account 1, what are the interest rates? Assume simple
interest rates.

Bikes’R’Us manufactures bikes, which sell for $250.
It costs the manufacturer $180 per bike, plus a startup fee of
$3,500. After how many bikes sold will the manufacturer
break even?

A major appliance store is considering purchasing
vacuums from a small manufacturer. The store would be
able to purchase the vacuums for $86 each, with a delivery
fee of $9,200, regardless of how many vacuums are sold. If
the store needs to start seeing a profit after 230 units are
sold, how much should they charge for the vacuums?

The three most popular ice cream flavors are
chocolate, strawberry, and vanilla, comprising 83% of the
flavors sold at an ice cream shop. If vanilla sells 1% more
than twice strawberry, and chocolate sells 11% more than
vanilla, how much of the total ice cream consumption are
the vanilla, chocolate, and strawberry flavors?

At an ice cream shop, three flavors are increasing in
demand. Last year, banana, pumpkin, and rocky road ice
cream made up 12% of total ice cream sales. This year, the
same three ice creams made up 16.9% of ice cream sales.
The rocky road sales doubled, the banana sales increased by
50%, and the pumpkin sales increased by 20%. If the rocky
road ice cream had one less percent of sales than the banana

ice cream, find out the percentage of ice cream sales each
individual ice cream made last year.

A bag of mixed nuts contains cashews, pistachios,
and almonds. There are 1,000 total nuts in the bag, and
there are 100 less almonds than pistachios. The cashews
weigh 3 g, pistachios weigh 4 g, and almonds weigh 5 g. If
the bag weighs 3.7 kg, find out how many of each type of
nut is in the bag.

A bag of mixed nuts contains cashews, pistachios,
and almonds. Originally there were 900 nuts in the bag.
30% of the almonds, 20% of the cashews, and 10% of the
pistachios were eaten, and now there are 770 nuts left in the
bag. Originally, there were 100 more cashews than
almonds. Figure out how many of each type of nut was in
the bag to begin with.
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11.7 | Solving Systems with Inverses

Learning Objectives

In this section, you will:

11.7.1 Find the inverse of a matrix.
11.7.2 Solve a system of linear equations using an inverse matrix.

Nancy plans to invest $10,500 into two different bonds to spread out her risk. The first bond has an annual return of 10%,
and the second bond has an annual return of 6%. In order to receive an 8.5% return from the two bonds, how much should
Nancy invest in each bond? What is the best method to solve this problem?

There are several ways we can solve this problem. As we have seen in previous sections, systems of equations and matrices
are useful in solving real-world problems involving finance. After studying this section, we will have the tools to solve the
bond problem using the inverse of a matrix.

Finding the Inverse of a Matrix
We know that the multiplicative inverse of a real number  a  is  a−1,   and  aa−1 = a−1 a = ⎛

⎝
1
a

⎞
⎠a = 1.  For example,

 2−1 = 1
2   and  ⎛⎝1

2
⎞
⎠2 = 1. The multiplicative inverse of a matrix is similar in concept, except that the product of matrix

A  and its inverse  A−1   equals the identity matrix. The identity matrix is a square matrix containing ones down the main
diagonal and zeros everywhere else. We identify identity matrices by  In  where  n  represents the dimension of the matrix.

Equation 11.1 and Equation 11.2 are the identity matrices for a  2×2 matrix and a  3×3 matrix, respectively.

(11.1)I2 = ⎡
⎣
1 0
0 1

⎤
⎦

(11.2)
I3 =

⎡

⎣
⎢
1 0 0
0 1 0
0 0 1

⎤

⎦
⎥

The identity matrix acts as a 1 in matrix algebra. For example,  AI = IA = A.

A matrix that has a multiplicative inverse has the properties

AA−1 = I

A−1 A = I

A matrix that has a multiplicative inverse is called an invertible matrix. Only a square matrix may have a multiplicative
inverse, as the reversibility,  AA−1 = A−1 A = I,   is a requirement. Not all square matrices have an inverse, but if  A  is
invertible, then  A−1   is unique. We will look at two methods for finding the inverse of a  2×2 matrix and a third method
that can be used on both  2×2  and 3×3 matrices.

The Identity Matrix and Multiplicative Inverse

The identity matrix,  In,   is a square matrix containing ones down the main diagonal and zeros everywhere else.

I2 = ⎡
⎣
1 0
0 1

⎤
⎦ I3 =

⎡

⎣
⎢
1 0 0
0 1 0
0 0 1

⎤

⎦
⎥

        2 × 2                 3 × 3

If  A  is an  n × n  matrix and  B  is an  n × n  matrix such that  AB = BA = In,   then  B = A−1,   the multiplicative
inverse of a matrix  A.
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Example 11.48

Showing That the Identity Matrix Acts as a 1

Given matrix A, show that  AI = IA = A.

A = ⎡
⎣
   3 4
−2 5

⎤
⎦

Solution
Use matrix multiplication to show that the product of  A  and the identity is equal to the product of the identity
and A.

AI = ⎡
⎣

3 4
−2 5

⎤
⎦   

⎡
⎣
1 0
0 1

⎤
⎦ = ⎡

⎣
3 ⋅ 1 + 4 ⋅ 0 3 ⋅ 0 + 4 ⋅ 1

−2 ⋅ 1 + 5 ⋅ 0 −2 ⋅ 0 + 5 ⋅ 1
⎤
⎦ = ⎡

⎣
3 4

−2 5
⎤
⎦

AI = ⎡
⎣
1 0
0 1

⎤
⎦   

⎡
⎣

3 4
−2 5

⎤
⎦ = ⎡

⎣
1 ⋅ 3 + 0 ⋅ (−2) 1 ⋅ 4 + 0 ⋅ 5
0 ⋅ 3 + 1 ⋅ (−2) 0 ⋅ 4 + 1 ⋅ 5

⎤
⎦ = ⎡

⎣
3 4

−2 5
⎤
⎦

Given two matrices, show that one is the multiplicative inverse of the other.

1. Given matrix  A  of order  n × n  and matrix  B  of order  n × n multiply  AB.

2. If  AB = I,   then find the product  BA.  If  BA = I,   then  B = A−1   and  A = B−1.

Example 11.49

Showing That Matrix A Is the Multiplicative Inverse of Matrix B

Show that the given matrices are multiplicative inverses of each other.

A = ⎡
⎣

1 5
−2 −9

⎤
⎦, B = ⎡

⎣
−9 −5

2 1
⎤
⎦

Solution
Multiply  AB  and  BA.  If both products equal the identity, then the two matrices are inverses of each other.

AB = ⎡
⎣

1 5
−2 −9

⎤
⎦ · ⎡

⎣
−9 −5

2 1
⎤
⎦

= ⎡
⎣

1(−9) + 5(2) 1(−5) + 5(1)
−2(−9)−9(2) −2(−5)−9(1)

⎤
⎦

= ⎡
⎣
1 0
0 1

⎤
⎦

BA = ⎡
⎣
−9 −5

2 1
⎤
⎦ · ⎡

⎣
1 5

−2 −9
⎤
⎦

= ⎡
⎣
−9(1)−5(−2) −9(5)−5(−9)
2(1) + 1(−2) 2(−5) + 1(−9)

⎤
⎦

= ⎡
⎣
1 0
0 1

⎤
⎦

A  and B are inverses of each other.
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11.28 Show that the following two matrices are inverses of each other.

A = ⎡
⎣

1 4
−1 −3

⎤
⎦, B = ⎡

⎣
−3 −4

1 1
⎤
⎦

Finding the Multiplicative Inverse Using Matrix Multiplication
We can now determine whether two matrices are inverses, but how would we find the inverse of a given matrix? Since we
know that the product of a matrix and its inverse is the identity matrix, we can find the inverse of a matrix by setting up an
equation using matrix multiplication.

Example 11.50

Finding the Multiplicative Inverse Using Matrix Multiplication

Use matrix multiplication to find the inverse of the given matrix.

A = ⎡
⎣
1 −2
2 −3

⎤
⎦

Solution
For this method, we multiply  A  by a matrix containing unknown constants and set it equal to the identity.

⎡
⎣
1 −2
2 −3

⎤
⎦   

⎡
⎣
a b
c d

⎤
⎦ = ⎡

⎣
1 0
0 1

⎤
⎦

Find the product of the two matrices on the left side of the equal sign.

⎡
⎣
1 −2
2 −3

⎤
⎦   

⎡
⎣
a b
c d

⎤
⎦ = ⎡

⎣
1a−2c 1b−2d
2a−3c 2b−3d

⎤
⎦

Next, set up a system of equations with the entry in row 1, column 1 of the new matrix equal to the first entry of
the identity, 1. Set the entry in row 2, column 1 of the new matrix equal to the corresponding entry of the identity,
which is 0.

1a−2c = 1     R1
2a−3c = 0    R2

Using row operations, multiply and add as follows:  (−2)R1 + R2 → R2. Add the equations, and solve for  c.

1a − 2c = 1    
0 + 1c = − 2

c = − 2

Back-substitute to solve for  a.

a−2(−2) = 1    
a + 4 = 1    

a = −3

Write another system of equations setting the entry in row 1, column 2 of the new matrix equal to the
corresponding entry of the identity, 0. Set the entry in row 2, column 2 equal to the corresponding entry of the
identity.

1b−2d = 0 R1
2b−3d = 1 R2

Using row operations, multiply and add as follows:  (−2)R1 + R2 = R2. Add the two equations and solve for  d.

Chapter 11 Systems of Equations and Inequalities 1303



1b−2d = 0
0 + 1d = 1

  d = 1

Once more, back-substitute and solve for  b.

b−2(1) = 0
b−2 = 0

b = 2

A−1 = ⎡
⎣
−3 2
−2 1

⎤
⎦

Finding the Multiplicative Inverse by Augmenting with the Identity
Another way to find the multiplicative inverse is by augmenting with the identity. When matrix  A  is transformed into  I,

the augmented matrix  I  transforms into  A−1.

For example, given

A = ⎡
⎣
2 1
5 3

⎤
⎦

augment  A with the identity

⎡
⎣
2 1
5 3

 | 1 0
0 1

⎤
⎦

Perform row operations with the goal of turning  A  into the identity.

1. Switch row 1 and row 2.

⎡
⎣
5 3
2 1

 | 0 1
1 0

⎤
⎦

2. Multiply row 2 by  −2  and add to row 1.

⎡
⎣
1 1
2 1

 | −2 1
1 0

⎤
⎦

3. Multiply row 1 by  −2  and add to row 2.

⎡
⎣
1 1
0 −1 | −2 1

5 −2
⎤
⎦

4. Add row 2 to row 1.

⎡
⎣
1 0
0 −1

 | 3 −1
5 −2

⎤
⎦

5. Multiply row 2 by  −1.

⎡
⎣
1 0
0 1

 | 3 −1
−5 2

⎤
⎦

The matrix we have found is  A−1.

A−1 = ⎡
⎣

3 −1
−5 2

⎤
⎦

Finding the Multiplicative Inverse of 2×2 Matrices Using a Formula
When we need to find the multiplicative inverse of a  2 × 2 matrix, we can use a special formula instead of using matrix
multiplication or augmenting with the identity.
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If  A  is a  2×2 matrix, such as

A = ⎡
⎣
a b
c d

⎤
⎦

the multiplicative inverse of  A  is given by the formula

(11.3)
A−1 = 1

ad − bc
⎡
⎣

d −b
−c a

⎤
⎦

where  ad − bc ≠ 0.  If  ad − bc = 0,   then  A  has no inverse.

Example 11.51

Using the Formula to Find the Multiplicative Inverse of Matrix A

Use the formula to find the multiplicative inverse of

A = ⎡
⎣
1 −2
2 −3

⎤
⎦

Solution
Using the formula, we have

A−1 = 1
(1)(−3) − (−2)(2)

⎡
⎣
−3 2
−2 1

⎤
⎦

           = 1
−3 + 4

⎡
⎣
−3 2
−2 1

⎤
⎦

           = ⎡
⎣
−3 2
−2 1

⎤
⎦

Analysis
We can check that our formula works by using one of the other methods to calculate the inverse. Let’s augment
A with the identity.

⎡
⎣
1 −2
2 −3   |  1 0

0 1
⎤
⎦

Perform row operations with the goal of turning  A  into the identity.

1. Multiply row 1 by  −2  and add to row 2.

⎡
⎣
1 −2
0 1    |   1 0

−2 1
⎤
⎦

2. Multiply row 1 by 2 and add to row 1.

⎡
⎣
1 0
0 1

   |  −3 2
−2 1

⎤
⎦

So, we have verified our original solution.

A−1 = ⎡
⎣
−3 2
−2 1

⎤
⎦

Use the formula to find the inverse of matrix  A. Verify your answer by augmenting with the identity
matrix.

A = ⎡
⎣
1 −1
2   3

⎤
⎦
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Example 11.52

Finding the Inverse of the Matrix, If It Exists

Find the inverse, if it exists, of the given matrix.

A = ⎡
⎣
3 6
1 2

⎤
⎦

Solution
We will use the method of augmenting with the identity.

⎡
⎣
3 6
1 3

   |   1 0
0 1

⎤
⎦

1. Switch row 1 and row 2.

⎡
⎣
1 3
3 6   |   0 1

1 0
⎤
⎦

2. Multiply row 1 by −3 and add it to row 2.

⎡
⎣
1 2
0 0   | 1 0

−3 1
⎤
⎦

3. There is nothing further we can do. The zeros in row 2 indicate that this matrix has no inverse.

Finding the Multiplicative Inverse of 3×3 Matrices
Unfortunately, we do not have a formula similar to the one for a  2×2 matrix to find the inverse of a  3×3 matrix. Instead,
we will augment the original matrix with the identity matrix and use row operations to obtain the inverse.

Given a  3×3  matrix

A =
⎡

⎣
⎢
2 3 1
3 3 1
2 4 1

⎤

⎦
⎥

augment  A with the identity matrix

A|I =
⎡

⎣
⎢
2 3 1
3 3 1
2 4 1

  |  1 0 0
0 1 0
0 0 1

⎤

⎦
⎥

To begin, we write the augmented matrix with the identity on the right and  A  on the left. Performing elementary row
operations so that the identity matrix appears on the left, we will obtain the inverse matrix on the right. We will find the
inverse of this matrix in the next example.

Given a  3 × 3 matrix, find the inverse

1. Write the original matrix augmented with the identity matrix on the right.

2. Use elementary row operations so that the identity appears on the left.

3. What is obtained on the right is the inverse of the original matrix.

4. Use matrix multiplication to show that  AA−1 = I  and  A−1 A = I.

Example 11.53
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Finding the Inverse of a 3 × 3 Matrix

Given the  3 × 3 matrix  A,   find the inverse.

A =
⎡

⎣
⎢
2 3 1
3 3 1
2 4 1

⎤

⎦
⎥

Solution
Augment  A with the identity matrix, and then begin row operations until the identity matrix replaces  A. The
matrix on the right will be the inverse of  A. 

⎡

⎣
⎢
2 3 1
3 3 1
2 4 1

   | 1 0 0
0 1 0
  0 0 1

⎤

⎦
⎥ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Interchange R2  and R1
⎡

⎣
⎢
3 3 1
2 3 1
2 4 1

   | 0 1 0
1 0 0
   0 0 1

⎤

⎦
⎥

−R2 + R1 = R1 →
⎡

⎣
⎢
1 0 0
2 3 1
2 4 1

  |  −1 1 0
1 0 0
0 0 1

⎤

⎦
⎥

−R2 + R3 = R3 →
⎡

⎣
⎢
1 0 0
2 3 1
0 1 0

  |  −1 1 0
1 0 0

−1 0 1

⎤

⎦
⎥

R3   ↔  R2 →
⎡

⎣
⎢
1 0 0
0 1 0
2 3 1

  |  −1 1 0
−1 0 1

1 0 0

⎤

⎦
⎥

−2R1 + R3 = R3 →
⎡

⎣
⎢
1 0 0
0 1 0
0 3 1

  |  −1 1 0
−1 0 1

3 −2 0

⎤

⎦
⎥

−3R2 + R3 = R3 →
⎡

⎣
⎢
1 0 0
0 1 0
0 0 1

  |  −1 1 0
−1 0 1

6 −2 −3

⎤

⎦
⎥

Thus,

A−1 = B =
⎡

⎣
⎢
−1  1  0
−1   0   1
  6 −2 −3

 
⎤

⎦
⎥

Analysis
To prove that  B = A−1,   let’s multiply the two matrices together to see if the product equals the identity, if

AA−1 = I  and  A−1 A = I.

AA−1 =
⎡

⎣
⎢
2 3 1
3 3 1
2 4 1

⎤

⎦
⎥   

⎡

⎣
⎢
−1 1 0
−1 0 1

6 −2 −3

⎤

⎦
⎥

               =
⎡

⎣
⎢
⎢
2(−1) + 3(−1) + 1(6)   2(1) + 3(0) + 1(−2)   2(0) + 3(1) + 1(−3)
3(−1) + 3(−1) + 1(6)   3(1) + 3(0) + 1(−2)   3(0) + 3(1) + 1(−3)
2(−1) + 4(−1) + 1(6)   2(1) + 4(0) + 1(−2)   2(0) + 4(1) + 1(−3)

⎤

⎦
⎥
⎥

               =
⎡

⎣
⎢
1 0 0
0 1 0
0 0 1

⎤

⎦
⎥
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A−1 A =
⎡

⎣
⎢
−1 1 0
−1 0 1

6 −2 −3

⎤

⎦
⎥

⎡

⎣
⎢
2 3 1
3 3 1
2 4 1

⎤

⎦
⎥

=
⎡

⎣
⎢
⎢

−1(2) + 1(3) + 0(2)   −1(3) + 1(3) + 0(4)   −1(1) + 1(1) + 0(1)
−1(2) + 0(3) + 1(2)   −1(3) + 0(3) + 1(4)   −1(1) + 0(1) + 1(1)

6(2) + −2(3) + −3(2)   6(3) + −2(3) + −3(4)   6(1) + −2(1) + −3(1)

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
1 0 0
0 1 0
0 0 1

⎤

⎦
⎥

Find the inverse of the  3×3 matrix.

A =
⎡

⎣
⎢
  2 −17 11
−1    11 −7
  0      3 −2

⎤

⎦
⎥

Solving a System of Linear Equations Using the Inverse of a Matrix
Solving a system of linear equations using the inverse of a matrix requires the definition of two new matrices:  X  is the
matrix representing the variables of the system, and  B  is the matrix representing the constants. Using matrix multiplication,
we may define a system of equations with the same number of equations as variables as

AX = B

To solve a system of linear equations using an inverse matrix, let  A  be the coefficient matrix, let  X  be the variable matrix,
and let  B  be the constant matrix. Thus, we want to solve a system  AX = B.  For example, look at the following system of
equations.

a1 x + b1 y = c1
a2 x + b2 y = c2

From this system, the coefficient matrix is

A = ⎡
⎣
a1 b1
a2 b2

⎤
⎦

The variable matrix is

X = ⎡
⎣
x
y

⎤
⎦

And the constant matrix is

B = ⎡
⎣
c1
c2

⎤
⎦

Then  AX = B  looks like

⎡
⎣
a1 b1
a2 b2

⎤
⎦

⎡
⎣
x
y

⎤
⎦ = ⎡

⎣
c1
c2

⎤
⎦

Recall the discussion earlier in this section regarding multiplying a real number by its inverse,  (2−1) 2 = ⎛
⎝
1
2

⎞
⎠ 2 = 1. To

solve a single linear equation  ax = b  for  x,  we would simply multiply both sides of the equation by the multiplicative
inverse (reciprocal) of  a. Thus,
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  ax = b
  ⎛⎝1

a
⎞
⎠ax = ⎛

⎝
1
a

⎞
⎠b

(a−1    )ax = (a−1)b
[(a−1)a]x = (a−1)b
            1x = (a−1)b
              x = (a−1)b

The only difference between a solving a linear equation and a system of equations written in matrix form is that finding the
inverse of a matrix is more complicated, and matrix multiplication is a longer process. However, the goal is the same—to
isolate the variable.

We will investigate this idea in detail, but it is helpful to begin with a  2 × 2  system and then move on to a  3 × 3  system.

Solving a System of Equations Using the Inverse of a Matrix

Given a system of equations, write the coefficient matrix  A,   the variable matrix  X,   and the constant matrix  B. Then

AX = B

Multiply both sides by the inverse of  A  to obtain the solution.

⎛
⎝A−1⎞

⎠AX = ⎛
⎝A−1⎞

⎠B
⎡
⎣
⎛
⎝A−1⎞

⎠A
⎤
⎦X = ⎛

⎝A−1⎞
⎠B

IX = ⎛
⎝A−1⎞

⎠B

X = ⎛
⎝A−1⎞

⎠B

If the coefficient matrix does not have an inverse, does that mean the system has no solution?

No, if the coefficient matrix is not invertible, the system could be inconsistent and have no solution, or be
dependent and have infinitely many solutions.

Example 11.54

Solving a 2 × 2 System Using the Inverse of a Matrix

Solve the given system of equations using the inverse of a matrix.

3x + 8y = 5
4x + 11y = 7

Solution
Write the system in terms of a coefficient matrix, a variable matrix, and a constant matrix.

A = ⎡
⎣
3 8
4 11

⎤
⎦, X = ⎡

⎣
x
y
⎤
⎦, B = ⎡

⎣
5
7

⎤
⎦

Then

⎡
⎣
3 8
4 11

⎤
⎦   

⎡
⎣
x
y

⎤
⎦ = ⎡

⎣
5
7

⎤
⎦

First, we need to calculate  A−1. Using the formula to calculate the inverse of a 2 by 2 matrix, we have:
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A−1 = 1
ad − bc

⎡
⎣

d −b
−c a

⎤
⎦

= 1
3(11)−8(4)

⎡
⎣
11 −8
−4 3

⎤
⎦

= 1
1

⎡
⎣
11 −8
−4 3

⎤
⎦

So,

A−1 = ⎡
⎣
11 −8
−4   3

⎤
⎦

Now we are ready to solve. Multiply both sides of the equation by  A−1.

  (A−1)AX = (A−1)B
⎡
⎣

11 −8
−4 3

⎤
⎦

⎡
⎣
3 8
4 11

⎤
⎦

⎡
⎣
x
y

⎤
⎦ = ⎡

⎣
11 −8
−4 3

⎤
⎦

⎡
⎣
5
7

⎤
⎦

 ⎡⎣
1 0
0 1

⎤
⎦   ⎡⎣

x
y

⎤
⎦ = ⎡

⎣
11(5) + (−8)7
−4(5) + 3(7)

⎤
⎦

 ⎡⎣
x
y

⎤
⎦ = ⎡

⎣
−1

1
⎤
⎦

The solution is  (−1, 1).

Can we solve for  X  by finding the product  BA−1?

No, recall that matrix multiplication is not commutative, so  A−1 B ≠ BA−1. Consider our steps for solving the
matrix equation.

⎛
⎝A−1⎞

⎠AX = ⎛
⎝A−1⎞

⎠B
⎡
⎣
⎛
⎝A−1⎞

⎠A
⎤
⎦X = ⎛

⎝A−1⎞
⎠B

IX = ⎛
⎝A−1⎞

⎠B

X = ⎛
⎝A−1⎞

⎠B

Notice in the first step we multiplied both sides of the equation by  A−1,   but the  A−1  was to the left of  A  on the
left side and to the left of  B  on the right side. Because matrix multiplication is not commutative, order matters.

Example 11.55

Solving a 3 × 3 System Using the Inverse of a Matrix

Solve the following system using the inverse of a matrix.

5x + 15y + 56z = 35    
−4x−11y−41z = −26

−x−3y−11z = −7  

Solution
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Write the equation  AX = B. 
⎡

⎣
⎢

5 15 56
−4 −11 −41
−1 −3 −11

⎤

⎦
⎥   

⎡

⎣
⎢
x
y
z

⎤

⎦
⎥ =

⎡

⎣
⎢

35
−26
−7

⎤

⎦
⎥

First, we will find the inverse of  A  by augmenting with the identity.

⎡

⎣
⎢

5 15 56
−4 −11 −41
−1 −3 −11

  |  1 0 0
0 1 0
0 0 1

⎤

⎦
⎥

Multiply row 1 by  15.

⎡

⎣
⎢
⎢ 1 3 56

5
−4 −11 −41
−1 −3 −11

  |  15 0 0

0 1 0
0 0 1

⎤

⎦
⎥
⎥

Multiply row 1 by 4 and add to row 2.

⎡

⎣
⎢
⎢
⎢ 1 3 56

5
0 1 19

5
−1 −3 −11

  |  15 0 0

4
5 1 0

0 0 1

⎤

⎦
⎥
⎥
⎥

Add row 1 to row 3.

⎡

⎣
⎢
⎢
⎢
⎢1 3 56

5
0 1 19

5
0 0 1

5

  |  15 0 0

4
5 1 0

1
5 0 1

⎤

⎦
⎥
⎥
⎥
⎥

Multiply row 2 by −3 and add to row 1.

⎡

⎣
⎢
⎢
⎢
⎢1 0 −1

5
0 1 19

5
0 0 1

5

  |  −11
5 −3 0

4
5 1 0

1
5 0 1

⎤

⎦
⎥
⎥
⎥
⎥

Multiply row 3 by 5.

⎡

⎣
⎢
⎢
⎢1 0 −1

5
0 1 19

5
0 0 1

  |  −11
5 −3 0

4
5 1 0

1 0 5

⎤

⎦
⎥
⎥
⎥

Multiply row 3 by  15   and add to row 1.

⎡

⎣
⎢
⎢
1 0 0
0 1 19

5
0 0 1

  |  −2 −3 1
4
5 1 0

1 0 5

⎤

⎦
⎥
⎥

Chapter 11 Systems of Equations and Inequalities 1311



11.31

Multiply row 3 by  − 19
5   and add to row 2.

⎡

⎣
⎢
1 0 0
0 1 0
0 0 1

  |  −2 −3 1
−3 1 −19
1 0 5

⎤

⎦
⎥

So,

A−1 =
⎡

⎣
⎢
−2 −3 1
−3 1 −19
1 0 5

⎤

⎦
⎥

Multiply both sides of the equation by  A−1. We want  A−1 AX = A−1 B :

⎡

⎣
⎢
−2 −3 1
−3 1 −19

1 0 5

⎤

⎦
⎥

⎡

⎣
⎢

5 15 56
−4 −11 −41
−1 −3 −11

⎤

⎦
⎥

⎡

⎣
⎢
x
y
z

⎤

⎦
⎥ =

⎡

⎣
⎢
−2 −3 1
−3 1 −19

1 0 5

⎤

⎦
⎥

⎡

⎣
⎢

35
−26
−7

⎤

⎦
⎥

Thus,

A−1 B =
⎡

⎣
⎢

−70 + 78−7
−105−26 + 133

35 + 0−35

⎤

⎦
⎥ =

⎡

⎣
⎢
1
2
0

⎤

⎦
⎥

The solution is  (1, 2, 0).

Solve the system using the inverse of the coefficient matrix.

  2x − 17y + 11z = 0
− x + 11y − 7z = 8

               3y − 2z = −2

Given a system of equations, solve with matrix inverses using a calculator.

1. Save the coefficient matrix and the constant matrix as matrix variables  [A]  and  [B].

2. Enter the multiplication into the calculator, calling up each matrix variable as needed.

3. If the coefficient matrix is invertible, the calculator will present the solution matrix; if the coefficient
matrix is not invertible, the calculator will present an error message.

Example 11.56

Using a Calculator to Solve a System of Equations with Matrix Inverses

Solve the system of equations with matrix inverses using a calculator

2x + 3y + z = 32
3x + 3y + z = −27
2x + 4y + z = −2

Solution
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On the matrix page of the calculator, enter the coefficient matrix as the matrix variable  [A],   and enter the
constant matrix as the matrix variable  [B].

[A] =
⎡

⎣
⎢
2 3 1
3 3 1
2 4 1

⎤

⎦
⎥,  [B] =

⎡

⎣
⎢

32
−27
−2

⎤

⎦
⎥

On the home screen of the calculator, type in the multiplication to solve for  X,   calling up each matrix variable
as needed.

[A]−1×[B]

Evaluate the expression.

⎡

⎣
⎢
−59
−34
252

⎤

⎦
⎥

Access these online resources for additional instruction and practice with solving systems with inverses.

• The Identity Matrix (http://openstaxcollege.org/l/identmatrix)

• Determining Inverse Matrices (http://openstaxcollege.org/l/inversematrix)

• Using a Matrix Equation to Solve a System of Equations (http://openstaxcollege.org/l/
matrixsystem)
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11.7 EXERCISES
Verbal

In a previous section, we showed that matrix
multiplication is not commutative, that is,  AB ≠ BA  in
most cases. Can you explain why matrix multiplication is
commutative for matrix inverses, that is,  A−1 A = AA−1?

Does every  2×2 matrix have an inverse? Explain
why or why not. Explain what condition is necessary for an
inverse to exist.

Can you explain whether a  2×2 matrix with an entire
row of zeros can have an inverse?

Can a matrix with an entire column of zeros have an
inverse? Explain why or why not.

Can a matrix with zeros on the diagonal have an
inverse? If so, find an example. If not, prove why not. For
simplicity, assume a  2×2 matrix.

Algebraic
In the following exercises, show that matrix  A  is the
inverse of matrix  B.

A = ⎡
⎣

1 0
−1 1

⎤
⎦,  B = ⎡

⎣
1 0
1 1

⎤
⎦

A = ⎡
⎣
1 2
3 4

⎤
⎦,  B =

⎡

⎣
⎢
−2 1
3
2 −1

2

⎤

⎦
⎥

A = ⎡
⎣
4 5
7 0

⎤
⎦,  B =

⎡

⎣
⎢
⎢0 1

7
1
5 − 4

35

⎤

⎦
⎥
⎥

A =
⎡

⎣
⎢−2 1

2
3 −1

⎤

⎦
⎥,  B = ⎡

⎣
−2 −1
−6 −4

⎤
⎦

A =
⎡

⎣
⎢
1 0 1
0 1 −1
0 1 1

⎤

⎦
⎥,  B = 1

2

⎡

⎣
⎢
2 1 −1
0 1 1
0 −1 1

⎤

⎦
⎥

A =
⎡

⎣
⎢
1 2 3
4 0 2
1 6 9

⎤

⎦
⎥,  B = 1

4

⎡

⎣
⎢

6 0 −2
17 −3 −5

−12 2 4

⎤

⎦
⎥

A =
⎡

⎣
⎢
3 8 2
1 1 1
5 6 12

⎤

⎦
⎥,  B = 1

36

⎡

⎣
⎢
−6 84 −6
7 −26 1

−1 −22 5

⎤

⎦
⎥

For the following exercises, find the multiplicative inverse
of each matrix, if it exists.

⎡
⎣
3 −2
1 9

⎤
⎦

⎡
⎣
−2 2
3 1

⎤
⎦

⎡
⎣
−3 7
9 2

⎤
⎦

⎡
⎣
−4 −3
−5 8

⎤
⎦

⎡
⎣
1 1
2 2

⎤
⎦

⎡
⎣
0 1
1 0

⎤
⎦

⎡
⎣
0.5 1.5
1 −0.5

⎤
⎦

⎡

⎣
⎢

1 0 6
−2 1 7
3 0 2

⎤

⎦
⎥

⎡

⎣
⎢
0 1 −3
4 1 0
1 0 5

⎤

⎦
⎥

⎡

⎣
⎢

1 2 −1
−3 4 1
−2 −4 −5

⎤

⎦
⎥

⎡

⎣
⎢
1 9 −3
2 5 6
4 −2 7

⎤

⎦
⎥

⎡

⎣
⎢

1 −2 3
−4 8 −12
1 4 2

⎤

⎦
⎥

⎡

⎣
⎢
⎢
⎢
⎢
1
2

1
2

1
2

1
3

1
4

1
5

1
6

1
7

1
8

⎤

⎦
⎥
⎥
⎥
⎥

⎡

⎣
⎢
1 2 3
4 5 6
7 8 9

⎤

⎦
⎥

For the following exercises, solve the system using the
inverse of a  2 × 2 matrix.
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412.

413.

414.

415.

416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

430.

431.

432.

433.

  5x − 6y = − 61
4x + 3y = − 2

8x + 4y = −100
3x−4y = 1

 3x−2y = 6
−x + 5y = −2

5x−4y = −5
   4x + y = 2.3

−3x−4y = 9
 12x + 4y = −6

−2x + 3y = 3
10

  − x + 5y = 1
2

     85x − 4
5y = 2

5
−8

5x + 1
5y = 7

10

1
2x + 1

5y = − 1
4

1
2x − 3

5y = − 9
4

For the following exercises, solve a system using the
inverse of a  3×3  matrix.

3x−2y + 5z = 21
            5x + 4y = 37
   x−2y−5z = 5

  4x + 4y + 4z = 40
  2x − 3y + 4z = −12
 − x + 3y + 4z = 9

   6x − 5y − z = 31
 − x + 2y + z = −6
 3x + 3y + 2z = 13

6x−5y + 2z = −4
  2x + 5y − z = 12
  2x + 5y + z = 12

4x−2y + 3z = −12
2x + 2y−9z = 33
            6y−4z = 1

1
10x − 1

5y + 4z = −41
2

1
5x−20y + 2

5z = −101

3
10x + 4y − 3

10z = 23

     12x − 1
5y + 1

5z = 31
100

−3
4x − 1

4y + 1
2z = 7

40
−4

5x − 1
2y + 3

2z = 1
4

0.1x + 0.2y + 0.3z = −1.4
0.1x−0.2y + 0.3z = 0.6
                 0.4y + 0.9z = −2

Technology
For the following exercises, use a calculator to solve the
system of equations with matrix inverses.

     2x − y = −3
−x + 2y = 2.3

−1
2x − 3

2y = − 43
20

  52x + 11
5 y = 31

4

12.3x−2y−2.5z = 2
36.9x + 7y−7.5z = −7
                         8y−5z = −10

0.5x−3y + 6z = −0.8
            0.7x−2y = −0.06
0.5x + 4y + 5z = 0

Extensions
For the following exercises, find the inverse of the given
matrix.

⎡

⎣
⎢
⎢
1 0 1 0
0 1 0 1
0 1 1 0
0 0 1 1

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢
−1 0 2 5

0 0 0 2
0 2 −1 0
1 −3 0 1

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

1 −2 3 0
0 1 0 2
1 4 −2 3

−5 0 1 1

⎤

⎦
⎥
⎥
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434.

435.

436.

437.

438.

439.

440.

441.

442.

443.

444.

445.

⎡

⎣
⎢
⎢
⎢
⎢
1 2 0 2 3
0 2 1 0 0
0 0 3 0 1
0 2 0 0 1
0 0 1 2 0

⎤

⎦
⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢
⎢
⎢
⎢
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 1 1 1 1

⎤

⎦
⎥
⎥
⎥
⎥
⎥

Real-World Applications
For the following exercises, write a system of equations
that represents the situation. Then, solve the system using
the inverse of a matrix.

2,400 tickets were sold for a basketball game. If the
prices for floor 1 and floor 2 were different, and the total
amount of money brought in is $64,000, how much was the
price of each ticket?

In the previous exercise, if you were told there were
400 more tickets sold for floor 2 than floor 1, how much
was the price of each ticket?

A food drive collected two different types of canned
goods, green beans and kidney beans. The total number of
collected cans was 350 and the total weight of all donated
food was 348 lb, 12 oz. If the green bean cans weigh 2 oz
less than the kidney bean cans, how many of each can was
donated?

Students were asked to bring their favorite fruit to
class. 95% of the fruits consisted of banana, apple, and
oranges. If oranges were twice as popular as bananas, and
apples were 5% less popular than bananas, what are the
percentages of each individual fruit?

A sorority held a bake sale to raise money and sold
brownies and chocolate chip cookies. They priced the
brownies at $1 and the chocolate chip cookies at $0.75.
They raised $700 and sold 850 items. How many brownies
and how many cookies were sold?

A clothing store needs to order new inventory. It has
three different types of hats for sale: straw hats, beanies,
and cowboy hats. The straw hat is priced at $13.99, the
beanie at $7.99, and the cowboy hat at $14.49. If 100 hats
were sold this past quarter, $1,119 was taken in by sales,
and the amount of beanies sold was 10 more than cowboy
hats, how many of each should the clothing store order to
replace those already sold?

Anna, Ashley, and Andrea weigh a combined 370 lb.
If Andrea weighs 20 lb more than Ashley, and Anna weighs
1.5 times as much as Ashley, how much does each girl
weigh?

Three roommates shared a package of 12 ice cream
bars, but no one remembers who ate how many. If Tom ate
twice as many ice cream bars as Joe, and Albert ate three
less than Tom, how many ice cream bars did each
roommate eat?

A farmer constructed a chicken coop out of chicken
wire, wood, and plywood. The chicken wire cost $2 per
square foot, the wood $10 per square foot, and the plywood
$5 per square foot. The farmer spent a total of $51, and the
total amount of materials used was  14 ft2. He used  3 ft2  
more chicken wire than plywood. How much of each
material in did the farmer use?

Jay has lemon, orange, and pomegranate trees in his
backyard. An orange weighs 8 oz, a lemon 5 oz, and a
pomegranate 11 oz. Jay picked 142 pieces of fruit weighing
a total of 70 lb, 10 oz. He picked 15.5 times more oranges
than pomegranates. How many of each fruit did Jay pick?
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11.8 | Solving Systems with Cramer's Rule

Learning Objectives

In this section, you will:

11.8.1 Evaluate 2 × 2 determinants.
11.8.2 Use Cramer’s Rule to solve a system of equations in two variables.
11.8.3 Evaluate 3 × 3 determinants.
11.8.4 Use Cramer’s Rule to solve a system of three equations in three variables.
11.8.5 Know the properties of determinants.

We have learned how to solve systems of equations in two variables and three variables, and by multiple methods:
substitution, addition, Gaussian elimination, using the inverse of a matrix, and graphing. Some of these methods are easier
to apply than others and are more appropriate in certain situations. In this section, we will study two more strategies for
solving systems of equations.

Evaluating the Determinant of a 2×2 Matrix
A determinant is a real number that can be very useful in mathematics because it has multiple applications, such as
calculating area, volume, and other quantities. Here, we will use determinants to reveal whether a matrix is invertible by
using the entries of a square matrix to determine whether there is a solution to the system of equations. Perhaps one of the
more interesting applications, however, is their use in cryptography. Secure signals or messages are sometimes sent encoded
in a matrix. The data can only be decrypted with an invertible matrix and the determinant. For our purposes, we focus on the
determinant as an indication of the invertibility of the matrix. Calculating the determinant of a matrix involves following
the specific patterns that are outlined in this section.

Find the Determinant of a 2 × 2 Matrix

The determinant of a  2 × 2 matrix, given

A = ⎡
⎣
a b
c d

⎤
⎦

is defined as

Notice the change in notation. There are several ways to indicate the determinant, including  det(A)  and replacing the
brackets in a matrix with straight lines,  |A|.

Example 11.57

Finding the Determinant of a 2 × 2 Matrix

Find the determinant of the given matrix.

A = ⎡
⎣

5 2
−6 3

⎤
⎦

Solution
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det(A) = | 5 2
−6 3|

= 5(3) − (−6)(2)
= 27

Using Cramer’s Rule to Solve a System of Two Equations in Two
Variables
We will now introduce a final method for solving systems of equations that uses determinants. Known as Cramer’s Rule,
this technique dates back to the middle of the 18th century and is named for its innovator, the Swiss mathematician Gabriel
Cramer (1704-1752), who introduced it in 1750 in Introduction à l'Analyse des lignes Courbes algébriques. Cramer’s Rule
is a viable and efficient method for finding solutions to systems with an arbitrary number of unknowns, provided that we
have the same number of equations as unknowns.

Cramer’s Rule will give us the unique solution to a system of equations, if it exists. However, if the system has no solution
or an infinite number of solutions, this will be indicated by a determinant of zero. To find out if the system is inconsistent
or dependent, another method, such as elimination, will have to be used.

To understand Cramer’s Rule, let’s look closely at how we solve systems of linear equations using basic row operations.
Consider a system of two equations in two variables.

a1 x + b1 y = c1     (1)
a2 x + b2 y = c2     (2)

We eliminate one variable using row operations and solve for the other. Say that we wish to solve for  x.  If equation (2)
is multiplied by the opposite of the coefficient of  y  in equation (1), equation (1) is multiplied by the coefficient of  y  in
equation (2), and we add the two equations, the variable  y will be eliminated.

  b2 a1 x + b2 b1 y = b2 c1 Multiply R1  by b2
−b1 a2 x − b1 b2 y = − b1 c2 Multiply R2  by − b1________________________________________________________

b2 a1 x − b1 a2 x = b2 c1 − b1 c2

Now, solve for  x.

(11.4) b2 a1 x − b1 a2 x = b2 c1 − b1 c2
  x(b2 a1 − b1 a2) = b2 c1 − b1 c2

x = b2 c1 − b1 c2
b2 a1 − b1 a2

=

⎡
⎣
c1 b1
c2 b2

⎤
⎦

⎡
⎣
a1 b1
a2 b2

⎤
⎦

Similarly, to solve for  y, we will eliminate  x.

    a2 a1 x + a2 b1 y = a2 c1 Multiply R1  by a2
−a1 a2 x − a1 b2 y = − a1 c2 Multiply R2  by − a1________________________________________________________

  a2 b1 y − a1 b2 y = a2 c1 − a1 c2

Solving for  y  gives
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a2 b1 y − a1 b2 y = a2 c1 − a1 c2
y(a2 b1 − a1 b2) = a2 c1 − a1 c2

                        y = a2 c1 − a1 c2
a2 b1 − a1 b2

= a1 c2 − a2 c1
a1 b2 − a2 b1

= |a1 c1
a2 c2|
|a1 b1
a2 b2|

Notice that the denominator for both  x  and  y  is the determinant of the coefficient matrix.

We can use these formulas to solve for  x  and  y,   but Cramer’s Rule also introduces new notation:

•   D : determinant of the coefficient matrix

• Dx : determinant of the numerator in the solution of x

x = Dx
D

• Dy : determinant of the numerator in the solution of  y

y =
Dy
D

The key to Cramer’s Rule is replacing the variable column of interest with the constant column and calculating the
determinants. We can then express  x  and  y  as a quotient of two determinants.

Cramer’s Rule for 2×2 Systems

Cramer’s Rule is a method that uses determinants to solve systems of equations that have the same number of
equations as variables.

Consider a system of two linear equations in two variables.
a1 x + b1 y = c1
a2 x + b2 y = c2

The solution using Cramer’s Rule is given as

(11.5)

x = Dx
D = |c1 b1

c2 b2|
|a1 b1
a2 b2|,   D ≠ 0;    y =

Dy
D = |a1 c1

a2 c2|
|a1 b1
a2 b2|,   D ≠ 0.

If we are solving for  x,   the  x  column is replaced with the constant column. If we are solving for  y,   the  y  column is

replaced with the constant column.

Example 11.58

Using Cramer’s Rule to Solve a 2 × 2 System

Solve the following  2 × 2  system using Cramer’s Rule.

12x + 3y = 15
  2x − 3y = 13

Solution
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11.32

Solve for  x.

x = Dx
D = |15 3

13 −3|
|12 3

2 −3| = −45 − 39
−36 − 6 = −84

−42 = 2

Solve for  y.

y =
Dy
D = |12 15

2 13|
|12 3

2 −3| = 156 − 30
−36 − 6 = − 126

42 = −3

The solution is  (2, −3).

Use Cramer’s Rule to solve the 2 × 2 system of equations.

  x + 2y = −11
−2x + y = −13

Evaluating the Determinant of a 3 × 3 Matrix
Finding the determinant of a 2×2 matrix is straightforward, but finding the determinant of a 3×3 matrix is more complicated.
One method is to augment the 3×3 matrix with a repetition of the first two columns, giving a 3×5 matrix. Then we calculate
the sum of the products of entries down each of the three diagonals (upper left to lower right), and subtract the products
of entries up each of the three diagonals (lower left to upper right). This is more easily understood with a visual and an
example.

Find the determinant of the 3×3 matrix.

A =
⎡

⎣
⎢
⎢
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤

⎦
⎥
⎥

1. Augment  A with the first two columns.

det(A) = |a1 b1 c1
a2 b2 c2
a3 b3 c3

   |   a1
a2
a3
    

b1
b2
b3|

2. From upper left to lower right: Multiply the entries down the first diagonal. Add the result to the product of entries
down the second diagonal. Add this result to the product of the entries down the third diagonal.

3. From lower left to upper right: Subtract the product of entries up the first diagonal. From this result subtract the
product of entries up the second diagonal. From this result, subtract the product of entries up the third diagonal.

The algebra is as follows:

|A| = a1 b2 c3 + b1 c2 a3 + c1 a2 b3 − a3 b2 c1 − b3 c2 a1 − c3 a2 b1
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11.33

Example 11.59

Finding the Determinant of a 3 × 3 Matrix

Find the determinant of the 3 × 3 matrix given

A =
⎡

⎣
⎢
0 2 1
3 −1 1
4 0 1

⎤

⎦
⎥

Solution
Augment the matrix with the first two columns and then follow the formula. Thus,

|A| = |0 2 1
3 −1 1
4 0 1

  | 03  4     2
−1
0 |

        = 0(−1)(1) + 2(1)(4) + 1(3)(0) − 4(−1)(1) − 0(1)(0) − 1(3)(2)
        = 0 + 8 + 0 + 4 − 0 − 6
        = 6

Find the determinant of the 3 × 3 matrix.

det(A) = |1 −3 7
1 1 1
1 −2 3|

Can we use the same method to find the determinant of a larger matrix?

No, this method only works for  2 × 2  and  3 × 3 matrices. For larger matrices it is best to use a graphing utility
or computer software.

Using Cramer’s Rule to Solve a System of Three Equations in Three
Variables
Now that we can find the determinant of a 3 × 3 matrix, we can apply Cramer’s Rule to solve a system of three equations in
three variables. Cramer’s Rule is straightforward, following a pattern consistent with Cramer’s Rule for 2 × 2 matrices. As
the order of the matrix increases to 3 × 3, however, there are many more calculations required.

When we calculate the determinant to be zero, Cramer’s Rule gives no indication as to whether the system has no solution
or an infinite number of solutions. To find out, we have to perform elimination on the system.

Consider a 3 × 3 system of equations.

x = Dx
D , y =

Dy
D , z = Dz

D , D ≠ 0

where
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If we are writing the determinant  Dx, we replace the  x  column with the constant column. If we are writing the determinant

Dy, we replace the  y  column with the constant column. If we are writing the determinant  Dz, we replace the  z  column

with the constant column. Always check the answer.

Example 11.60

Solving a 3 × 3 System Using Cramer’s Rule

Find the solution to the given 3 × 3 system using Cramer’s Rule.
x + y − z = 6

3x − 2y + z = −5
x + 3y − 2z = 14

Solution
Use Cramer’s Rule.

D = |1   1 −1
3 −2    1
1   3 −2|, Dx = | 6 1 −1

−5 −2    1
14   3 −2|, Dy = |1  6 −1

3 −5   1
1 14 −2|, Dz = |1  1 6

3 −2 −5
1   3 14 |

Then,

x = Dx
D = −3

−3 = 1

y =
Dy
D = −9

−3 = 3

z = Dz
D = 6

−3 = − 2

The solution is (1, 3, −2).

Use Cramer’s Rule to solve the 3 × 3 matrix.

(11.6)x − 3y + 7z = 13
x + y + z = 1  

x − 2y + 3z = 4  

Example 11.61

Using Cramer’s Rule to Solve an Inconsistent System

Solve the system of equations using Cramer’s Rule.

3x − 2y = 4 (1)
6x − 4y = 0 (2)

Solution
We begin by finding the determinants  D, Dx, and Dy.
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(11.7)

D = |3 −2
6 −4| = 3(−4) − 6(−2) = 0

We know that a determinant of zero means that either the system has no solution or it has an infinite number of
solutions. To see which one, we use the process of elimination. Our goal is to eliminate one of the variables.

1. Multiply equation (1) by  −2.

2. Add the result to equation  (2).

−6x + 4y     = −8
   6x − 4y       =     0_______________
                   0       =  −8

We obtain the equation  0 = −8,  which is false. Therefore, the system has no solution. Graphing the system
reveals two parallel lines. See Figure 11.31.

Figure 11.31

Example 11.62

Use Cramer’s Rule to Solve a Dependent System

Solve the system with an infinite number of solutions.

x − 2y + 3z = 0 (1)
3x + y − 2z = 0 (2)

2x − 4y + 6z = 0 (3)

Solution
Let’s find the determinant first. Set up a matrix augmented by the first two columns.
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|1 −2 3
3 1 −2
2 −4 6

   |   1 −2
3 1
2 −4|

Then,

1(1)(6) + (−2)(−2)(2) + 3(3)(−4) − 2(1)(3) − (−4)(−2)(1) − 6(3)(−2) = 0

As the determinant equals zero, there is either no solution or an infinite number of solutions. We have to perform
elimination to find out.

1. Multiply equation (1) by  −2  and add the result to equation (3):

−2x + 4y − 6x = 0
2x − 4y + 6z = 0

  0 = 0
2. Obtaining an answer of  0 = 0,   a statement that is always true, means that the system has an infinite

number of solutions. Graphing the system, we can see that two of the planes are the same and they both
intersect the third plane on a line. See Figure 11.32.

Figure 11.32

Understanding Properties of Determinants
There are many properties of determinants. Listed here are some properties that may be helpful in calculating the
determinant of a matrix.

Properties of Determinants

1. If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.

2. When two rows are interchanged, the determinant changes sign.

3. If either two rows or two columns are identical, the determinant equals zero.

4. If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.

5. The determinant of an inverse matrix  A−1   is the reciprocal of the determinant of the matrix  A.

6. If any row or column is multiplied by a constant, the determinant is multiplied by the same factor.

Example 11.63

Illustrating Properties of Determinants

Illustrate each of the properties of determinants.
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Solution
Property 1 states that if the matrix is in upper triangular form, the determinant is the product of the entries down
the main diagonal.

A =
⎡

⎣
⎢
1   2 3
0   2 1
0   0 −1

⎤

⎦
⎥

Augment  A with the first two columns.

A =
⎡

⎣
⎢
1 2 3
0 2 1
0 0 −1|   100    220⎤

⎦
⎥

Then

det(A) = 1(2)(−1) + 2(1)(0) + 3(0)(0) − 0(2)(3) − 0(1)(1) + 1(0)(2)
                 = −2

Property 2 states that interchanging rows changes the sign. Given

A = ⎡
⎣
−1 5
4 −3

⎤
⎦,   det(A) = (−1)(−3) − (4)(5) = 3 − 20 = −17

B = ⎡
⎣

4 −3
−1 5

⎤
⎦,   det(B) = (4)(5) − (−1)(−3) = 20 − 3 = 17

Property 3 states that if two rows or two columns are identical, the determinant equals zero.

           A =
⎡

⎣
⎢

1 2 2
2 2 2

−1 2 2
  |  1

2
−1

 
2
2
2

⎤

⎦
⎥

det(A) = 1(2)(2) + 2(2)(−1) + 2(2)(2) + 1(2)(2) − 2(2)(1) − 2(2)(2)
                = 4 − 4 + 8 + 4 − 4 − 8 = 0

Property 4 states that if a row or column equals zero, the determinant equals zero. Thus,

A = ⎡
⎣
1 2
0 0

⎤
⎦,    det(A) = 1(0) − 2(0) = 0

Property 5 states that the determinant of an inverse matrix  A−1   is the reciprocal of the determinant  A. Thus,

      A = ⎡
⎣
1 2
3 4

⎤
⎦, det(A) = 1(4) − 3(2) = −2

A−1 =
⎡

⎣
⎢
−2 1
3
2 −1

2

⎤

⎦
⎥, det⎛

⎝A−1⎞
⎠ = − 2⎛

⎝−
1
2

⎞
⎠ − ⎛

⎝
3
2

⎞
⎠(1) = − 1

2

Property 6 states that if any row or column of a matrix is multiplied by a constant, the determinant is multiplied
by the same factor. Thus,

A = ⎡
⎣
1 2
3 4

⎤
⎦, det(A) = 1(4) − 2(3) = −2

B = ⎡
⎣
2(1) 2(2)

3 4
⎤
⎦, det(B) = 2(4) − 3(4) = −4
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Example 11.64

Using Cramer’s Rule and Determinant Properties to Solve a System

Find the solution to the given 3 × 3 system.

2x + 4y + 4z = 2 (1)
3x + 7y + 7z = −5 (2)
  x + 2y + 2z = 4 (3)

Solution
Using Cramer’s Rule, we have

D = |2 4 4
3 7 7
1 2 2|

Notice that the second and third columns are identical. According to Property 3, the determinant will be zero, so
there is either no solution or an infinite number of solutions. We have to perform elimination to find out.

1. Multiply equation (3) by –2 and add the result to equation (1).

−2x − 4y − 4x = − 8
   2x + 4y + 4z = 2  

              0 = − 6

Obtaining a statement that is a contradiction means that the system has no solution.

Access these online resources for additional instruction and practice with Cramer’s Rule.

• Solve a System of Two Equations Using Cramer's Rule (http://openstaxcollege.org/l/
system2cramer)

• Solve a Systems of Three Equations using Cramer's Rule (http://openstaxcollege.org/l/
system3cramer)
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11.8 EXERCISES
Verbal

Explain why we can always evaluate the determinant
of a square matrix.

Examining Cramer’s Rule, explain why there is no
unique solution to the system when the determinant of your
matrix is 0. For simplicity, use a  2 × 2 matrix.

Explain what it means in terms of an inverse for a
matrix to have a 0 determinant.

The determinant of  2 × 2 matrix  A  is 3. If you
switch the rows and multiply the first row by 6 and the
second row by 2, explain how to find the determinant and
provide the answer.

Algebraic
For the following exercises, find the determinant.

|1 2
3 4|
|−1 2

3 −4|
| 2 −5
−1 6|
|−8 4
−1 5|
|1 0
3 −4|
|10 20

0 −10|
|10 0.2
5 0.1|

|6 −3
8 4|
|−2 −3
3.1 4, 000|
|−1.1 0.6

7.2 −0.5|

|−1 0 0
0 1 0
0 0 −3|

|−1 4 0
0 2 3
0 0 −3|

|1 0 1
0 1 0
1 0 0|
| 2 −3 1

3 −4 1
−5 6 1|
|−2 1 4
−4 2 −8

2 −8 −3|
| 6 −1 2
−4 −3 5

1 9 −1|
|5 1 −1
2 3 1
3 −6 −3|
|1.1 2 −1
−4 0 0
4.1 −0.4 2.5|
| 2 −1.6 3.1

1.1 3 −8
−9.3 0 2|

|−1
2

1
3

1
4

1
5 −1

6
1
7

0 0 1
8|

For the following exercises, solve the system of linear
equations using Cramer’s Rule.

2x − 3y = −1
4x + 5y = 9

5x − 4y = 2
−4x + 7y = 6

  6x − 3y = 2     
−8x + 9y = −1

2x + 6y = 12
5x − 2y = 13
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489.

490.

491.
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4x + 3y = 23  
  2x − y = −1

10x − 6y = 2    
−5x + 8y = −1

4x − 3y = −3
2x + 6y = −4

4x − 5y = 7
−3x + 9y = 0

4x + 10y = 180    
−3x − 5y = −105

  8x − 2y = −3
−4x + 6y = 4  

For the following exercises, solve the system of linear
equations using Cramer’s Rule.

    x + 2y − 4z = − 1
  7x + 3y + 5z = 26  
−2x − 6y + 7z = − 6

−5x + 2y − 4z = − 47
    4x − 3y − z = − 94
   3x − 3y + 2z = 94    

    4x + 5y − z = −7
−2x − 9y + 2z = 8    
          5y + 7z = 21 

4x − 3y + 4z = 10
5x − 2z = − 2

3x + 2y − 5z = − 9

4x − 2y + 3z = 6  
     − 6x + y = − 2
2x + 7y + 8z = 24

5x + 2y − z = 1     
−7x − 8y + 3z = 1.5

6x − 12y + z = 7    

  13x − 17y + 16z = 73   
−11x + 15y + 17z = 61  
  46x + 10y − 30z = − 18

−4x − 3y − 8z = − 7
  2x − 9y + 5z = 0.5
  5x − 6y − 5z = − 2

  4x − 6y + 8z = 10  
−2x + 3y − 4z = − 5
         x + y + z = 1  

4x − 6y + 8z = 10  
−2x + 3y − 4z = − 5   

12x + 18y − 24z = − 30

Technology
For the following exercises, use the determinant function
on a graphing utility.

|1 0 8 9
0 2 1 0
1 0 3 0
0 2 4 3|
|1 0 2 1
0 −9 1 3
3 0 −2 −1
0 1 1 −2|
|12 1 7 4

0 1
2 100 5

0 0 2 2,000
0 0 0 2|

|1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 0|

Real-World Applications
For the following exercises, create a system of linear
equations to describe the behavior. Then, calculate the
determinant. Will there be a unique solution? If so, find the
unique solution.

Two numbers add up to 56. One number is 20 less
than the other.

Two numbers add up to 104. If you add two times the
first number plus two times the second number, your total is
208

Three numbers add up to 106. The first number is 3
less than the second number. The third number is 4 more
than the first number.
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Three numbers add to 216. The sum of the first two
numbers is 112. The third number is 8 less than the first two
numbers combined.

For the following exercises, create a system of linear
equations to describe the behavior. Then, solve the system
for all solutions using Cramer’s Rule.

You invest $10,000 into two accounts, which receive
8% interest and 5% interest. At the end of a year, you had
$10,710 in your combined accounts. How much was
invested in each account?

You invest $80,000 into two accounts, $22,000 in one
account, and $58,000 in the other account. At the end of
one year, assuming simple interest, you have earned $2,470
in interest. The second account receives half a percent less
than twice the interest on the first account. What are the
interest rates for your accounts?

A movie theater needs to know how many adult
tickets and children tickets were sold out of the 1,200 total
tickets. If children’s tickets are $5.95, adult tickets are
$11.15, and the total amount of revenue was $12,756, how
many children’s tickets and adult tickets were sold?

A concert venue sells single tickets for $40 each and
couple’s tickets for $65. If the total revenue was $18,090
and the 321 tickets were sold, how many single tickets and
how many couple’s tickets were sold?

You decide to paint your kitchen green. You create the
color of paint by mixing yellow and blue paints. You cannot
remember how many gallons of each color went into your
mix, but you know there were 10 gal total. Additionally,
you kept your receipt, and know the total amount spent was
$29.50. If each gallon of yellow costs $2.59, and each
gallon of blue costs $3.19, how many gallons of each color
go into your green mix?

You sold two types of scarves at a farmers’ market
and would like to know which one was more popular. The
total number of scarves sold was 56, the yellow scarf cost
$10, and the purple scarf cost $11. If you had total revenue
of $583, how many yellow scarves and how many purple
scarves were sold?

Your garden produced two types of tomatoes, one
green and one red. The red weigh 10 oz, and the green
weigh 4 oz. You have 30 tomatoes, and a total weight of 13
lb, 14 oz. How many of each type of tomato do you have?

At a market, the three most popular vegetables make
up 53% of vegetable sales. Corn has 4% higher sales than
broccoli, which has 5% more sales than onions. What
percentage does each vegetable have in the market share?

At the same market, the three most popular fruits
make up 37% of the total fruit sold. Strawberries sell twice
as much as oranges, and kiwis sell one more percentage

point than oranges. For each fruit, find the percentage of
total fruit sold.

Three bands performed at a concert venue. The first
band charged $15 per ticket, the second band charged $45
per ticket, and the final band charged $22 per ticket. There
were 510 tickets sold, for a total of $12,700. If the first band
had 40 more audience members than the second band, how
many tickets were sold for each band?

A movie theatre sold tickets to three movies. The
tickets to the first movie were $5, the tickets to the second
movie were $11, and the third movie was $12. 100 tickets
were sold to the first movie. The total number of tickets
sold was 642, for a total revenue of $6,774. How many
tickets for each movie were sold?

Men aged 20–29, 30–39, and 40–49 made up 78% of
the population at a prison last year. This year, the same age
groups made up 82.08% of the population. The 20–29 age
group increased by 20%, the 30–39 age group increased by
2%, and the 40–49 age group decreased to  34   of their

previous population. Originally, the 30–39 age group had
2% more prisoners than the 20–29 age group. Determine
the prison population percentage for each age group last
year.

At a women’s prison down the road, the total number
of inmates aged 20–49 totaled 5,525. This year, the 20–29
age group increased by 10%, the 30–39 age group
decreased by 20%, and the 40–49 age group doubled. There
are now 6,040 prisoners. Originally, there were 500 more in
the 30–39 age group than the 20–29 age group. Determine
the prison population for each age group last year.

For the following exercises, use this scenario: A health-
conscious company decides to make a trail mix out of
almonds, dried cranberries, and chocolate-covered
cashews. The nutritional information for these items is
shown in Table 11.5.

Fat
(g)

Protein
(g)

Carbohydrates
(g)

Almonds
(10) 6 2 3

Cranberries
(10) 0.02 0 8

Cashews
(10) 7 3.5 5.5

Table 11.5
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For the special “low-carb”trail mix, there are 1,000 pieces
of mix. The total number of carbohydrates is 425 g, and the
total amount of fat is 570.2 g. If there are 200 more pieces
of cashews than cranberries, how many of each item is in
the trail mix?

For the “hiking” mix, there are 1,000 pieces in the
mix, containing 390.8 g of fat, and 165 g of protein. If there
is the same amount of almonds as cashews, how many of
each item is in the trail mix?

For the “energy-booster” mix, there are 1,000 pieces
in the mix, containing 145 g of protein and 625 g of
carbohydrates. If the number of almonds and cashews
summed together is equivalent to the amount of
cranberries, how many of each item is in the trail mix?
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addition method

augmented matrix

break-even point

coefficient matrix

column

consistent system

cost function

Cramer’s Rule

dependent system

determinant

entry

feasible region

Gaussian elimination

identity matrix

inconsistent system

independent system

main diagonal

matrix

multiplicative inverse of a matrix

nonlinear inequality

partial fraction decomposition

partial fractions

profit function

revenue function

row

CHAPTER 11 REVIEW

KEY TERMS
an algebraic technique used to solve systems of linear equations in which the equations are added in a

way that eliminates one variable, allowing the resulting equation to be solved for the remaining variable; substitution
is then used to solve for the first variable

a coefficient matrix adjoined with the constant column separated by a vertical line within the matrix
brackets

the point at which a cost function intersects a revenue function; where profit is zero

a matrix that contains only the coefficients from a system of equations

a set of numbers aligned vertically in a matrix

a system for which there is a single solution to all equations in the system and it is an independent
system, or if there are an infinite number of solutions and it is a dependent system

the function used to calculate the costs of doing business; it usually has two parts, fixed costs and variable
costs

a method for solving systems of equations that have the same number of equations as variables using
determinants

a system of linear equations in which the two equations represent the same line; there are an infinite
number of solutions to a dependent system

a number calculated using the entries of a square matrix that determines such information as whether there is
a solution to a system of equations

an element, coefficient, or constant in a matrix

the solution to a system of nonlinear inequalities that is the region of the graph where the shaded regions
of each inequality intersect

using elementary row operations to obtain a matrix in row-echelon form

a square matrix containing ones down the main diagonal and zeros everywhere else; it acts as a 1 in matrix
algebra

a system of linear equations with no common solution because they represent parallel lines, which
have no point or line in common

a system of linear equations with exactly one solution pair  (x, y)

entries from the upper left corner diagonally to the lower right corner of a square matrix

a rectangular array of numbers

a matrix that, when multiplied by the original, equals the identity matrix

an inequality containing a nonlinear expression

the process of returning a simplified rational expression to its original form, a sum or
difference of simpler rational expressions

the individual fractions that make up the sum or difference of a rational expression before combining
them into a simplified rational expression

the profit function is written as  P(x) = R(x) − C(x), revenue minus cost

the function that is used to calculate revenue, simply written as  R = xp, where  x =   quantity and

 p =   price

a set of numbers aligned horizontally in a matrix
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row operations

row-echelon form

row-equivalent

scalar multiple

solution set

substitution method

system of linear equations

system of nonlinear equations

system of nonlinear inequalities

adding one row to another row, multiplying a row by a constant, interchanging rows, and so on, with the
goal of achieving row-echelon form

after performing row operations, the matrix form that contains ones down the main diagonal and zeros
at every space below the diagonal

two matrices  A  and  B  are row-equivalent if one can be obtained from the other by performing basic row
operations

an entry of a matrix that has been multiplied by a scalar

the set of all ordered pairs or triples that satisfy all equations in a system of equations

an algebraic technique used to solve systems of linear equations in which one of the two equations
is solved for one variable and then substituted into the second equation to solve for the second variable

a set of two or more equations in two or more variables that must be considered
simultaneously.

a system of equations containing at least one equation that is of degree larger than one

a system of two or more inequalities in two or more variables containing at least one
inequality that is not linear

KEY EQUATIONS

Identity matrix for a 2×2 matrix I2 = ⎡
⎣
1 0
0 1

⎤
⎦

Identity matrix for a 3×3 matrix I3 =
⎡

⎣
⎢
1 0 0
0 1 0
0 0 1

⎤

⎦
⎥

Multiplicative inverse of a 2×2 matrix A−1 = 1
ad − bc

⎡
⎣

d −b
−c a

⎤
⎦,  where ad − bc ≠ 0

KEY CONCEPTS
11.1 Systems of Linear Equations: Two Variables

• A system of linear equations consists of two or more equations made up of two or more variables such that all
equations in the system are considered simultaneously.

• The solution to a system of linear equations in two variables is any ordered pair that satisfies each equation
independently. See Example 11.1.

• Systems of equations are classified as independent with one solution, dependent with an infinite number of
solutions, or inconsistent with no solution.

• One method of solving a system of linear equations in two variables is by graphing. In this method, we graph the
equations on the same set of axes. See Example 11.2.

• Another method of solving a system of linear equations is by substitution. In this method, we solve for one variable
in one equation and substitute the result into the second equation. See Example 11.3.

• A third method of solving a system of linear equations is by addition, in which we can eliminate a variable by
adding opposite coefficients of corresponding variables. See Example 11.4.

• It is often necessary to multiply one or both equations by a constant to facilitate elimination of a variable when
adding the two equations together. See Example 11.5, Example 11.6, and Example 11.7.

• Either method of solving a system of equations results in a false statement for inconsistent systems because they are
made up of parallel lines that never intersect. See Example 11.8.
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• The solution to a system of dependent equations will always be true because both equations describe the same line.
See Example 11.9.

• Systems of equations can be used to solve real-world problems that involve more than one variable, such as those
relating to revenue, cost, and profit. See Example 11.10 and Example 11.11.

11.2 Systems of Linear Equations: Three Variables

• A solution set is an ordered triple  ⎧⎩⎨(x, y, z)⎫

⎭
⎬  that represents the intersection of three planes in space. See

Example 11.12.

• A system of three equations in three variables can be solved by using a series of steps that forces a variable to
be eliminated. The steps include interchanging the order of equations, multiplying both sides of an equation by a
nonzero constant, and adding a nonzero multiple of one equation to another equation. See Example 11.13.

• Systems of three equations in three variables are useful for solving many different types of real-world problems.
See Example 11.14.

• A system of equations in three variables is inconsistent if no solution exists. After performing elimination
operations, the result is a contradiction. See Example 11.15.

• Systems of equations in three variables that are inconsistent could result from three parallel planes, two parallel
planes and one intersecting plane, or three planes that intersect the other two but not at the same location.

• A system of equations in three variables is dependent if it has an infinite number of solutions. After performing
elimination operations, the result is an identity. See Example 11.16.

• Systems of equations in three variables that are dependent could result from three identical planes, three planes
intersecting at a line, or two identical planes that intersect the third on a line.

11.3 Systems of Nonlinear Equations and Inequalities: Two Variables

• There are three possible types of solutions to a system of equations representing a line and a parabola: (1) no
solution, the line does not intersect the parabola; (2) one solution, the line is tangent to the parabola; and (3) two
solutions, the line intersects the parabola in two points. See Example 11.17.

• There are three possible types of solutions to a system of equations representing a circle and a line: (1) no solution,
the line does not intersect the circle; (2) one solution, the line is tangent to the parabola; (3) two solutions, the line
intersects the circle in two points. See Example 11.18.

• There are five possible types of solutions to the system of nonlinear equations representing an ellipse and a circle:
(1) no solution, the circle and the ellipse do not intersect; (2) one solution, the circle and the ellipse are tangent to
each other; (3) two solutions, the circle and the ellipse intersect in two points; (4) three solutions, the circle and
ellipse intersect in three places; (5) four solutions, the circle and the ellipse intersect in four points. See Example
11.19.

• An inequality is graphed in much the same way as an equation, except for > or <, we draw a dashed line and shade
the region containing the solution set. See Example 11.20.

• Inequalities are solved the same way as equalities, but solutions to systems of inequalities must satisfy both
inequalities. See Example 11.21.

11.4 Partial Fractions

• Decompose  P(x)
Q(x)   by writing the partial fractions as   A

a1 x + b1
+ B

a2 x + b2
.  Solve by clearing the fractions,

expanding the right side, collecting like terms, and setting corresponding coefficients equal to each other, then
setting up and solving a system of equations. See Example 11.22.

• The decomposition of  P(x)
Q(x)  with repeated linear factors must account for the factors of the denominator in

increasing powers. See Example 11.23.
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• The decomposition of  P(x)
Q(x)  with a nonrepeated irreducible quadratic factor needs a linear numerator over the

quadratic factor, as in  Ax + Bx + C
⎛
⎝ax2 + bx + c⎞

⎠
.  See Example 11.24.

• In the decomposition of  P(x)
Q(x),  where  Q(x)  has a repeated irreducible quadratic factor, when the irreducible

quadratic factors are repeated, powers of the denominator factors must be represented in increasing powers as

Ax + B
⎛
⎝ax2 + bx + c⎞

⎠
+ A2 x + B2

⎛
⎝ax2 + bx + c⎞

⎠
2 + ⋯ + An x + Bn

⎛
⎝ax2 + bx + c⎞

⎠
n.

See Example 11.25.

11.5 Matrices and Matrix Operations

• A matrix is a rectangular array of numbers. Entries are arranged in rows and columns.

• The dimensions of a matrix refer to the number of rows and the number of columns. A  3×2 matrix has three rows
and two columns. See Example 11.26.

• We add and subtract matrices of equal dimensions by adding and subtracting corresponding entries of each matrix.
See Example 11.27, Example 11.28, Example 11.29, and Example 11.30.

• Scalar multiplication involves multiplying each entry in a matrix by a constant. See Example 11.31.

• Scalar multiplication is often required before addition or subtraction can occur. See Example 11.32.

• Multiplying matrices is possible when inner dimensions are the same—the number of columns in the first matrix
must match the number of rows in the second.

• The product of two matrices,  A  and  B, is obtained by multiplying each entry in row 1 of  A  by each entry in
column 1 of  B;   then multiply each entry of row 1 of  A  by each entry in columns 2 of  B, and so on. See Example
11.33 and Example 11.34.

• Many real-world problems can often be solved using matrices. See Example 11.35.

• We can use a calculator to perform matrix operations after saving each matrix as a matrix variable. See Example
11.36.

11.6 Solving Systems with Gaussian Elimination

• An augmented matrix is one that contains the coefficients and constants of a system of equations. See Example
11.37.

• A matrix augmented with the constant column can be represented as the original system of equations. See Example
11.38.

• Row operations include multiplying a row by a constant, adding one row to another row, and interchanging rows.

• We can use Gaussian elimination to solve a system of equations. See Example 11.39, Example 11.40, and
Example 11.41.

• Row operations are performed on matrices to obtain row-echelon form. See Example 11.42.

• To solve a system of equations, write it in augmented matrix form. Perform row operations to obtain row-echelon
form. Back-substitute to find the solutions. See Example 11.43 and Example 11.44.

• A calculator can be used to solve systems of equations using matrices. See Example 11.45.

• Many real-world problems can be solved using augmented matrices. See Example 11.46 and Example 11.47.

11.7 Solving Systems with Inverses

• An identity matrix has the property  AI = IA = A.  See Example 11.48.
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• An invertible matrix has the property  AA−1 = A−1 A = I.  See Example 11.49.

• Use matrix multiplication and the identity to find the inverse of a  2×2 matrix. See Example 11.50.

• The multiplicative inverse can be found using a formula. See Example 11.51.

• Another method of finding the inverse is by augmenting with the identity. See Example 11.52.

• We can augment a  3×3 matrix with the identity on the right and use row operations to turn the original matrix into
the identity, and the matrix on the right becomes the inverse. See Example 11.53.

• Write the system of equations as  AX = B,   and multiply both sides by the inverse of  A : A−1 AX = A−1 B.  See
Example 11.54 and Example 11.55.

• We can also use a calculator to solve a system of equations with matrix inverses. See Example 11.56.

11.8 Solving Systems with Cramer's Rule

• The determinant for  ⎡⎣
a b
c d

⎤
⎦  is  ad − bc.  See Example 11.57.

• Cramer’s Rule replaces a variable column with the constant column. Solutions are  x = Dx
D , y =

Dy
D .  See

Example 11.58.

• To find the determinant of a 3×3 matrix, augment with the first two columns. Add the three diagonal entries (upper
left to lower right) and subtract the three diagonal entries (lower left to upper right). See Example 11.59.

• To solve a system of three equations in three variables using Cramer’s Rule, replace a variable column with the

constant column for each desired solution:  x = Dx
D , y =

Dy
D , z = Dz

D .  See Example 11.60.

• Cramer’s Rule is also useful for finding the solution of a system of equations with no solution or infinite solutions.
See Example 11.61 and Example 11.62.

• Certain properties of determinants are useful for solving problems. For example:

◦ If the matrix is in upper triangular form, the determinant equals the product of entries down the main
diagonal.

◦ When two rows are interchanged, the determinant changes sign.

◦ If either two rows or two columns are identical, the determinant equals zero.

◦ If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.

◦ The determinant of an inverse matrix  A−1   is the reciprocal of the determinant of the matrix  A.

◦ If any row or column is multiplied by a constant, the determinant is multiplied by the same factor. See
Example 11.63 and Example 11.64.

CHAPTER 11 REVIEW EXERCISES
Systems of Linear Equations: Two Variables

For the following exercises, determine whether the ordered
pair is a solution to the system of equations.

514.
3x − y = 4
x + 4y = − 3  and  ( − 1, 1)

515.
6x − 2y = 24
−3x + 3y = 18  and  (9, 15)

For the following exercises, use substitution to solve the
system of equations.

516.
10x + 5y = −5
   3x − 2y = −12

517.
4
7x + 1

5y = 43
70

5
6x − 1

3y = − 2
3
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518.
5x + 6y = 14
4x + 8y = 8

For the following exercises, use addition to solve the
system of equations.

519.
3x + 2y = −7
2x + 4y = 6

520.
3x + 4y = 2

9x + 12y = 3

521.
8x + 4y = 2
6x − 5y = 0.7

For the following exercises, write a system of equations to
solve each problem. Solve the system of equations.

522. A factory has a cost of production
 C(x) = 150x + 15,000  and a revenue function
 R(x) = 200x. What is the break-even point?

523. A performer charges  C(x) = 50x + 10,000,  where
 x  is the total number of attendees at a show. The venue
charges $75 per ticket. After how many people buy tickets
does the venue break even, and what is the value of the total
tickets sold at that point?

Systems of Linear Equations: Three Variables

For the following exercises, solve the system of three
equations using substitution or addition.

524.
     0.5x − 0.5y = 10
− 0.2y + 0.2x = 4

      0.1x + 0.1z = 2

525.
5x + 3y − z = 5   

3x − 2y + 4z = 13
4x + 3y + 5z = 22

526.

x + y + z = 1
2x + 2y + 2z = 1

3x + 3y = 2

527.
    2x − 3y + z = −1
         x + y + z = −4
   4x + 2y − 3z = 33

528.
  3x + 2y − z = −10
    x − y + 2z = 7
−x + 3y + z = −2

529.
3x + 4z = −11
x − 2y = 5  
4y − z = −10

530.
2x − 3y + z = 0

2x + 4y − 3z = 0
6x − 2y − z = 0

531.
6x − 4y − 2z = 2
3x + 2y − 5z = 4

6y − 7z = 5

For the following exercises, write a system of equations to
solve each problem. Solve the system of equations.

532. Three odd numbers sum up to 61. The smaller is one-
third the larger and the middle number is 16 less than the
larger. What are the three numbers?

533. A local theatre sells out for their show. They sell all
500 tickets for a total purse of $8,070.00. The tickets were
priced at $15 for students, $12 for children, and $18 for
adults. If the band sold three times as many adult tickets as
children’s tickets, how many of each type was sold?

Systems of Nonlinear Equations and Inequalities:
Two Variables

For the following exercises, solve the system of nonlinear
equations.

534.
y = x2 − 7

y = 5x − 13

535.
y = x2 − 4

y = 5x + 10

536. x2 + y2 = 16
  y = x − 8

537.
x2 + y2 = 25

  y = x2 + 5

538.
x2 + y2 = 4
y − x2 = 3

For the following exercises, graph the inequality.

539. y > x2 − 1
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540. 1
4x2 + y2 < 4

For the following exercises, graph the system of
inequalities.

541.
x2 + y2 + 2x < 3

                             y > − x2 − 3

542. x2 − 2x + y2 − 4x < 4
                                          y < − x + 4

543.
x2 + y2 < 1

             y2 < x

Partial Fractions

For the following exercises, decompose into partial
fractions.

544. −2x + 6
x2 + 3x + 2

545. 10x + 2
4x2 + 4x + 1

546. 7x + 20
x2 + 10x + 25

547. x − 18
x2 − 12x + 36

548. −x2 + 36x + 70
x3 − 125

549. −5x2 + 6x − 2
x3 + 27

550. x3 − 4x2 + 3x + 11
(x2 − 2)2

551. 4x4 − 2x3 + 22x2 − 6x + 48
x(x2 + 4)2

Matrices and Matrix Operations

For the following exercises, perform the requested
operations on the given matrices.

A = ⎡
⎣
4 −2
1 3

⎤
⎦, B = ⎡

⎣
6 7 −3

11 −2 4
⎤
⎦, C =

⎡

⎣
⎢

6 7
11 −2

14 0

⎤

⎦
⎥, D =

⎡

⎣
⎢

1 −4 9
10 5 −7

2 8 5

⎤

⎦
⎥, E =

⎡

⎣
⎢
7 −14 3
2 −1 3
0 1 9

⎤

⎦
⎥

552. −4A

553. 10D − 6E

554. B + C

555. AB

556. BA

557. BC

558. CB

559. DE

560. ED

561. EC

562. CE

563. A3

Solving Systems with Gaussian Elimination

For the following exercises, write the system of linear
equations from the augmented matrix. Indicate whether
there will be a unique solution.

564.
⎡

⎣
⎢
1 0 −3
0 1 2
0 0 0

  |  7
−5

0

⎤

⎦
⎥

565.
⎡

⎣
⎢
1 0 5
0 1 −2
0 0 0

  |  −9
4
3

⎤

⎦
⎥

For the following exercises, write the augmented matrix
from the system of linear equations.

566.
−2x + 2y + z = 7
2x − 8y + 5z = 0

19x − 10y + 22z = 3

567.
     4x + 2y − 3z = 14
−12x + 3y + z = 100
     9x − 6y + 2z = 31

568.
x + 3z = 12 

−x + 4y = 0    
y + 2z = − 7
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For the following exercises, solve the system of linear
equations using Gaussian elimination.

569.
3x − 4y = − 7
−6x + 8y = 14

570.
3x − 4y = 1

−6x + 8y = 6

571.
−1.1x − 2.3y = 6.2

−5.2x − 4.1y = 4.3

572.
2x + 3y + 2z = 1  

−4x − 6y − 4z = − 2
10x + 15y + 10z = 0     

573.
−x + 2y − 4z = 8  

3y + 8z = − 4
−7x + y + 2z = 1    

Solving Systems with Inverses

For the following exercises, find the inverse of the matrix.

574. ⎡
⎣
−0.2 1.4

1.2 −0.4
⎤
⎦

575.
⎡

⎣
⎢
⎢

1
2 −1

2
−1

4
3
4

⎤

⎦
⎥
⎥

576.
⎡

⎣
⎢

12 9 −6
−1 3 2
−4 −3 2

⎤

⎦
⎥

577.
⎡

⎣
⎢
2 1 3
1 2 3
3 2 1

⎤

⎦
⎥

For the following exercises, find the solutions by
computing the inverse of the matrix.

578.
    0.3x − 0.1y = − 10
−0.1x + 0.3y = 14

579.
        0.4x − 0.2y = − 0.6
−0.1x + 0.05y = 0.3

580.
4x + 3y − 3z = − 4.3
5x − 4y − z = − 6.1

x + z = − 0.7

581.
−2x − 3y + 2z = 3

−x + 2y + 4z = − 5
−2y + 5z = − 3

For the following exercises, write a system of equations to
solve each problem. Solve the system of equations.

582. Students were asked to bring their favorite fruit to
class. 90% of the fruits consisted of banana, apple, and
oranges. If oranges were half as popular as bananas and
apples were 5% more popular than bananas, what are the
percentages of each individual fruit?

583. A sorority held a bake sale to raise money and sold
brownies and chocolate chip cookies. They priced the
brownies at $2 and the chocolate chip cookies at $1. They
raised $250 and sold 175 items. How many brownies and
how many cookies were sold?

Solving Systems with Cramer's Rule

For the following exercises, find the determinant.

584. |100 0
0 0|

585. |0.2 −0.6
0.7 −1.1|

586. |−1 4 3
0 2 3
0 0 −3|

587. | 2 0 0
0 2 0
0 0 2|

For the following exercises, use Cramer’s Rule to solve the
linear systems of equations.

588.
4x − 2y = 23    

−5x − 10y = − 35

589.
0.2x − 0.1y = 0
−0.3x + 0.3y = 2.5

590.
−0.5x + 0.1y = 0.3   

−0.25x + 0.05y = 0.15

591.

x + 6y + 3z = 4
2x + y + 2z = 3
3x − 2y + z = 0
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592.

4x − 3y + 5z = − 5
2

7x − 9y − 3z = 3
2     

x − 5y − 5z = 5
2     

593.

3
10x − 1

5y − 3
10z = − 1

50
1
10x − 1

10y − 1
2z = − 9

50
2
5x − 1

2y − 3
5z = − 1

5

CHAPTER 11 PRACTICE TEST
Is the following ordered pair a solution to the system of
equations?

594. −5x − y = 12 
x + 4y = 9

with  ( − 3, 3)

For the following exercises, solve the systems of linear
and nonlinear equations using substitution or elimination.
Indicate if no solution exists.

595.
1
2x − 1

3y = 4

3
2x − y = 0

596.
−1

2x − 4y = 4

2x + 16y = 2

597.
5x − y = 1    

−10x + 2y = − 2

598.

4x − 6y − 2z = 1
10

   x − 7y + 5z = − 1
4

3x + 6y − 9z = 6
5

599.

x + z = 20
x + y + z = 20

x + 2y + z = 10

600.
5x − 4y − 3z = 0
2x + y + 2z = 0
x − 6y − 7z = 0

601.
y = x2 + 2x − 3

y = x − 1

602.
y2 + x2 = 25

y2 − 2x2 = 1

For the following exercises, graph the following
inequalities.

603. y < x2 + 9

604.
x2 + y2 > 4
y < x2 + 1

For the following exercises, write the partial fraction
decomposition.

605. −8x − 30
x2 + 10x + 25

606. 13x + 2
(3x + 1)2

607. x4 − x3 + 2x − 1
x(x2 + 1)2

For the following exercises, perform the given matrix
operations.

608. 5⎡
⎣

4 9
−2 3

⎤
⎦ + 1

2
⎡
⎣
−6 12
4 −8

⎤
⎦

609.
⎡

⎣
⎢

1 4 −7
−2 9 5
12 0 −4

⎤

⎦
⎥   

⎡

⎣
⎢
3 −4
1 3
5 10

⎤

⎦
⎥

610.
⎡

⎣
⎢
⎢
1
2

1
3

1
4

1
5

⎤

⎦
⎥
⎥

−1
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611. det| 0 0
400 4,000|

612. det| 1
2 −1

2 0

−1
2 0 1

2
0 1

2 0|
613. If  det(A) = −6,   what would be the determinant if
you switched rows 1 and 3, multiplied the second row by
12, and took the inverse?

614. Rewrite the system of linear equations as an

augmented matrix.
14x − 2y + 13z = 140
−2x + 3y − 6z = − 1
x − 5y + 12z = 11

615. Rewrite the augmented matrix as a system of linear

equations.
⎡

⎣
⎢

1 0 3
−2 4 9
−6 1 2| 12

−5
8

⎤

⎦
⎥

For the following exercises, use Gaussian elimination to
solve the systems of equations.

616.
x − 6y = 4

2x − 12y = 0

617.
2x + y + z = − 3
x − 2y + 3z = 6    

x − y − z = 6  

For the following exercises, use the inverse of a matrix to
solve the systems of equations.

618.
4x − 5y = − 50
−x + 2y = 80  

619.

1
100x − 3

100y + 1
20z = − 49

3
100x − 7

100y − 1
100z = 13

9
100x − 9

100y − 9
100z = 99

For the following exercises, use Cramer’s Rule to solve the
systems of equations.

620.
200x − 300y = 2
400x + 715y = 4

621.
0.1x + 0.1y − 0.1z = − 1.2
0.1x − 0.2y + 0.4z = − 1.2
0.5x − 0.3y + 0.8z = − 5.9

For the following exercises, solve using a system of linear
equations.

622. A factory producing cell phones has the following
cost and revenue functions:  C(x) = x2 + 75x + 2,688  and

 R(x) = x2 + 160x. What is the range of cell phones they
should produce each day so there is profit? Round to the
nearest number that generates profit.

623. A small fair charges $1.50 for students, $1 for
children, and $2 for adults. In one day, three times as many
children as adults attended. A total of 800 tickets were sold
for a total revenue of $1,050. How many of each type of
ticket was sold?
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12 | ANALYTIC GEOMETRY

Figure 12.1 (a) Greek philosopher Aristotle (384–322 BCE) (b) German mathematician and astronomer Johannes Kepler
(1571–1630)

Chapter Outline
12.1 The Ellipse

12.2 The Hyperbola

12.3 The Parabola

12.4 Rotation of Axes

12.5 Conic Sections in Polar Coordinates

Introduction
The Greek mathematician Menaechmus (c. 380–c. 320 BCE) is generally credited with discovering the shapes formed by
the intersection of a plane and a right circular cone. Depending on how he tilted the plane when it intersected the cone, he
formed different shapes at the intersection–beautiful shapes with near-perfect symmetry.

It was also said that Aristotle may have had an intuitive understanding of these shapes, as he observed the orbit of the planet
to be circular. He presumed that the planets moved in circular orbits around Earth, and for nearly 2000 years this was the
commonly held belief.

It was not until the Renaissance movement that Johannes Kepler noticed that the orbits of the planet were not circular in
nature. His published law of planetary motion in the 1600s changed our view of the solar system forever. He claimed that
the sun was at one end of the orbits, and the planets revolved around the sun in an oval-shaped path.
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In this chapter, we will investigate the two-dimensional figures that are formed when a right circular cone is intersected by
a plane. We will begin by studying each of three figures created in this manner. We will develop defining equations for each
figure and then learn how to use these equations to solve a variety of problems.

12.1 | The Ellipse

Learning Objectives

In this section, you will:

12.1.1 Write equations of ellipses in standard form.
12.1.2 Graph ellipses centered at the origin.
12.1.3 Graph ellipses not centered at the origin.
12.1.4 Solve applied problems involving ellipses.

Figure 12.2 The National Statuary Hall in Washington, D.C.
(credit: Greg Palmer, Flickr)

Can you imagine standing at one end of a large room and still being able to hear a whisper from a person standing at the
other end? The National Statuary Hall in Washington, D.C., shown in Figure 12.2, is such a room.[1] It is an oval-shaped
room called a whispering chamber because the shape makes it possible for sound to travel along the walls. In this section,
we will investigate the shape of this room and its real-world applications, including how far apart two people in Statuary
Hall can stand and still hear each other whisper.

Writing Equations of Ellipses in Standard Form
A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the
plane intersects the cone determines the shape, as shown in Figure 12.3.

1. Architect of the Capitol. http://www.aoc.gov. Accessed April 15, 2014.
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Figure 12.3

Conic sections can also be described by a set of points in the coordinate plane. Later in this chapter, we will see that the
graph of any quadratic equation in two variables is a conic section. The signs of the equations and the coefficients of the
variable terms determine the shape. This section focuses on the four variations of the standard form of the equation for the
ellipse. An ellipse is the set of all points  (x, y)  in a plane such that the sum of their distances from two fixed points is a

constant. Each fixed point is called a focus (plural: foci).

We can draw an ellipse using a piece of cardboard, two thumbtacks, a pencil, and string. Place the thumbtacks in the
cardboard to form the foci of the ellipse. Cut a piece of string longer than the distance between the two thumbtacks (the
length of the string represents the constant in the definition). Tack each end of the string to the cardboard, and trace a curve
with a pencil held taut against the string. The result is an ellipse. See Figure 12.4.

Figure 12.4
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Every ellipse has two axes of symmetry. The longer axis is called the major axis, and the shorter axis is called the minor
axis. Each endpoint of the major axis is the vertex of the ellipse (plural: vertices), and each endpoint of the minor axis
is a co-vertex of the ellipse. The center of an ellipse is the midpoint of both the major and minor axes. The axes are
perpendicular at the center. The foci always lie on the major axis, and the sum of the distances from the foci to any point on
the ellipse (the constant sum) is greater than the distance between the foci. See Figure 12.5.

Figure 12.5

In this section, we restrict ellipses to those that are positioned vertically or horizontally in the coordinate plane. That is, the
axes will either lie on or be parallel to the x- and y-axes. Later in the chapter, we will see ellipses that are rotated in the
coordinate plane.

To work with horizontal and vertical ellipses in the coordinate plane, we consider two cases: those that are centered at the
origin and those that are centered at a point other than the origin. First we will learn to derive the equations of ellipses,
and then we will learn how to write the equations of ellipses in standard form. Later we will use what we learn to draw the
graphs.

Deriving the Equation of an Ellipse Centered at the Origin
To derive the equation of an ellipse centered at the origin, we begin with the foci  (−c, 0)  and  (c, 0). The ellipse is the set

of all points  (x, y)  such that the sum of the distances from  (x, y)  to the foci is constant, as shown in Figure 12.6.

Figure 12.6

If  (a, 0)  is a vertex of the ellipse, the distance from  (−c, 0)  to  (a, 0)  is  a − ( − c) = a + c. The distance from  (c, 0)  to
 (a, 0)  is  a − c . The sum of the distances from the foci to the vertex is

(a + c) + (a − c) = 2a

If  (x, y)  is a point on the ellipse, then we can define the following variables:
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d1 = the distance from (−c, 0) to (x, y)
d2 = the distance from (c, 0) to (x, y)

By the definition of an ellipse,  d1 + d2   is constant for any point  (x, y)  on the ellipse. We know that the sum of these

distances is  2a  for the vertex  (a, 0).  It follows that  d1 + d2 = 2a  for any point on the ellipse. We will begin the derivation

by applying the distance formula. The rest of the derivation is algebraic.

                                      d1 + d2 = (x − ( − c))2 + (y − 0)2 + (x − c)2 + (y − 0)2 = 2a Distance formula

(x + c)2 + y2 + (x − c)2 + y2 = 2a Simplify expressions.

                            (x + c)2 + y2 = 2a − (x − c)2 + y2 Move radical to opposite side.

                              (x + c)2 + y2 = ⎡
⎣2a − (x − c)2 + y2⎤

⎦
2

Square both sides.

                    x2 + 2cx + c2 + y2 = 4a2 − 4a (x − c)2 + y2 + (x − c)2 + y2 Expand the squares.

                    x2 + 2cx + c2 + y2 = 4a2 − 4a (x − c)2 + y2 + x2 − 2cx + c2 + y2 Expand remaining squares.

                                             2cx = 4a2 − 4a (x − c)2 + y2 − 2cx Combine like terms.

                                   4cx − 4a2 = − 4a (x − c)2 + y2 Isolate the radical.

                                       cx − a2 = − a (x − c)2 + y2 Divide by 4.

                                   ⎡⎣cx − a2⎤
⎦
2

= a2 ⎡
⎣ (x − c)2 + y2⎤

⎦
2

Square both sides.

                    c2 x2 − 2a2 cx + a4 = a2 ⎛
⎝x2 − 2cx + c2 + y2⎞

⎠ Expand the squares.

                    c2 x2 − 2a2 cx + a4 = a2 x2 − 2a2 cx + a2 c2 + a2 y2 Distribute a2.

                 a2 x2 − c2 x2 + a2 y2 = a4 − a2 c2 Rewrite.

                   x2 ⎛
⎝a2 − c2⎞

⎠ + a2 y2 = a2 ⎛
⎝a2 − c2⎞

⎠ Factor common terms.

                              x2 b2 + a2 y2 = a2 b2 Set b2 = a2 − c2.

                            x
2 b2

a2 b2 + a2 y2

a2 b2 = a2 b2

a2 b2 Divide both sides by a2 b2.

                                     x
2

a2 + y2

b2 = 1 Simplify.

Thus, the standard equation of an ellipse is  x2

a2 + y2

b2 = 1. This equation defines an ellipse centered at the origin. If  a > b,

the ellipse is stretched further in the horizontal direction, and if  b > a, the ellipse is stretched further in the vertical
direction.

Writing Equations of Ellipses Centered at the Origin in Standard Form
Standard forms of equations tell us about key features of graphs. Take a moment to recall some of the standard forms
of equations we’ve worked with in the past: linear, quadratic, cubic, exponential, logarithmic, and so on. By learning to
interpret standard forms of equations, we are bridging the relationship between algebraic and geometric representations of
mathematical phenomena.

The key features of the ellipse are its center, vertices, co-vertices, foci, and lengths and positions of the major and minor
axes. Just as with other equations, we can identify all of these features just by looking at the standard form of the equation.
There are four variations of the standard form of the ellipse. These variations are categorized first by the location of
the center (the origin or not the origin), and then by the position (horizontal or vertical). Each is presented along with a
description of how the parts of the equation relate to the graph. Interpreting these parts allows us to form a mental picture
of the ellipse.
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Standard Forms of the Equation of an Ellipse with Center (0,0)

The standard form of the equation of an ellipse with center  (0, 0)  and major axis on the x-axis is

(12.1)x2

a2 + y2

b2 = 1

where

• a > b

• the length of the major axis is  2a

• the coordinates of the vertices are  (±a, 0)

• the length of the minor axis is  2b

• the coordinates of the co-vertices are  (0, ± b)

• the coordinates of the foci are  (±c, 0) , where  c2 = a2 − b2.  See Figure 12.7a

The standard form of the equation of an ellipse with center  (0, 0)  and major axis on the y-axis is

(12.2)x2

b2 + y2

a2 = 1

where

• a > b

• the length of the major axis is  2a

• the coordinates of the vertices are  (0, ± a)

• the length of the minor axis is  2b

• the coordinates of the co-vertices are  (±b, 0)

• the coordinates of the foci are  (0, ± c) , where  c2 = a2 − b2.  See Figure 12.7b

Note that the vertices, co-vertices, and foci are related by the equation  c2 = a2 − b2. When we are given the
coordinates of the foci and vertices of an ellipse, we can use this relationship to find the equation of the ellipse in
standard form.
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Figure 12.7 (a) Horizontal ellipse with center  (0, 0)  (b) Vertical ellipse with center  (0, 0)

Given the vertices and foci of an ellipse centered at the origin, write its equation in standard form.

1. Determine whether the major axis lies on the x- or y-axis.

a. If the given coordinates of the vertices and foci have the form  (±a, 0)  and  ( ± c, 0)  respectively,

then the major axis is the x-axis. Use the standard form  x2

a2 + y2

b2 = 1.

b. If the given coordinates of the vertices and foci have the form  (0, ± a)  and  ( ± c, 0),

respectively, then the major axis is the y-axis. Use the standard form  x2

b2 + y2

a2 = 1.

2. Use the equation  c2 = a2 − b2,   along with the given coordinates of the vertices and foci, to solve for

 b2.

3. Substitute the values for  a2   and  b2   into the standard form of the equation determined in Step 1.

Example 12.1

Writing the Equation of an Ellipse Centered at the Origin in Standard Form

What is the standard form equation of the ellipse that has vertices  (±8, 0)  and foci  (±5, 0)?  

Solution
The foci are on the x-axis, so the major axis is the x-axis. Thus, the equation will have the form

x2

a2 + y2

b2 = 1

The vertices are  (±8, 0), so  a = 8  and  a2 = 64.
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The foci are  (±5, 0), so  c = 5  and  c2 = 25.

We know that the vertices and foci are related by the equation  c2 = a2 − b2.  Solving for  b2, we have:

c2 = a2 − b2

25 = 64 − b2 Substitute for c2  and a2.
b2 = 39 Solve for b2.

Now we need only substitute  a2 = 64  and  b2 = 39  into the standard form of the equation. The equation of the

ellipse is  x2

64 + y2

39 = 1.

What is the standard form equation of the ellipse that has vertices  (0, ± 4)  and foci  ⎛⎝0, ± 15⎞
⎠?

Can we write the equation of an ellipse centered at the origin given coordinates of just one focus and vertex?

Yes. Ellipses are symmetrical, so the coordinates of the vertices of an ellipse centered around the origin will always
have the form  (±a, 0)  or  (0,  ± a).  Similarly, the coordinates of the foci will always have the form  (±c, 0)  or

 (0,  ± c). Knowing this, we can use  a  and  c  from the given points, along with the equation  c2 = a2 − b2, to

find  b2.

Writing Equations of Ellipses Not Centered at the Origin
Like the graphs of other equations, the graph of an ellipse can be translated. If an ellipse is translated  h  units horizontally
and  k  units vertically, the center of the ellipse will be  (h, k). This translation results in the standard form of the equation

we saw previously, with  x  replaced by  (x − h)  and y replaced by  ⎛⎝y − k⎞
⎠.

Standard Forms of the Equation of an Ellipse with Center (h, k)

The standard form of the equation of an ellipse with center  (h,  k)  and major axis parallel to the x-axis is

(12.3)(x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1

where

• a > b

• the length of the major axis is  2a

• the coordinates of the vertices are  (h ± a, k)

• the length of the minor axis is  2b

• the coordinates of the co-vertices are  (h, k ± b)

• the coordinates of the foci are  (h ± c, k), where  c2 = a2 − b2.  See Figure 12.8a

The standard form of the equation of an ellipse with center  (h, k)  and major axis parallel to the y-axis is
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(12.4)(x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1

where

• a > b

• the length of the major axis is  2a

• the coordinates of the vertices are  (h, k ± a)

• the length of the minor axis is  2b

• the coordinates of the co-vertices are  (h ± b, k)

• the coordinates of the foci are  (h, k ± c),  where  c2 = a2 − b2.  See Figure 12.8b

Just as with ellipses centered at the origin, ellipses that are centered at a point  (h, k)  have vertices, co-vertices, and

foci that are related by the equation  c2 = a2 − b2. We can use this relationship along with the midpoint and distance
formulas to find the equation of the ellipse in standard form when the vertices and foci are given.

Figure 12.8 (a) Horizontal ellipse with center  (h, k)  (b) Vertical ellipse with center  (h, k)
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Given the vertices and foci of an ellipse not centered at the origin, write its equation in standard form.

1. Determine whether the major axis is parallel to the x- or y-axis.

a. If the y-coordinates of the given vertices and foci are the same, then the major axis is parallel to

the x-axis. Use the standard form  (x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1.

b. If the x-coordinates of the given vertices and foci are the same, then the major axis is parallel to

the y-axis. Use the standard form  (x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1.

2. Identify the center of the ellipse  (h, k)  using the midpoint formula and the given coordinates for the
vertices.

3. Find  a2   by solving for the length of the major axis,  2a, which is the distance between the given vertices.

4. Find  c2   using  h  and  k, found in Step 2, along with the given coordinates for the foci.

5. Solve for  b2   using the equation  c2 = a2 − b2.

6. Substitute the values for  h, k, a2, and  b2   into the standard form of the equation determined in Step 1.

Example 12.2

Writing the Equation of an Ellipse Centered at a Point Other Than the Origin

What is the standard form equation of the ellipse that has vertices  (−2, −8)  and  (−2, 2)

and foci  (−2, −7)  and  (−2, 1)?

Solution
The x-coordinates of the vertices and foci are the same, so the major axis is parallel to the y-axis. Thus, the
equation of the ellipse will have the form

(x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1

First, we identify the center,  (h, k). The center is halfway between the vertices,  (−2, − 8)  and  (−2, 2). 
Applying the midpoint formula, we have:

(h, k) = ⎛
⎝
−2 + (−2)

2 , −8 + 2
2

⎞
⎠

         = (−2, −3)

Next, we find  a2. The length of the major axis,  2a, is bounded by the vertices. We solve for  a  by finding the
distance between the y-coordinates of the vertices.

  2a = 2 − (−8)
2a = 10

a = 5

So  a2 = 25.
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Now we find  c2. The foci are given by  (h, k ± c).  So,  (h, k − c) = (−2, −7)  and  (h, k + c) = (−2, 1). We
substitute  k = −3  using either of these points to solve for  c.

    k + c = 1
−3 + c = 1
              c = 4

So  c2 = 16.

Next, we solve for  b2   using the equation  c2 = a2 − b2.

              c2 = a2 − b2

              16 = 25 − b2

b2 = 9

Finally, we substitute the values found for  h, k, a2, and  b2   into the standard form equation for an ellipse:

 (x + 2)2

9 +
⎛
⎝y + 3⎞

⎠
2

25 = 1

What is the standard form equation of the ellipse that has vertices  (−3, 3)  and  (5, 3)  and foci

 ⎛⎝1 − 2 3, 3⎞
⎠  and  ⎛⎝1 + 2 3, 3⎞

⎠?

Graphing Ellipses Centered at the Origin
Just as we can write the equation for an ellipse given its graph, we can graph an ellipse given its equation. To graph ellipses

centered at the origin, we use the standard form  x2

a2 + y2

b2 = 1,  a > b  for horizontal ellipses and  x2

b2 + y2

a2 = 1,  a > b  for

vertical ellipses.
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Given the standard form of an equation for an ellipse centered at  (0, 0), sketch the graph.

1. Use the standard forms of the equations of an ellipse to determine the major axis, vertices, co-vertices, and
foci.

a. If the equation is in the form  x2

a2 + y2

b2 = 1,  where  a > b,   then

▪ the major axis is the x-axis

▪ the coordinates of the vertices are  (±a, 0)

▪ the coordinates of the co-vertices are  (0, ± b)

▪ the coordinates of the foci are  (±c, 0)

b. If the equation is in the form  x2

b2 + y2

a2 = 1, where  a > b,   then

▪ the major axis is the y-axis

▪ the coordinates of the vertices are  (0, ± a)

▪ the coordinates of the co-vertices are  (±b, 0)

▪ the coordinates of the foci are  (0, ± c)

2. Solve for  c  using the equation  c2 = a2 − b2.

3. Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to form the
ellipse.

Example 12.3

Graphing an Ellipse Centered at the Origin

Graph the ellipse given by the equation,  x2

9 + y2

25 = 1.  Identify and label the center, vertices, co-vertices, and

foci.

Solution
First, we determine the position of the major axis. Because  25 > 9, the major axis is on the y-axis. Therefore,

the equation is in the form  x2

b2 + y2

a2 = 1, where  b2 = 9  and  a2 = 25.  It follows that:

• the center of the ellipse is  (0, 0)

• the coordinates of the vertices are  (0, ± a) = ⎛
⎝0, ± 25⎞

⎠ = (0, ± 5)

• the coordinates of the co-vertices are  (±b, 0) = ⎛
⎝± 9, 0⎞

⎠ = (±3, 0)

• the coordinates of the foci are  (0, ± c),  where  c2 = a2 − b2   Solving for  c, we have:
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c = ± a2 − b2

    = ± 25 − 9
    = ± 16
    = ± 4

Therefore, the coordinates of the foci are  (0, ± 4).

Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse.
See Figure 12.9.

Figure 12.9

Graph the ellipse given by the equation  x2

36 + y2

4 = 1.  Identify and label the center, vertices, co-vertices,

and foci.

Example 12.4

Graphing an Ellipse Centered at the Origin from an Equation Not in Standard Form

Graph the ellipse given by the equation  4x2 + 25y2 = 100. Rewrite the equation in standard form. Then identify

and label the center, vertices, co-vertices, and foci.

Solution
First, use algebra to rewrite the equation in standard form.
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4x2 + 25y2 = 100

  4x2

100 + 25y2

100 = 100
100

x2

25 + y2

4 = 1

Next, we determine the position of the major axis. Because  25 > 4,   the major axis is on the x-axis. Therefore,

the equation is in the form  x2

a2 + y2

b2 = 1,  where  a2 = 25  and  b2 = 4.  It follows that:

• the center of the ellipse is  (0, 0)

• the coordinates of the vertices are  (±a, 0) = ⎛
⎝± 25, 0⎞

⎠ = (±5, 0)

• the coordinates of the co-vertices are  (0, ± b) = ⎛
⎝0, ± 4⎞

⎠ = (0, ± 2)

• the coordinates of the foci are  (±c, 0),  where  c2 = a2 − b2.  Solving for  c,  we have:

c = ± a2 − b2

= ± 25 − 4
= ± 21

Therefore the coordinates of the foci are  ⎛⎝± 21, 0⎞
⎠.

Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse.

Figure 12.10

Graph the ellipse given by the equation  49x2 + 16y2 = 784. Rewrite the equation in standard form.

Then identify and label the center, vertices, co-vertices, and foci.

Graphing Ellipses Not Centered at the Origin
When an ellipse is not centered at the origin, we can still use the standard forms to find the key features of the graph. When

the ellipse is centered at some point,  (h, k), we use the standard forms  (x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1,  a > b  for horizontal
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ellipses and  (x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1,  a > b  for vertical ellipses. From these standard equations, we can easily determine

the center, vertices, co-vertices, foci, and positions of the major and minor axes.

Given the standard form of an equation for an ellipse centered at  (h, k), sketch the graph.

1. Use the standard forms of the equations of an ellipse to determine the center, position of the major axis,
vertices, co-vertices, and foci.

a. If the equation is in the form  (x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1,  where  a > b,   then

▪ the center is  (h, k)

▪ the major axis is parallel to the x-axis

▪ the coordinates of the vertices are  (h ± a, k)

▪ the coordinates of the co-vertices are  (h, k ± b)

▪ the coordinates of the foci are  (h ± c, k)

b. If the equation is in the form  (x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1,  where  a > b,   then

▪ the center is  (h, k)

▪ the major axis is parallel to the y-axis

▪ the coordinates of the vertices are  (h, k ± a)

▪ the coordinates of the co-vertices are  (h ± b, k)

▪ the coordinates of the foci are  (h, k ± c)

2. Solve for  c  using the equation  c2 = a2 − b2.

3. Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to form the
ellipse.

Example 12.5

Graphing an Ellipse Centered at (h, k)

Graph the ellipse given by the equation,  (x + 2)2

4 +
⎛
⎝y − 5⎞

⎠
2

9 = 1.  Identify and label the center, vertices, co-

vertices, and foci.

Solution
First, we determine the position of the major axis. Because  9 > 4, the major axis is parallel to the y-axis.

Therefore, the equation is in the form  (x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1,  where  b2 = 4  and  a2 = 9.  It follows that:

• the center of the ellipse is  (h, k) = (−2, 5)
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• the coordinates of the vertices are  (h, k ± a) = ( − 2, 5 ± 9) = ( − 2, 5 ± 3), or  (−2, 2)  and
 (−2, 8)

• the coordinates of the co-vertices are  (h ± b, k) = ( − 2 ± 4, 5) = ( − 2 ± 2, 5), or  (−4, 5)  and
 (0, 5)

• the coordinates of the foci are  (h, k ± c),  where  c2 = a2 − b2.  Solving for  c, we have:

c = ± a2 − b2

= ± 9 − 4
= ± 5

Therefore, the coordinates of the foci are  ⎛⎝−2, 5 − 5⎞
⎠  and  ⎛⎝−2, 5+ 5⎞

⎠.

Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse.

Figure 12.11

Graph the ellipse given by the equation  (x − 4)2

36 +
⎛
⎝y − 2⎞

⎠
2

20 = 1.  Identify and label the center, vertices,

co-vertices, and foci.
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Given the general form of an equation for an ellipse centered at (h, k), express the equation in standard
form.

1. Recognize that an ellipse described by an equation in the form  ax2 + by2 + cx + dy + e = 0  is in general

form.

2. Rearrange the equation by grouping terms that contain the same variable. Move the constant term to the
opposite side of the equation.

3. Factor out the coefficients of the  x2   and  y2   terms in preparation for completing the square.

4. Complete the square for each variable to rewrite the equation in the form of the sum of multiples of two
binomials squared set equal to a constant,  m1 (x − h)2 + m2

⎛
⎝y − k⎞

⎠
2 = m3, where  m1, m2, and  m3  

are constants.

5. Divide both sides of the equation by the constant term to express the equation in standard form.

Example 12.6

Graphing an Ellipse Centered at (h, k) by First Writing It in Standard Form

Graph the ellipse given by the equation  4x2 + 9y2 − 40x + 36y + 100 = 0.  Identify and label the center,

vertices, co-vertices, and foci.

Solution
We must begin by rewriting the equation in standard form.

4x2 + 9y2 − 40x + 36y + 100 = 0

Group terms that contain the same variable, and move the constant to the opposite side of the equation.
⎛
⎝4x2 − 40x⎞

⎠ + ⎛
⎝9y2 + 36y⎞

⎠ = −100

Factor out the coefficients of the squared terms.

4⎛
⎝x2 − 10x⎞

⎠ + 9⎛
⎝y2 + 4y⎞

⎠ = −100

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

4⎛
⎝x2 − 10x + 25⎞

⎠ + 9⎛
⎝y2 + 4y + 4⎞

⎠ = −100 + 100 + 36

Rewrite as perfect squares.

4(x − 5)2 + 9⎛
⎝y + 2⎞

⎠
2 = 36

Divide both sides by the constant term to place the equation in standard form.

(x − 5)2

9 +
⎛
⎝y + 2⎞

⎠
2

4 = 1

Now that the equation is in standard form, we can determine the position of the major axis. Because  9 > 4,  

the major axis is parallel to the x-axis. Therefore, the equation is in the form  (x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1,  where

 a2 = 9  and  b2 = 4.  It follows that:

• the center of the ellipse is  (h, k) = (5, −2)
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• the coordinates of the vertices are  (h ± a, k) = ⎛
⎝5 ± 9, −2⎞

⎠ = (5 ± 3, −2),   or  (2, −2)  and  (8, −2)

• the coordinates of the co-vertices are  (h, k ± b) = ⎛
⎝5, −2 ± 4⎞

⎠ = (5, −2 ± 2),   or  (5, −4)  and  (5, 0)

• the coordinates of the foci are  (h ± c, k),  where  c2 = a2 − b2.  Solving for  c,  we have:

c = ± a2 − b2

= ± 9 − 4
= ± 5

Therefore, the coordinates of the foci are  ⎛⎝5 − 5, −2⎞
⎠  and  ⎛⎝5+ 5, −2⎞

⎠.

Next we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse as
shown in Figure 12.12.

Figure 12.12

Express the equation of the ellipse given in standard form. Identify the center, vertices, co-vertices, and
foci of the ellipse.

4x2 + y2 − 24x + 2y + 21 = 0

Solving Applied Problems Involving Ellipses
Many real-world situations can be represented by ellipses, including orbits of planets, satellites, moons and comets, and
shapes of boat keels, rudders, and some airplane wings. A medical device called a lithotripter uses elliptical reflectors
to break up kidney stones by generating sound waves. Some buildings, called whispering chambers, are designed with
elliptical domes so that a person whispering at one focus can easily be heard by someone standing at the other focus. This
occurs because of the acoustic properties of an ellipse. When a sound wave originates at one focus of a whispering chamber,
the sound wave will be reflected off the elliptical dome and back to the other focus. See Figure 12.13. In the whisper
chamber at the Museum of Science and Industry in Chicago, two people standing at the foci—about 43 feet apart—can hear
each other whisper.
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Figure 12.13 Sound waves are reflected between foci in an
elliptical room, called a whispering chamber.

Example 12.7

Locating the Foci of a Whispering Chamber

The Statuary Hall in the Capitol Building in Washington, D.C. is a whispering chamber. Its dimensions are 46
feet wide by 96 feet long as shown in Figure 12.14.

a. What is the standard form of the equation of the ellipse representing the outline of the room? Hint: assume
a horizontal ellipse, and let the center of the room be the point  (0, 0).

b. If two senators standing at the foci of this room can hear each other whisper, how far apart are the
senators? Round to the nearest foot.

Figure 12.14

Solution
a. We are assuming a horizontal ellipse with center  (0, 0), so we need to find an equation of the form

 x2

a2 + y2

b2 = 1,  where  a > b. We know that the length of the major axis,  2a,   is longer than the length

of the minor axis,  2b.  So the length of the room, 96, is represented by the major axis, and the width of
the room, 46, is represented by the minor axis.

◦ Solving for  a, we have  2a = 96, so  a = 48, and  a2 = 2304.

◦ Solving for  b, we have  2b = 46, so  b = 23, and  b2 = 529.
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Therefore, the equation of the ellipse is   x2

2304 + y2

529 = 1.

b. To find the distance between the senators, we must find the distance between the foci,  (±c, 0),  where

 c2 = a2 − b2.  Solving for  c, we have:

c2 = a2 − b2

c2 = 2304 − 529 Substitute using the values found in part (a).
  c = ± 2304 − 529 Take the square root of both sides.
  c = ± 1775  Subtract.
  c ≈ ± 42 Round to the nearest foot.

The points  (±42, 0)  represent the foci. Thus, the distance between the senators is  2(42) = 84  feet.

Suppose a whispering chamber is 480 feet long and 320 feet wide.

a. What is the standard form of the equation of the ellipse representing the room? Hint: assume a
horizontal ellipse, and let the center of the room be the point  (0, 0).

b. If two people are standing at the foci of this room and can hear each other whisper, how far apart are
the people? Round to the nearest foot.

Access these online resources for additional instruction and practice with ellipses.

• Conic Sections: The Ellipse (http://openstaxcollege.org/l/conicellipse)

• Graph an Ellipse with Center at the Origin (http://openstaxcollege.org/l/grphellorigin)

• Graph an Ellipse with Center Not at the Origin (http://openstaxcollege.org/l/grphellnot)

1360 Chapter 12 Analytic Geometry

This content is available for free at https://cnx.org/content/col11758/1.5

http://openstaxcollege.org/l/conicellipse
http://openstaxcollege.org/l/grphellorigin
http://openstaxcollege.org/l/grphellnot


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

12.1 EXERCISES
Verbal

Define an ellipse in terms of its foci.

Where must the foci of an ellipse lie?

What special case of the ellipse do we have when the
major and minor axis are of the same length?

For the special case mentioned above, what would be
true about the foci of that ellipse?

What can be said about the symmetry of the graph of an
ellipse with center at the origin and foci along the y-axis?

Algebraic
For the following exercises, determine whether the given
equations represent ellipses. If yes, write in standard form.

2x2 + y = 4

4x2 + 9y2 = 36

4x2 − y2 = 4

4x2 + 9y2 = 1

4x2 − 8x + 9y2 − 72y + 112 = 0

For the following exercises, write the equation of an ellipse
in standard form, and identify the end points of the major
and minor axes as well as the foci.

x2

4 + y2

49 = 1

x2

100 + y2

64 = 1

x2 + 9y2 = 1

4x2 + 16y2 = 1

(x − 2)2

49 +
⎛
⎝y − 4⎞

⎠
2

25 = 1

(x − 2)2

81 +
⎛
⎝y + 1⎞

⎠
2

16 = 1

(x + 5)2

4 +
⎛
⎝y − 7⎞

⎠
2

9 = 1

(x − 7)2

49 +
⎛
⎝y − 7⎞

⎠
2

49 = 1

4x2 − 8x + 9y2 − 72y + 112 = 0

9x2 − 54x + 9y2 − 54y + 81 = 0

4x2 − 24x + 36y2 − 360y + 864 = 0

4x2 + 24x + 16y2 − 128y + 228 = 0

4x2 + 40x + 25y2 − 100y + 100 = 0

x2 + 2x + 100y2 − 1000y + 2401 = 0

4x2 + 24x + 25y2 + 200y + 336 = 0

9x2 + 72x + 16y2 + 16y + 4 = 0

For the following exercises, find the foci for the given
ellipses.

(x + 3)2

25 +
⎛
⎝y + 1⎞

⎠
2

36 = 1

(x + 1)2

100 +
⎛
⎝y − 2⎞

⎠
2

4 = 1

x2 + y2 = 1

x2 + 4y2 + 4x + 8y = 1

10x2 + y2 + 200x = 0

Graphical
For the following exercises, graph the given ellipses, noting
center, vertices, and foci.

x2

25 + y2

36 = 1

x2

16 + y2

9 = 1

4x2 + 9y2 = 1

81x2 + 49y2 = 1
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37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

(x − 2)2

64 +
⎛
⎝y − 4⎞

⎠
2

16 = 1

(x + 3)2

9 +
⎛
⎝y − 3⎞

⎠
2

9 = 1

x2

2 +
⎛
⎝y + 1⎞

⎠
2

5 = 1

4x2 − 8x + 16y2 − 32y − 44 = 0

x2 − 8x + 25y2 − 100y + 91 = 0

x2 + 8x + 4y2 − 40y + 112 = 0

64x2 + 128x + 9y2 − 72y − 368 = 0

16x2 + 64x + 4y2 − 8y + 4 = 0

100x2 + 1000x + y2 − 10y + 2425 = 0

4x2 + 16x + 4y2 + 16y + 16 = 0

For the following exercises, use the given information
about the graph of each ellipse to determine its equation.

Center at the origin, symmetric with respect to the x-
and y-axes, focus at  (4, 0), and point on graph  (0, 3).

Center at the origin, symmetric with respect to the x-
and y-axes, focus at  (0, −2), and point on graph  (5, 0).

Center at the origin, symmetric with respect to the x-
and y-axes, focus at  (3, 0), and major axis is twice as long
as minor axis.

Center  (4, 2) ; vertex  (9, 2) ; one focus:  ⎛⎝4 + 2 6, 2⎞
⎠

.

Center  (3, 5) ; vertex  (3, 11) ; one focus:
⎛
⎝3,  5+4 2⎞

⎠

Center  (−3, 4) ; vertex  (1, 4) ; one focus:

 ⎛⎝−3 + 2 3, 4⎞
⎠

For the following exercises, given the graph of the ellipse,
determine its equation.
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56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Extensions
For the following exercises, find the area of the ellipse. The
area of an ellipse is given by the formula  Area = a ⋅ b ⋅ π.

(x − 3)2

9 +
⎛
⎝y − 3⎞

⎠
2

16 = 1

(x + 6)2

16 +
⎛
⎝y − 6⎞

⎠
2

36 = 1

(x + 1)2

4 +
⎛
⎝y − 2⎞

⎠
2

5 = 1

4x2 − 8x + 9y2 − 72y + 112 = 0

9x2 − 54x + 9y2 − 54y + 81 = 0

Real-World Applications

Find the equation of the ellipse that will just fit inside a
box that is 8 units wide and 4 units high.

Find the equation of the ellipse that will just fit inside a
box that is four times as wide as it is high. Express in terms
of  h, the height.

An arch has the shape of a semi-ellipse (the top half of
an ellipse). The arch has a height of 8 feet and a span of 20
feet. Find an equation for the ellipse, and use that to find the

height to the nearest 0.01 foot of the arch at a distance of 4
feet from the center.

An arch has the shape of a semi-ellipse. The arch has a
height of 12 feet and a span of 40 feet. Find an equation for
the ellipse, and use that to find the distance from the center
to a point at which the height is 6 feet. Round to the nearest
hundredth.

A bridge is to be built in the shape of a semi-elliptical
arch and is to have a span of 120 feet. The height of the arch
at a distance of 40 feet from the center is to be 8 feet. Find
the height of the arch at its center.

A person in a whispering gallery standing at one focus
of the ellipse can whisper and be heard by a person standing
at the other focus because all the sound waves that reach the
ceiling are reflected to the other person. If a whispering
gallery has a length of 120 feet, and the foci are located 30
feet from the center, find the height of the ceiling at the
center.

A person is standing 8 feet from the nearest wall in a
whispering gallery. If that person is at one focus, and the
other focus is 80 feet away, what is the length and height at
the center of the gallery?

Chapter 12 Analytic Geometry 1363



12.2 | The Hyperbola

Learning Objectives

In this section, you will:

12.2.1 Locate a hyperbola’s vertices and foci.
12.2.2 Write equations of hyperbolas in standard form.
12.2.3 Graph hyperbolas centered at the origin.
12.2.4 Graph hyperbolas not centered at the origin.
12.2.5 Solve applied problems involving hyperbolas.

What do paths of comets, supersonic booms, ancient Grecian pillars, and natural draft cooling towers have in common?
They can all be modeled by the same type of conic. For instance, when something moves faster than the speed of sound, a
shock wave in the form of a cone is created. A portion of a conic is formed when the wave intersects the ground, resulting
in a sonic boom. See Figure 12.15.

Figure 12.15 A shock wave intersecting the ground forms a
portion of a conic and results in a sonic boom.

Most people are familiar with the sonic boom created by supersonic aircraft, but humans were breaking the sound barrier
long before the first supersonic flight. The crack of a whip occurs because the tip is exceeding the speed of sound. The
bullets shot from many firearms also break the sound barrier, although the bang of the gun usually supersedes the sound of
the sonic boom.

Locating the Vertices and Foci of a Hyperbola
In analytic geometry, a hyperbola is a conic section formed by intersecting a right circular cone with a plane at an angle
such that both halves of the cone are intersected. This intersection produces two separate unbounded curves that are mirror
images of each other. See Figure 12.16.
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Figure 12.16 A hyperbola

Like the ellipse, the hyperbola can also be defined as a set of points in the coordinate plane. A hyperbola is the set of all
points  (x, y)  in a plane such that the difference of the distances between  (x, y)  and the foci is a positive constant.

Notice that the definition of a hyperbola is very similar to that of an ellipse. The distinction is that the hyperbola is defined
in terms of the difference of two distances, whereas the ellipse is defined in terms of the sum of two distances.

As with the ellipse, every hyperbola has two axes of symmetry. The transverse axis is a line segment that passes through
the center of the hyperbola and has vertices as its endpoints. The foci lie on the line that contains the transverse axis. The
conjugate axis is perpendicular to the transverse axis and has the co-vertices as its endpoints. The center of a hyperbola
is the midpoint of both the transverse and conjugate axes, where they intersect. Every hyperbola also has two asymptotes
that pass through its center. As a hyperbola recedes from the center, its branches approach these asymptotes. The central
rectangle of the hyperbola is centered at the origin with sides that pass through each vertex and co-vertex; it is a useful
tool for graphing the hyperbola and its asymptotes. To sketch the asymptotes of the hyperbola, simply sketch and extend the
diagonals of the central rectangle. See Figure 12.17.

Figure 12.17 Key features of the hyperbola

Chapter 12 Analytic Geometry 1365



In this section, we will limit our discussion to hyperbolas that are positioned vertically or horizontally in the coordinate
plane; the axes will either lie on or be parallel to the x- and y-axes. We will consider two cases: those that are centered at the
origin, and those that are centered at a point other than the origin.

Deriving the Equation of an Ellipse Centered at the Origin
Let  (−c, 0)  and  (c, 0)  be the foci of a hyperbola centered at the origin. The hyperbola is the set of all points  (x, y)  such

that the difference of the distances from  (x, y)  to the foci is constant. See Figure 12.18.

Figure 12.18

If  (a, 0)  is a vertex of the hyperbola, the distance from  (−c, 0)  to  (a, 0)  is  a − (−c) = a + c. The distance from  (c, 0) 
to  (a, 0)  is  c − a. The sum of the distances from the foci to the vertex is

(a + c) − (c − a) = 2a

If  (x, y)  is a point on the hyperbola, we can define the following variables:

d2 = the distance from (−c, 0) to (x, y)
d1 = the distance from (c, 0) to (x, y)

By definition of a hyperbola,  d2 − d1   is constant for any point  (x, y)  on the hyperbola. We know that the difference

of these distances is  2a  for the vertex  (a, 0).  It follows that  d2 − d1 = 2a  for any point on the hyperbola. As with the

derivation of the equation of an ellipse, we will begin by applying the distance formula. The rest of the derivation is
algebraic. Compare this derivation with the one from the previous section for ellipses.
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                                      d2 − d1 = (x − ( − c))2 + (y − 0)2 − (x − c)2 + (y − 0)2 = 2a Distance Formula

(x + c)2 + y2 − (x − c)2 + y2 = 2a Simplify expressions.

                           (x + c)2 + y2 = 2a + (x − c)2 + y2 Move radical to opposite side.

                             (x + c)2 + y2 = ⎛
⎝2a + (x − c)2 + y2⎞

⎠
2

Square both sides.

                    x2 + 2cx + c2 + y2 = 4a2 + 4a (x − c)2 + y2 + (x − c)2 + y2 Expand the squares.

                    x2 + 2cx + c2 + y2 = 4a2 + 4a (x − c)2 + y2 + x2 − 2cx + c2 + y2 Expand remaining square.

                                             2cx = 4a2 + 4a (x − c)2 + y2 − 2cx Combine like terms.

                                  4cx − 4a2 = 4a (x − c)2 + y2 Isolate the radical.

                                      cx − a2 = a (x − c)2 + y2 Divide by 4.

                                  ⎛⎝cx − a2⎞
⎠
2

= a2 ⎡
⎣ (x − c)2 + y2⎤

⎦
2

Square both sides.

                    c2 x2 − 2a2 cx + a4 = a2 ⎛
⎝x2 − 2cx + c2 + y2⎞

⎠ Expand the squares.

                   c2 x2 − 2a2 cx + a4 = a2 x2 − 2a2 cx + a2 c2 + a2 y2 Distribute a2 .

                                  a4 + c2 x2 = a2 x2 + a2 c2 + a2 y2 Combine like terms.

                 c2 x2 − a2 x2 − a2 y2 = a2 c2 − a4 Rearrange terms.

                   x2 ⎛
⎝c2 − a2⎞

⎠ − a2 y2 = a2 ⎛
⎝c2 − a2⎞

⎠ Factor common terms.

                             x2 b2 − a2 y2 = a2 b2 Set b2 = c2 − a2.

                            x
2 b2

a2 b2 − a2 y2

a2 b2 = a2 b2

a2 b2 Divide both sides by a2 b2

                                    x
2

a2 − y2

b2 = 1

This equation defines a hyperbola centered at the origin with vertices  (±a, 0)  and co-vertices  (0 ± b).

Standard Forms of the Equation of a Hyperbola with Center (0,0)

The standard form of the equation of a hyperbola with center  (0, 0)  and transverse axis on the x-axis is

(12.5)x2

a2 − y2

b2 = 1

where

• the length of the transverse axis is  2a

• the coordinates of the vertices are  (±a, 0)

• the length of the conjugate axis is  2b

• the coordinates of the co-vertices are  (0, ± b)

• the distance between the foci is  2c, where  c2 = a2 + b2

• the coordinates of the foci are  (±c, 0)

• the equations of the asymptotes are  y = ± b
ax

See Figure 12.19a.

The standard form of the equation of a hyperbola with center  (0, 0)  and transverse axis on the y-axis is
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(12.6)y2

a2 − x2

b2 = 1

where

• the length of the transverse axis is  2a

• the coordinates of the vertices are  (0, ± a)

• the length of the conjugate axis is  2b

• the coordinates of the co-vertices are  (±b, 0)

• the distance between the foci is  2c, where  c2 = a2 + b2

• the coordinates of the foci are  (0, ± c)

• the equations of the asymptotes are  y = ± a
bx

See Figure 12.19b.

Note that the vertices, co-vertices, and foci are related by the equation  c2 = a2 + b2. When we are given the equation
of a hyperbola, we can use this relationship to identify its vertices and foci.

Figure 12.19 (a) Horizontal hyperbola with center  (0, 0)  (b) Vertical hyperbola with center  (0, 0)
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12.8

Given the equation of a hyperbola in standard form, locate its vertices and foci.

1. Determine whether the transverse axis lies on the x- or y-axis. Notice that  a2   is always under the variable
with the positive coefficient. So, if you set the other variable equal to zero, you can easily find the
intercepts. In the case where the hyperbola is centered at the origin, the intercepts coincide with the
vertices.

a. If the equation has the form  x2

a2 − y2

b2 = 1, then the transverse axis lies on the x-axis. The vertices

are located at  ( ± a, 0), and the foci are located at  (±c, 0).

b. If the equation has the form  y
2

a2 − x2

b2 = 1, then the transverse axis lies on the y-axis. The vertices

are located at  (0, ± a), and the foci are located at  (0, ± c).

2. Solve for  a  using the equation  a = a2.

3. Solve for  c  using the equation  c = a2 + b2.

Example 12.8

Locating a Hyperbola’s Vertices and Foci

Identify the vertices and foci of the hyperbola with equation  y
2

49 − x2

32 = 1.

Solution

The equation has the form  y
2

a2 − x2

b2 = 1, so the transverse axis lies on the y-axis. The hyperbola is centered at

the origin, so the vertices serve as the y-intercepts of the graph. To find the vertices, set  x = 0, and solve for  y.

   1 = y2

49 − x2

32

   1 = y2

49 − 02

32

   1 = y2

49
y2 = 49
   y = ± 49 = ± 7

The foci are located at  (0, ± c).  Solving for  c,

c = a2 + b2 = 49 + 32 = 81 = 9

Therefore, the vertices are located at  (0, ± 7), and the foci are located at  (0, 9).

Identify the vertices and foci of the hyperbola with equation  x2

9 − y2

25 = 1.
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Writing Equations of Hyperbolas in Standard Form
Just as with ellipses, writing the equation for a hyperbola in standard form allows us to calculate the key features: its center,
vertices, co-vertices, foci, asymptotes, and the lengths and positions of the transverse and conjugate axes. Conversely,
an equation for a hyperbola can be found given its key features. We begin by finding standard equations for hyperbolas
centered at the origin. Then we will turn our attention to finding standard equations for hyperbolas centered at some point
other than the origin.

Hyperbolas Centered at the Origin
Reviewing the standard forms given for hyperbolas centered at  (0, 0), we see that the vertices, co-vertices, and foci are

related by the equation  c2 = a2 + b2. Note that this equation can also be rewritten as  b2 = c2 − a2. This relationship is
used to write the equation for a hyperbola when given the coordinates of its foci and vertices.

Given the vertices and foci of a hyperbola centered at  (0,  0), write its equation in standard form.

1. Determine whether the transverse axis lies on the x- or y-axis.

a. If the given coordinates of the vertices and foci have the form  (±a, 0)  and  (±c, 0),   respectively,

then the transverse axis is the x-axis. Use the standard form  x2

a2 − y2

b2 = 1.

b. If the given coordinates of the vertices and foci have the form  (0, ± a)  and  (0, ± c),

respectively, then the transverse axis is the y-axis. Use the standard form  y
2

a2 − x2

b2 = 1.

2. Find  b2   using the equation  b2 = c2 − a2.

3. Substitute the values for  a2   and  b2   into the standard form of the equation determined in Step 1.

Example 12.9

Finding the Equation of a Hyperbola Centered at (0,0) Given its Foci and Vertices

What is the standard form equation of the hyperbola that has vertices  (±6, 0)  and foci  ⎛⎝±2 10, 0⎞
⎠?

Solution

The vertices and foci are on the x-axis. Thus, the equation for the hyperbola will have the form  x2

a2 − y2

b2 = 1.

The vertices are  (±6, 0),   so  a = 6  and  a2 = 36.

The foci are  ⎛⎝±2 10, 0⎞
⎠,   so  c = 2 10  and  c2 = 40.

Solving for  b2, we have

b2 = c2 − a2

b2 = 40 − 36 Substitute for c2  and a2.
b2 = 4 Subtract.
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12.9

Finally, we substitute  a2 = 36  and  b2 = 4  into the standard form of the equation,  x2

a2 − y2

b2 = 1. The equation

of the hyperbola is  x2

36 − y2

4 = 1, as shown in Figure 12.20.

Figure 12.20

What is the standard form equation of the hyperbola that has vertices  (0, ± 2)  and foci  ⎛⎝0, ± 2 5⎞
⎠?

Hyperbolas Not Centered at the Origin
Like the graphs for other equations, the graph of a hyperbola can be translated. If a hyperbola is translated  h  units
horizontally and  k  units vertically, the center of the hyperbola will be  (h, k). This translation results in the standard form

of the equation we saw previously, with  x  replaced by  (x − h)  and  y  replaced by  ⎛⎝y − k⎞
⎠.

Standard Forms of the Equation of a Hyperbola with Center (h, k)

The standard form of the equation of a hyperbola with center  (h, k)  and transverse axis parallel to the x-axis is

(12.7)
 (x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1 

where

• the length of the transverse axis is  2a

• the coordinates of the vertices are  (h ± a, k)

• the length of the conjugate axis is  2b

• the coordinates of the co-vertices are  (h, k ± b)

• the distance between the foci is  2c,  where  c2 = a2 + b2

• the coordinates of the foci are  (h ± c, k)

The asymptotes of the hyperbola coincide with the diagonals of the central rectangle. The length of the rectangle is
 2a  and its width is  2b. The slopes of the diagonals are  ± b

a, and each diagonal passes through the center  (h, k). 

Chapter 12 Analytic Geometry 1371



Using the point-slope formula, it is simple to show that the equations of the asymptotes are  y = ± b
a(x − h) + k.  See

Figure 12.21a

The standard form of the equation of a hyperbola with center  (h, k)  and transverse axis parallel to the y-axis is

(12.8)⎛
⎝y − k⎞

⎠
2

a2 − (x − h)2

b2 = 1

where

• the length of the transverse axis is  2a

• the coordinates of the vertices are  (h, k ± a)

• the length of the conjugate axis is  2b

• the coordinates of the co-vertices are  (h ± b, k)

• the distance between the foci is  2c,  where  c2 = a2 + b2

• the coordinates of the foci are  (h, k ± c)

Using the reasoning above, the equations of the asymptotes are  y = ± a
b(x − h) + k.  See Figure 12.21b.

Figure 12.21 (a) Horizontal hyperbola with center  (h, k)  (b) Vertical hyperbola with center  (h, k)

Like hyperbolas centered at the origin, hyperbolas centered at a point  (h, k)  have vertices, co-vertices, and foci that are

related by the equation  c2 = a2 + b2. We can use this relationship along with the midpoint and distance formulas to find
the standard equation of a hyperbola when the vertices and foci are given.
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Given the vertices and foci of a hyperbola centered at  (h, k), write its equation in standard form.

1. Determine whether the transverse axis is parallel to the x- or y-axis.

a. If the y-coordinates of the given vertices and foci are the same, then the transverse axis is parallel

to the x-axis. Use the standard form  (x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1.

b. If the x-coordinates of the given vertices and foci are the same, then the transverse axis is parallel

to the y-axis. Use the standard form  
⎛
⎝y − k⎞

⎠
2

a2 − (x − h)2

b2 = 1.

2. Identify the center of the hyperbola,  (h, k), using the midpoint formula and the given coordinates for the
vertices.

3. Find  a2   by solving for the length of the transverse axis,  2a , which is the distance between the given
vertices.

4. Find  c2   using  h  and  k  found in Step 2 along with the given coordinates for the foci.

5. Solve for  b2   using the equation  b2 = c2 − a2.

6. Substitute the values for  h, k, a2, and  b2   into the standard form of the equation determined in Step 1.

Example 12.10

Finding the Equation of a Hyperbola Centered at (h, k) Given its Foci and Vertices

What is the standard form equation of the hyperbola that has vertices at (0, −2) and (6, −2) and foci at (−2, −2)
and (8, −2)?

Solution
The y-coordinates of the vertices and foci are the same, so the transverse axis is parallel to the x-axis. Thus, the
equation of the hyperbola will have the form

(x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1

First, we identify the center,  (h, k). The center is halfway between the vertices  (0, −2)  and  (6, −2). Applying
the midpoint formula, we have

(h, k) = ⎛
⎝
0 + 6

2 , −2 + (−2)
2

⎞
⎠ = (3, −2)

Next, we find  a2. The length of the transverse axis,  2a, is bounded by the vertices. So, we can find  a2   by
finding the distance between the x-coordinates of the vertices.

2a = |0 − 6|
2a = 6
  a = 3
a2 = 9
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12.10

Now we need to find  c2. The coordinates of the foci are  (h ± c, k).  So  (h − c, k) = (−2, −2)  and
(h + c, k) = (8, −2). We can use the x-coordinate from either of these points to solve for  c. Using the point
(8, −2),   and substituting  h = 3,

h + c = 8
3 + c = 8
      c = 5

c2 = 25

Next, solve for  b2   using the equation  b2 = c2 − a2 :

b2 = c2 − a2

= 25 − 9
= 16

Finally, substitute the values found for  h, k, a2, and  b2   into the standard form of the equation.

 (x − 3)2

9 − (y + 2)2

16 = 1

What is the standard form equation of the hyperbola that has vertices  (1, −2)  and  (1, 8)  and foci

 (1, −10)  and  (1, 16)?

Graphing Hyperbolas Centered at the Origin
When we have an equation in standard form for a hyperbola centered at the origin, we can interpret its parts to identify
the key features of its graph: the center, vertices, co-vertices, asymptotes, foci, and lengths and positions of the transverse

and conjugate axes. To graph hyperbolas centered at the origin, we use the standard form  x2

a2 − y2

b2 = 1  for horizontal

hyperbolas and the standard form  y
2

a2 − x2

b2 = 1  for vertical hyperbolas.
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Given a standard form equation for a hyperbola centered at  (0, 0),   sketch the graph.

1. Determine which of the standard forms applies to the given equation.

2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for
the vertices, co-vertices, and foci; and the equations for the asymptotes.

a. If the equation is in the form  x2

a2 − y2

b2 = 1,   then

▪ the transverse axis is on the x-axis

▪ the coordinates of the vertices are  (±a, 0)

▪ the coordinates of the co-vertices are  (0, ± b)

▪ the coordinates of the foci are  (±c, 0)

▪ the equations of the asymptotes are  y = ± b
ax

b. If the equation is in the form  y
2

a2 − x2

b2 = 1, then

▪ the transverse axis is on the y-axis

▪ the coordinates of the vertices are  (0, ± a)

▪ the coordinates of the co-vertices are  (±b, 0)

▪ the coordinates of the foci are  (0, ± c)

▪ the equations of the asymptotes are  y = ± a
bx

3. Solve for the coordinates of the foci using the equation  c = ± a2 + b2.

4. Plot the vertices, co-vertices, foci, and asymptotes in the coordinate plane, and draw a smooth curve to
form the hyperbola.

Example 12.11

Graphing a Hyperbola Centered at (0, 0) Given an Equation in Standard Form

Graph the hyperbola given by the equation  y
2

64 − x2

36 = 1.  Identify and label the vertices, co-vertices, foci, and

asymptotes.

Solution

The standard form that applies to the given equation is  y
2

a2 − x2

b2 = 1. Thus, the transverse axis is on the y-axis

The coordinates of the vertices are  (0, ± a) = ⎛
⎝0, ± 64⎞

⎠ = (0, ± 8)

The coordinates of the co-vertices are  (±b, 0) = ⎛
⎝± 36,  0⎞

⎠ = (±6, 0)

The coordinates of the foci are  (0, ± c),  where  c = ± a2 + b2.  Solving for  c,  we have
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12.11

c = ± a2 + b2 = ± 64 + 36 = ± 100 = ± 10

Therefore, the coordinates of the foci are  (0, ± 10)

The equations of the asymptotes are  y = ± a
bx = ± 8

6x = ± 4
3x

Plot and label the vertices and co-vertices, and then sketch the central rectangle. Sides of the rectangle are parallel
to the axes and pass through the vertices and co-vertices. Sketch and extend the diagonals of the central rectangle
to show the asymptotes. The central rectangle and asymptotes provide the framework needed to sketch an accurate
graph of the hyperbola. Label the foci and asymptotes, and draw a smooth curve to form the hyperbola, as shown
in Figure 12.22.

Figure 12.22

Graph the hyperbola given by the equation   x2

144 − y2

81 = 1.  Identify and label the vertices, co-vertices,

foci, and asymptotes.

Graphing Hyperbolas Not Centered at the Origin
Graphing hyperbolas centered at a point  (h, k) other than the origin is similar to graphing ellipses centered at a point

other than the origin. We use the standard forms  (x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1  for horizontal hyperbolas, and

⎛
⎝y − k⎞

⎠
2

a2 − (x − h)2

b2 = 1  for vertical hyperbolas. From these standard form equations we can easily calculate and plot key
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features of the graph: the coordinates of its center, vertices, co-vertices, and foci; the equations of its asymptotes; and the
positions of the transverse and conjugate axes.

Given a general form for a hyperbola centered at  (h, k), sketch the graph.

1. Convert the general form to that standard form. Determine which of the standard forms applies to the given
equation.

2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for
the center, vertices, co-vertices, foci; and equations for the asymptotes.

a. If the equation is in the form  (x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1,   then

▪ the transverse axis is parallel to the x-axis

▪ the center is  (h, k)

▪ the coordinates of the vertices are  (h ± a, k)

▪ the coordinates of the co-vertices are  (h, k ± b)

▪ the coordinates of the foci are  (h ± c, k)

▪ the equations of the asymptotes are  y = ± b
a(x − h) + k

b. If the equation is in the form  
⎛
⎝y − k⎞

⎠
2

a2 − (x − h)2

b2 = 1,   then

▪ the transverse axis is parallel to the y-axis

▪ the center is  (h, k)

▪ the coordinates of the vertices are  (h, k ± a)

▪ the coordinates of the co-vertices are  (h ± b, k)

▪ the coordinates of the foci are  (h, k ± c)

▪ the equations of the asymptotes are  y = ± a
b(x − h) + k

3. Solve for the coordinates of the foci using the equation  c = ± a2 + b2.

4. Plot the center, vertices, co-vertices, foci, and asymptotes in the coordinate plane and draw a smooth curve
to form the hyperbola.

Example 12.12

Graphing a Hyperbola Centered at (h, k) Given an Equation in General Form

Graph the hyperbola given by the equation  9x2 − 4y2 − 36x − 40y − 388 = 0.  Identify and label the center,

vertices, co-vertices, foci, and asymptotes.

Solution
Start by expressing the equation in standard form. Group terms that contain the same variable, and move the
constant to the opposite side of the equation.

⎛
⎝9x2 − 36x⎞

⎠ − ⎛
⎝4y2 + 40y⎞

⎠ = 388
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Factor the leading coefficient of each expression.

9⎛
⎝x2 − 4x⎞

⎠ − 4⎛
⎝y2 + 10y⎞

⎠ = 388

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

9⎛
⎝x2 − 4x + 4⎞

⎠ − 4⎛
⎝y2 + 10y + 25⎞

⎠ = 388 + 36 − 100

Rewrite as perfect squares.

9(x − 2)2 − 4⎛
⎝y + 5⎞

⎠
2 = 324

Divide both sides by the constant term to place the equation in standard form.

(x − 2)2

36 −
⎛
⎝y + 5⎞

⎠
2

81 = 1

The standard form that applies to the given equation is  (x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1, where  a2 = 36  and

 b2 = 81, or  a = 6  and  b = 9. Thus, the transverse axis is parallel to the x-axis. It follows that:

• the center of the ellipse is  (h, k) = (2, −5)

• the coordinates of the vertices are  (h ± a, k) = (2 ± 6, −5),   or  (−4, −5)  and  (8, −5)

• the coordinates of the co-vertices are  (h, k ± b) = (2, − 5 ± 9),   or  (2, − 14)  and  (2, 4)

• the coordinates of the foci are  (h ± c, k),  where  c = ± a2 + b2.  Solving for  c, we have

c = ± 36 + 81 = ± 117 = ± 3 13

Therefore, the coordinates of the foci are  ⎛⎝2 − 3 13, −5⎞
⎠  and  ⎛⎝2 + 3 13, −5⎞

⎠.

The equations of the asymptotes are  y = ± b
a(x − h) + k = ± 3

2(x − 2) − 5.

Next, we plot and label the center, vertices, co-vertices, foci, and asymptotes and draw smooth curves to form the
hyperbola, as shown in Figure 12.23.
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12.12

Figure 12.23

Graph the hyperbola given by the standard form of an equation  
⎛
⎝y + 4⎞

⎠
2

100 − (x − 3)2

64 = 1.  Identify and

label the center, vertices, co-vertices, foci, and asymptotes.

Solving Applied Problems Involving Hyperbolas
As we discussed at the beginning of this section, hyperbolas have real-world applications in many fields, such as astronomy,
physics, engineering, and architecture. The design efficiency of hyperbolic cooling towers is particularly interesting.
Cooling towers are used to transfer waste heat to the atmosphere and are often touted for their ability to generate power
efficiently. Because of their hyperbolic form, these structures are able to withstand extreme winds while requiring less
material than any other forms of their size and strength. See Figure 12.24. For example, a 500-foot tower can be made of
a reinforced concrete shell only 6 or 8 inches wide!

Figure 12.24 Cooling towers at the Drax power station in
North Yorkshire, United Kingdom (credit: Les Haines, Flickr)
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The first hyperbolic towers were designed in 1914 and were 35 meters high. Today, the tallest cooling towers are in France,
standing a remarkable 170 meters tall. In Example 12.13 we will use the design layout of a cooling tower to find a
hyperbolic equation that models its sides.

Example 12.13

Solving Applied Problems Involving Hyperbolas

The design layout of a cooling tower is shown in Figure 12.25. The tower stands 179.6 meters tall. The diameter
of the top is 72 meters. At their closest, the sides of the tower are 60 meters apart.

Figure 12.25 Project design for a natural draft cooling tower

Find the equation of the hyperbola that models the sides of the cooling tower. Assume that the center of
the hyperbola—indicated by the intersection of dashed perpendicular lines in the figure—is the origin of the
coordinate plane. Round final values to four decimal places.

Solution
We are assuming the center of the tower is at the origin, so we can use the standard form of a horizontal hyperbola

centered at the origin:  x2

a2 − y2

b2 = 1, where the branches of the hyperbola form the sides of the cooling tower.

We must find the values of  a2   and  b2 to complete the model.

First, we find  a2. Recall that the length of the transverse axis of a hyperbola is  2a. This length is represented
by the distance where the sides are closest, which is given as  65.3 meters. So,  2a = 60. Therefore,  a = 30  and

 a2 = 900.

To solve for  b2, we need to substitute for  x  and  y  in our equation using a known point. To do this, we can use

the dimensions of the tower to find some point  (x, y)  that lies on the hyperbola. We will use the top right corner

of the tower to represent that point. Since the y-axis bisects the tower, our x-value can be represented by the radius
of the top, or 36 meters. The y-value is represented by the distance from the origin to the top, which is given as
79.6 meters. Therefore,
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12.13

x2

a2 − y2

b2 = 1 Standard form of horizontal hyperbola.

          b2 = y2

x2

a2 − 1
Isolate b2

             = (79.6)2

(36)2
900 − 1

Substitute for a2, x,  and y

             ≈ 14400.3636 Round to four decimal places

The sides of the tower can be modeled by the hyperbolic equation

x2

900 − y2

14400.3636  = 1, or   x2

302 − y2

120.00152  
= 1

A design for a cooling tower project is shown in Figure 12.26. Find the equation of the hyperbola that
models the sides of the cooling tower. Assume that the center of the hyperbola—indicated by the intersection of
dashed perpendicular lines in the figure—is the origin of the coordinate plane. Round final values to four
decimal places.

Figure 12.26

Access these online resources for additional instruction and practice with hyperbolas.

• Conic Sections: The Hyperbola Part 1 of 2 (http://openstaxcollege.org/l/hyperbola1)

• Conic Sections: The Hyperbola Part 2 of 2 (http://openstaxcollege.org/l/hyperbola2)

• Graph a Hyperbola with Center at Origin (http://openstaxcollege.org/l/hyperbolaorigin)

• Graph a Hyperbola with Center not at Origin (http://openstaxcollege.org/l/hbnotorigin)
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12.2 EXERCISES
Verbal

Define a hyperbola in terms of its foci.

What can we conclude about a hyperbola if its
asymptotes intersect at the origin?

What must be true of the foci of a hyperbola?

If the transverse axis of a hyperbola is vertical, what do
we know about the graph?

Where must the center of hyperbola be relative to its
foci?

Algebraic
For the following exercises, determine whether the
following equations represent hyperbolas. If so, write in
standard form.

3y2 + 2x = 6

x2

36 − y2

9 = 1

5y2 + 4x2 = 6x

25x2 − 16y2 = 400

−9x2 + 18x + y2 + 4y − 14 = 0

For the following exercises, write the equation for the
hyperbola in standard form if it is not already, and identify
the vertices and foci, and write equations of asymptotes.

x2

25 − y2

36 = 1

x2

100 − y2

9 = 1

y2

4 − x2

81 = 1

9y2 − 4x2 = 1

(x − 1)2

9 −
⎛
⎝y − 2⎞

⎠
2

16 = 1

⎛
⎝y − 6⎞

⎠
2

36 − (x + 1)2

16 = 1

(x − 2)2

49 −
⎛
⎝y + 7⎞

⎠
2

49 = 1

4x2 − 8x − 9y2 − 72y + 112 = 0

−9x2 − 54x + 9y2 − 54y + 81 = 0

4x2 − 24x − 36y2 − 360y + 864 = 0

−4x2 + 24x + 16y2 − 128y + 156 = 0

−4x2 + 40x + 25y2 − 100y + 100 = 0

x2 + 2x − 100y2 − 1000y + 2401 = 0

−9x2 + 72x + 16y2 + 16y + 4 = 0

4x2 + 24x − 25y2 + 200y − 464 = 0

For the following exercises, find the equations of the
asymptotes for each hyperbola.

y2

32 − x2

32 = 1

(x − 3)2

52 −
⎛
⎝y + 4⎞

⎠
2

22 = 1

⎛
⎝y − 3⎞

⎠
2

32 − (x + 5)2

62 = 1

9x2 − 18x − 16y2 + 32y − 151 = 0

16y2 + 96y − 4x2 + 16x + 112 = 0

Graphical
For the following exercises, sketch a graph of the
hyperbola, labeling vertices and foci.

x2

49 − y2

16 = 1

x2

64 − y2

4 = 1

y2

9 − x2

25 = 1

81x2 − 9y2 = 1
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118.

119.

120.

121.

122.

⎛
⎝y + 5⎞

⎠
2

9 − (x − 4)2

25 = 1

(x − 2)2

8 −
⎛
⎝y + 3⎞

⎠
2

27 = 1

⎛
⎝y − 3⎞

⎠
2

9 − (x − 3)2

9 = 1

−4x2 − 8x + 16y2 − 32y − 52 = 0

x2 − 8x − 25y2 − 100y − 109 = 0

−x2 + 8x + 4y2 − 40y + 88 = 0

64x2 + 128x − 9y2 − 72y − 656 = 0

16x2 + 64x − 4y2 − 8y − 4 = 0

−100x2 + 1000x + y2 − 10y − 2575 = 0

4x2 + 16x − 4y2 + 16y + 16 = 0

For the following exercises, given information about the
graph of the hyperbola, find its equation.

Vertices at  (3, 0)  and  (−3, 0)  and one focus at
 (5, 0).

Vertices at  (0, 6)  and  (0, −6)  and one focus at
 (0, −8).

Vertices at  (1, 1)  and  (11, 1)  and one focus at
 (12, 1).

Center:  (0, 0); vertex:  (0, −13); one focus:

 ⎛⎝0, 313⎞
⎠.

Center:  (4, 2); vertex:  (9, 2); one focus:

 ⎛⎝4 + 26, 2⎞
⎠.

Center:  (3, 5);   vertex:  (3, 11);   one focus:

 ⎛⎝3, 5 + 2 10⎞
⎠.

For the following exercises, given the graph of the
hyperbola, find its equation.
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138.

Extensions
For the following exercises, express the equation for the
hyperbola as two functions, with  y  as a function of  x. 
Express as simply as possible. Use a graphing calculator to
sketch the graph of the two functions on the same axes.

x2

4 − y2

9 = 1

y2

9 − x2

1 = 1

(x − 2)2

16 −
⎛
⎝y + 3⎞

⎠
2

25 = 1

−4x2 − 16x + y2 − 2y − 19 = 0

4x2 − 24x − y2 − 4y + 16 = 0

Real-World Applications
For the following exercises, a hedge is to be constructed in
the shape of a hyperbola near a fountain at the center of
the yard. Find the equation of the hyperbola and sketch the
graph.

The hedge will follow the asymptotes
 y = x and y = − x, and its closest distance to the center

fountain is 5 yards.

The hedge will follow the asymptotes
 y = 2x and y = −2x, and its closest distance to the

center fountain is 6 yards.

The hedge will follow the asymptotes  y = 1
2x  and

 y = − 1
2x, and its closest distance to the center fountain

is 10 yards.

The hedge will follow the asymptotes  y = 2
3x  and

 y = − 2
3x, and its closest distance to the center fountain

is 12 yards.

The hedge will follow the asymptotes
 y = 3

4x and y = − 3
4x, and its closest distance to the

center fountain is 20 yards.

For the following exercises, assume an object enters our
solar system and we want to graph its path on a coordinate
system with the sun at the origin and the x-axis as the axis
of symmetry for the object's path. Give the equation of the
flight path of each object using the given information.

The object enters along a path approximated by the
line  y = x − 2  and passes within 1 au (astronomical unit)

of the sun at its closest approach, so that the sun is one
focus of the hyperbola. It then departs the solar system
along a path approximated by the line  y = − x + 2. 

The object enters along a path approximated by the
line  y = 2x − 2  and passes within 0.5 au of the sun at its

closest approach, so the sun is one focus of the hyperbola. It
then departs the solar system along a path approximated by
the line  y = −2x + 2. 

The object enters along a path approximated by the
line  y = 0.5x + 2  and passes within 1 au of the sun at its

closest approach, so the sun is one focus of the hyperbola. It
then departs the solar system along a path approximated by
the line  y = −0.5x − 2. 

The object enters along a path approximated by the
line  y = 1

3x − 1  and passes within 1 au of the sun at its

closest approach, so the sun is one focus of the hyperbola. It
then departs the solar system along a path approximated by
the line  y = − 1

3x + 1.
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The object It enters along a path approximated by the line
 y = 3x − 9  and passes within 1 au of the sun at its closest

approach, so the sun is one focus of the hyperbola. It then
departs the solar system along a path approximated by the
line  y = −3x + 9. 
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12.3 | The Parabola

Learning Objectives

In this section, you will:

12.3.1 Graph parabolas with vertices at the origin.
12.3.2 Write equations of parabolas in standard form.
12.3.3 Graph parabolas with vertices not at the origin.
12.3.4 Solve applied problems involving parabolas.

Figure 12.27 The Olympic torch concludes its journey around
the world when it is used to light the Olympic cauldron during
the opening ceremony. (credit: Ken Hackman, U.S. Air Force)

Did you know that the Olympic torch is lit several months before the start of the games? The ceremonial method for lighting
the flame is the same as in ancient times. The ceremony takes place at the Temple of Hera in Olympia, Greece, and is rooted
in Greek mythology, paying tribute to Prometheus, who stole fire from Zeus to give to all humans. One of eleven acting
priestesses places the torch at the focus of a parabolic mirror (see Figure 12.27), which focuses light rays from the sun to
ignite the flame.

Parabolic mirrors (or reflectors) are able to capture energy and focus it to a single point. The advantages of this property
are evidenced by the vast list of parabolic objects we use every day: satellite dishes, suspension bridges, telescopes,
microphones, spotlights, and car headlights, to name a few. Parabolic reflectors are also used in alternative energy devices,
such as solar cookers and water heaters, because they are inexpensive to manufacture and need little maintenance. In this
section we will explore the parabola and its uses, including low-cost, energy-efficient solar designs.

Graphing Parabolas with Vertices at the Origin
In The Ellipse, we saw that an ellipse is formed when a plane cuts through a right circular cone. If the plane is parallel to
the edge of the cone, an unbounded curve is formed. This curve is a parabola. See Figure 12.28.
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Figure 12.28 Parabola

Like the ellipse and hyperbola, the parabola can also be defined by a set of points in the coordinate plane. A parabola is the
set of all points  (x, y) in a plane that are the same distance from a fixed line, called the directrix, and a fixed point (the

focus) not on the directrix.

In Quadratic Functions (https://cnx.org/content/m49346/latest/) , we learned about a parabola’s vertex and 
axis of symmetry. Now we extend the discussion to include other key features of the parabola. See Figure 12.29. 
Notice that the axis of symmetry passes through the focus and vertex and is perpendicular to the directrix. The vertex is the 
midpoint between the directrix and the focus.

The line segment that passes through the focus and is parallel to the directrix is called the latus rectum. The endpoints of
the latus rectum lie on the curve. By definition, the distance  d  from the focus to any point  P  on the parabola is equal to the
distance from  P  to the directrix.

Figure 12.29 Key features of the parabola

To work with parabolas in the coordinate plane, we consider two cases: those with a vertex at the origin and those with a
vertex at a point other than the origin. We begin with the former.
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Figure 12.30

Let  (x, y)  be a point on the parabola with vertex  (0, 0), focus  ⎛⎝0, p⎞
⎠, and directrix  y= −p  as shown in Figure 12.30.

The distance  d  from point  (x, y)  to point  (x, − p)  on the directrix is the difference of the y-values:  d = y + p. The

distance from the focus  (0, p)  to the point  (x, y)  is also equal to  d  and can be expressed using the distance formula.

d = (x − 0)2 + (y − p)2

= x2 + (y − p)2

Set the two expressions for  d  equal to each other and solve for  y  to derive the equation of the parabola. We do this because

the distance from  (x, y)  to  ⎛⎝0, p⎞
⎠  equals the distance from  (x, y)  to  (x, −p).

x2 + (y − p)2 = y + p

We then square both sides of the equation, expand the squared terms, and simplify by combining like terms.

x2 + (y − p)2 = (y + p)2

x2 + y2 − 2py + p2 = y2 + 2py + p2

x2 − 2py = 2py

          x2 = 4py

The equations of parabolas with vertex  (0, 0)  are  y2 = 4px when the x-axis is the axis of symmetry and  x2 = 4py when

the y-axis is the axis of symmetry. These standard forms are given below, along with their general graphs and key features.

Standard Forms of Parabolas with Vertex (0, 0)

Table 12.1 and Figure 12.31 summarize the standard features of parabolas with a vertex at the origin.

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

x-axis y2 = 4px ⎛
⎝p,  0⎞

⎠ x = − p ⎛
⎝p,  ± 2p⎞

⎠

y-axis x2 = 4py ⎛
⎝0,  p⎞

⎠ y = − p ⎛
⎝±2p,  p⎞

⎠

Table 12.1
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Figure 12.31 (a) When  p > 0  and the axis of symmetry is the x-axis, the parabola opens

right. (b) When  p < 0  and the axis of symmetry is the x-axis, the parabola opens left. (c) When

 p < 0  and the axis of symmetry is the y-axis, the parabola opens up. (d) When  p < 0 and the

axis of symmetry is the y-axis, the parabola opens down.

The key features of a parabola are its vertex, axis of symmetry, focus, directrix, and latus rectum. See Figure 12.31. When
given a standard equation for a parabola centered at the origin, we can easily identify the key features to graph the parabola.

A line is said to be tangent to a curve if it intersects the curve at exactly one point. If we sketch lines tangent to the parabola
at the endpoints of the latus rectum, these lines intersect on the axis of symmetry, as shown in Figure 12.32.
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Figure 12.32

Given a standard form equation for a parabola centered at (0, 0), sketch the graph.

1. Determine which of the standard forms applies to the given equation:  y2 = 4px  or  x2 = 4py.

2. Use the standard form identified in Step 1 to determine the axis of symmetry, focus, equation of the
directrix, and endpoints of the latus rectum.

a. If the equation is in the form  y2 = 4px, then

▪ the axis of symmetry is the x-axis,  y = 0

▪ set  4p  equal to the coefficient of x in the given equation to solve for  p.  If  p > 0, the

parabola opens right. If  p < 0, the parabola opens left.

▪ use  p  to find the coordinates of the focus,  ⎛⎝p, 0⎞
⎠

▪ use  p  to find the equation of the directrix,  x = − p

▪ use  p  to find the endpoints of the latus rectum,  ⎛⎝p, ± 2p⎞
⎠. Alternately, substitute  x = p 

into the original equation.

b. If the equation is in the form  x2 = 4py, then

▪ the axis of symmetry is the y-axis,  x = 0

▪ set  4p  equal to the coefficient of y in the given equation to solve for  p.  If  p > 0, the

parabola opens up. If  p < 0, the parabola opens down.

▪ use  p  to find the coordinates of the focus,  ⎛⎝0, p⎞
⎠

▪ use  p  to find equation of the directrix,  y = − p

▪ use  p  to find the endpoints of the latus rectum,  ⎛⎝±2p, p⎞
⎠

3. Plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.
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Example 12.14

Graphing a Parabola with Vertex (0, 0) and the x-axis as the Axis of Symmetry

Graph  y2 = 24x.  Identify and label the focus, directrix, and endpoints of the latus rectum.

Solution

The standard form that applies to the given equation is  y2 = 4px. Thus, the axis of symmetry is the x-axis. It

follows that:

• 24 = 4p, so  p = 6.  Since  p > 0, the parabola opens right

• the coordinates of the focus are  ⎛⎝p, 0⎞
⎠ = (6, 0)

• the equation of the directrix is  x = − p = − 6

• the endpoints of the latus rectum have the same x-coordinate at the focus. To find the endpoints, substitute
 x = 6  into the original equation:  (6, ± 12)

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola. Figure 12.33

Figure 12.33

Graph  y2 = −16x.  Identify and label the focus, directrix, and endpoints of the latus rectum.

Example 12.15

Graphing a Parabola with Vertex (0, 0) and the y-axis as the Axis of Symmetry

Graph  x2 = −6y.  Identify and label the focus, directrix, and endpoints of the latus rectum.

Solution

Chapter 12 Analytic Geometry 1391



12.15

The standard form that applies to the given equation is  x2 = 4py. Thus, the axis of symmetry is the y-axis. It

follows that:

• −6 = 4p, so  p = − 3
2.  Since  p < 0, the parabola opens down.

• the coordinates of the focus are  ⎛⎝0, p⎞
⎠ = ⎛

⎝0, − 3
2

⎞
⎠

• the equation of the directrix is  y = − p = 3
2

• the endpoints of the latus rectum can be found by substituting  y = 3
2 into the original equation,

 ⎛⎝±3, − 3
2

⎞
⎠

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.

Figure 12.34

Graph  x2 = 8y.  Identify and label the focus, directrix, and endpoints of the latus rectum.

Writing Equations of Parabolas in Standard Form
In the previous examples, we used the standard form equation of a parabola to calculate the locations of its key features. We
can also use the calculations in reverse to write an equation for a parabola when given its key features.

Given its focus and directrix, write the equation for a parabola in standard form.

1. Determine whether the axis of symmetry is the x- or y-axis.

a. If the given coordinates of the focus have the form  ⎛⎝p, 0⎞
⎠, then the axis of symmetry is the x-axis.

Use the standard form  y2 = 4px.

b. If the given coordinates of the focus have the form  ⎛⎝0, p⎞
⎠, then the axis of symmetry is the y-axis.

Use the standard form  x2 = 4py.

2. Multiply  4p.

3. Substitute the value from Step 2 into the equation determined in Step 1.
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Example 12.16

Writing the Equation of a Parabola in Standard Form Given its Focus and Directrix

What is the equation for the parabola with focus  ⎛⎝−1
2, 0⎞

⎠  and directrix  x = 1
2 ?

Solution

The focus has the form  ⎛⎝p, 0⎞
⎠, so the equation will have the form  y2 = 4px.

• Multiplying  4p, we have  4p = 4⎛
⎝−

1
2

⎞
⎠ = −2.

• Substituting for  4p, we have  y2 = 4px = −2x.

Therefore, the equation for the parabola is  y2 = −2x.

What is the equation for the parabola with focus  ⎛⎝0, 7
2

⎞
⎠  and directrix  y = − 7

2 ?

Graphing Parabolas with Vertices Not at the Origin
Like other graphs we’ve worked with, the graph of a parabola can be translated. If a parabola is translated  h  units
horizontally and  k  units vertically, the vertex will be  (h, k). This translation results in the standard form of the equation we

saw previously with  x  replaced by  (x − h)  and  y  replaced by  ⎛⎝y − k⎞
⎠.

To graph parabolas with a vertex  (h, k)  other than the origin, we use the standard form  ⎛⎝y − k⎞
⎠
2 = 4p(x − h)  for parabolas

that have an axis of symmetry parallel to the x-axis, and  (x − h)2 = 4p⎛
⎝y − k⎞

⎠  for parabolas that have an axis of symmetry

parallel to the y-axis. These standard forms are given below, along with their general graphs and key features.

Standard Forms of Parabolas with Vertex (h, k)

Table 12.2 and Figure 12.35 summarize the standard features of parabolas with a vertex at a point  (h, k).

Axis of
Symmetry Equation Focus Directrix Endpoints of Latus

Rectum

y = k ⎛
⎝y − k⎞

⎠
2 = 4p(x − h) ⎛

⎝h + p,  k⎞
⎠ x = h − p ⎛

⎝h + p,  k ± 2p⎞
⎠

x = h (x − h)2 = 4p⎛
⎝y − k⎞

⎠
⎛
⎝h,  k + p⎞

⎠ y = k − p ⎛
⎝h ± 2p,  k + p⎞

⎠

Table 12.2
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Figure 12.35 (a) When  p > 0, the parabola opens right. (b) When  p < 0, the parabola opens left. (c) When

 p > 0, the parabola opens up. (d) When  p < 0, the parabola opens down.
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Given a standard form equation for a parabola centered at (h, k), sketch the graph.

1. Determine which of the standard forms applies to the given equation:  ⎛⎝y − k⎞
⎠
2 = 4p(x − h)  or

 (x − h)2 = 4p⎛
⎝y − k⎞

⎠.

2. Use the standard form identified in Step 1 to determine the vertex, axis of symmetry, focus, equation of
the directrix, and endpoints of the latus rectum.

a. If the equation is in the form  ⎛⎝y − k⎞
⎠
2 = 4p(x − h), then:

▪ use the given equation to identify  h  and  k  for the vertex,  (h, k)

▪ use the value of  k  to determine the axis of symmetry,  y = k

▪ set  4p  equal to the coefficient of  (x − h)  in the given equation to solve for  p.  If  p > 0,
the parabola opens right. If  p < 0, the parabola opens left.

▪ use  h, k, and  p  to find the coordinates of the focus,  ⎛⎝h + p,  k⎞
⎠

▪ use  h  and  p  to find the equation of the directrix,  x = h − p

▪ use  h, k, and  p  to find the endpoints of the latus rectum,  ⎛⎝h + p, k ± 2p⎞
⎠

b. If the equation is in the form  (x − h)2 = 4p⎛
⎝y − k⎞

⎠, then:

▪ use the given equation to identify  h  and  k  for the vertex,  (h, k)

▪ use the value of  h  to determine the axis of symmetry,  x = h

▪ set  4p  equal to the coefficient of  ⎛⎝y − k⎞
⎠  in the given equation to solve for  p.  If  p > 0,

the parabola opens up. If  p < 0, the parabola opens down.

▪ use  h, k, and  p  to find the coordinates of the focus,  ⎛⎝h,  k + p⎞
⎠

▪ use  k  and  p  to find the equation of the directrix,  y = k − p

▪ use  h, k, and  p  to find the endpoints of the latus rectum,  ⎛⎝h ± 2p,  k + p⎞
⎠

3. Plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the
parabola.

Example 12.17

Graphing a Parabola with Vertex (h, k) and Axis of Symmetry Parallel to the x-axis

Graph  ⎛⎝y − 1⎞
⎠
2 = −16(x + 3).  Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of

the latus rectum.

Solution

The standard form that applies to the given equation is  ⎛⎝y − k⎞
⎠
2 = 4p(x − h). Thus, the axis of symmetry is

parallel to the x-axis. It follows that:

• the vertex is  (h, k) = (−3, 1)

• the axis of symmetry is  y = k = 1
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• −16 = 4p, so  p = −4.  Since  p < 0, the parabola opens left.

• the coordinates of the focus are  ⎛⎝h + p, k⎞
⎠ = (−3 + (−4), 1) = (−7, 1)

• the equation of the directrix is  x = h − p = −3 − (−4) = 1

• the endpoints of the latus rectum are  ⎛⎝h + p, k ± 2p⎞
⎠ = (−3 + (−4), 1 ± 2(−4)), or  (−7, −7)  and

 (−7, 9)

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form
the parabola. See Figure 12.36.

Figure 12.36

Graph  ⎛⎝y + 1⎞
⎠
2 = 4(x − 8).  Identify and label the vertex, axis of symmetry, focus, directrix, and

endpoints of the latus rectum.

Example 12.18

Graphing a Parabola from an Equation Given in General Form

Graph  x2 − 8x − 28y − 208 = 0.  Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints

of the latus rectum.

Solution
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12.18

Start by writing the equation of the parabola in standard form. The standard form that applies to the given equation
is  (x − h)2 = 4p⎛

⎝y − k⎞
⎠. Thus, the axis of symmetry is parallel to the y-axis. To express the equation of the

parabola in this form, we begin by isolating the terms that contain the variable  x  in order to complete the square.

x2 − 8x − 28y − 208 = 0

                     x2 − 8x = 28y + 208

            x2 − 8x + 16 = 28y + 208 + 16

                    (x − 4)2 = 28y + 224

                    (x − 4)2 = 28(y + 8)

                    (x − 4)2 = 4 ⋅ 7 ⋅ (y + 8)

It follows that:

• the vertex is  (h, k) = (4, −8)

• the axis of symmetry is  x = h = 4

• since  p = 7, p > 0  and so the parabola opens up

• the coordinates of the focus are  ⎛⎝h, k + p⎞
⎠ = (4, −8 + 7) = (4, −1)

• the equation of the directrix is  y = k − p = −8 − 7 = −15

• the endpoints of the latus rectum are  ⎛⎝h ± 2p, k + p⎞
⎠ = (4 ± 2(7), −8 + 7), or  (−10, −1)  and

 (18, −1)

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form
the parabola. See Figure 12.37.

Figure 12.37

Graph  (x + 2)2 = −20⎛
⎝y − 3⎞

⎠.  Identify and label the vertex, axis of symmetry, focus, directrix, and

endpoints of the latus rectum.

Solving Applied Problems Involving Parabolas
As we mentioned at the beginning of the section, parabolas are used to design many objects we use every day, such as
telescopes, suspension bridges, microphones, and radar equipment. Parabolic mirrors, such as the one used to light the
Olympic torch, have a very unique reflecting property. When rays of light parallel to the parabola’s axis of symmetry are
directed toward any surface of the mirror, the light is reflected directly to the focus. See Figure 12.38. This is why the
Olympic torch is ignited when it is held at the focus of the parabolic mirror.
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Figure 12.38 Reflecting property of parabolas

Parabolic mirrors have the ability to focus the sun’s energy to a single point, raising the temperature hundreds of degrees
in a matter of seconds. Thus, parabolic mirrors are featured in many low-cost, energy efficient solar products, such as solar
cookers, solar heaters, and even travel-sized fire starters.

Example 12.19

Solving Applied Problems Involving Parabolas

A cross-section of a design for a travel-sized solar fire starter is shown in Figure 12.39. The sun’s rays reflect
off the parabolic mirror toward an object attached to the igniter. Because the igniter is located at the focus of the
parabola, the reflected rays cause the object to burn in just seconds.

a. Find the equation of the parabola that models the fire starter. Assume that the vertex of the parabolic
mirror is the origin of the coordinate plane.

b. Use the equation found in part (a) to find the depth of the fire starter.

Figure 12.39 Cross-section of a travel-sized solar fire starter

Solution
a. The vertex of the dish is the origin of the coordinate plane, so the parabola will take the standard form

 x2 = 4py, where  p > 0. The igniter, which is the focus, is 1.7 inches above the vertex of the dish. Thus

we have  p = 1.7. 

x2 = 4py Standard form of upward-facing parabola with vertex (0,0)

x2 = 4(1.7)y Substitute 1.7 for p.

x2 = 6.8y Multiply.
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12.19

b. The dish extends  4.5
2 = 2.25  inches on either side of the origin. We can substitute 2.25 for  x  in the

equation from part (a) to find the depth of the dish.
        x2 = 6.8y Equation found in part (a).

(2.25)2 = 6.8y Substitute 2.25 for x.
          y ≈ 0.74  Solve for y.

The dish is about 0.74 inches deep.

Balcony-sized solar cookers have been designed for families living in India. The top of a dish has a
diameter of 1600 mm. The sun’s rays reflect off the parabolic mirror toward the “cooker,” which is placed 320
mm from the base.

a. Find an equation that models a cross-section of the solar cooker. Assume that the vertex of the
parabolic mirror is the origin of the coordinate plane, and that the parabola opens to the right (i.e., has
the x-axis as its axis of symmetry).

b. Use the equation found in part (a) to find the depth of the cooker.

Access these online resources for additional instruction and practice with parabolas.

• Conic Sections: The Parabola Part 1 of 2 (http://openstaxcollege.org/l/parabola1)

• Conic Sections: The Parabola Part 2 of 2 (http://openstaxcollege.org/l/parabola2)

• Parabola with Vertical Axis (http://openstaxcollege.org/l/parabolavertcal)

• Parabola with Horizontal Axis (http://openstaxcollege.org/l/parabolahoriz)
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12.3 EXERCISES
Verbal

Define a parabola in terms of its focus and directrix.

If the equation of a parabola is written in standard
form and  p  is positive and the directrix is a vertical line,

then what can we conclude about its graph?

If the equation of a parabola is written in standard
form and  p  is negative and the directrix is a horizontal line,

then what can we conclude about its graph?

What is the effect on the graph of a parabola if its
equation in standard form has increasing values of  p?

As the graph of a parabola becomes wider, what will
happen to the distance between the focus and directrix?

Algebraic
For the following exercises, determine whether the given
equation is a parabola. If so, rewrite the equation in
standard form.

y2 = 4 − x2

y = 4x2

3x2 − 6y2 = 12

⎛
⎝y − 3⎞

⎠
2 = 8(x − 2)

y2 + 12x − 6y − 51 = 0

For the following exercises, rewrite the given equation in
standard form, and then determine the vertex  (V), focus
 (F), and directrix  (d) of the parabola.

x = 8y2

y = 1
4x2

y = −4x2

x = 1
8y2

x = 36y2

x = 1
36y2

(x − 1)2 = 4⎛
⎝y − 1⎞

⎠

⎛
⎝y − 2⎞

⎠
2 = 4

5(x + 4)

⎛
⎝y − 4⎞

⎠
2 = 2(x + 3)

(x + 1)2 = 2⎛
⎝y + 4⎞

⎠

(x + 4)2 = 24⎛
⎝y + 1⎞

⎠

⎛
⎝y + 4⎞

⎠
2 = 16(x + 4)

y2 + 12x − 6y + 21 = 0

x2 − 4x − 24y + 28 = 0

5x2 − 50x − 4y + 113 = 0

y2 − 24x + 4y − 68 = 0

x2 − 4x + 2y − 6 = 0

y2 − 6y + 12x − 3 = 0

3y2 − 4x − 6y + 23 = 0

x2 + 4x + 8y − 4 = 0

Graphical
For the following exercises, graph the parabola, labeling
the focus and the directrix.

x = 1
8y2

y = 36x2

y = 1
36x2

y = −9x2

⎛
⎝y − 2⎞

⎠
2 = − 4

3(x + 2)

−5(x + 5)2 = 4⎛
⎝y + 5⎞

⎠

−6⎛
⎝y + 5⎞

⎠
2 = 4(x − 4)
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191.

y2 − 6y − 8x + 1 = 0

x2 + 8x + 4y + 20 = 0

3x2 + 30x − 4y + 95 = 0

y2 − 8x + 10y + 9 = 0

x2 + 4x + 2y + 2 = 0

y2 + 2y − 12x + 61 = 0

−2x2 + 8x − 4y − 24 = 0

For the following exercises, find the equation of the
parabola given information about its graph.

Vertex is  (0, 0); directrix is  y = 4, focus is

 (0, −4).

Vertex is  (0, 0);   directrix is  x = 4, focus is
 (−4, 0).

Vertex is  (2, 2);   directrix is  x = 2 − 2, focus is

 ⎛⎝2 + 2, 2⎞
⎠.

Vertex is  (−2, 3);   directrix is  x = − 7
2, focus is

 ⎛⎝−1
2, 3⎞

⎠.

Vertex is  ⎛⎝ 2, − 3⎞
⎠; directrix is  x = 2 2, focus is

 ⎛⎝0, − 3⎞
⎠.

Vertex is  (1, 2);   directrix is  y = 11
3 , focus is

 ⎛⎝1, 1
3

⎞
⎠.

For the following exercises, determine the equation for the
parabola from its graph.
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197.

198.

199.

200.

201.

202.

Extensions
For the following exercises, the vertex and endpoints of the
latus rectum of a parabola are given. Find the equation.

V(0, 0), Endpoints (2, 1), (−2, 1)

V(0, 0), Endpoints (−2, 4), (−2, −4)

V(1, 2), Endpoints (−5, 5), (7, 5)

V(−3, −1), Endpoints (0, 5), (0, −7)

V(4, −3), Endpoints ⎛⎝5, − 7
2

⎞
⎠,

⎛
⎝3, − 7

2
⎞
⎠

Real-World Applications

The mirror in an automobile headlight has a parabolic
cross-section with the light bulb at the focus. On a
schematic, the equation of the parabola is given as
 x2 = 4y. At what coordinates should you place the light

bulb?

If we want to construct the mirror from the previous
exercise such that the focus is located at  (0, 0.25), what
should the equation of the parabola be?

A satellite dish is shaped like a paraboloid of
revolution. This means that it can be formed by rotating a
parabola around its axis of symmetry. The receiver is to be
located at the focus. If the dish is 12 feet across at its
opening and 4 feet deep at its center, where should the
receiver be placed?

Consider the satellite dish from the previous exercise.
If the dish is 8 feet across at the opening and 2 feet deep,
where should we place the receiver?
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203.

204.

205.

206.

207.

208.

A searchlight is shaped like a paraboloid of
revolution. A light source is located 1 foot from the base
along the axis of symmetry. If the opening of the
searchlight is 3 feet across, find the depth.

If the searchlight from the previous exercise has the
light source located 6 inches from the base along the axis of
symmetry and the opening is 4 feet, find the depth.

An arch is in the shape of a parabola. It has a span of
100 feet and a maximum height of 20 feet. Find the
equation of the parabola, and determine the height of the
arch 40 feet from the center.

If the arch from the previous exercise has a span of
160 feet and a maximum height of 40 feet, find the equation
of the parabola, and determine the distance from the center
at which the height is 20 feet.

An object is projected so as to follow a parabolic path
given by  y = − x2 + 96x, where  x  is the horizontal

distance traveled in feet and  y  is the height. Determine the

maximum height the object reaches.

For the object from the previous exercise, assume the
path followed is given by  y = −0.5x2 + 80x.  Determine

how far along the horizontal the object traveled to reach
maximum height.
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12.4 | Rotation of Axes

Learning Objectives

In this section, you will:

12.4.1 Identify nondegenerate conic sections given their general form equations.
12.4.2 Use rotation of axes formulas.
12.4.3 Write equations of rotated conics in standard form.
12.4.4 Identify conics without rotating axes.

As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending
infinitely far in opposite directions, which we also call a cone. The way in which we slice the cone will determine the type
of conic section formed at the intersection. A circle is formed by slicing a cone with a plane perpendicular to the axis of
symmetry of the cone. An ellipse is formed by slicing a single cone with a slanted plane not perpendicular to the axis of
symmetry. A parabola is formed by slicing the plane through the top or bottom of the double-cone, whereas a hyperbola is
formed when the plane slices both the top and bottom of the cone. See Figure 12.40.

Figure 12.40 The nondegenerate conic sections

Ellipses, circles, hyperbolas, and parabolas are sometimes called the nondegenerate conic sections, in contrast to the
degenerate conic sections, which are shown in Figure 12.41. A degenerate conic results when a plane intersects the
double cone and passes through the apex. Depending on the angle of the plane, three types of degenerate conic sections are
possible: a point, a line, or two intersecting lines.
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Figure 12.41 Degenerate conic sections

Identifying Nondegenerate Conics in General Form
In previous sections of this chapter, we have focused on the standard form equations for nondegenerate conic sections. In
this section, we will shift our focus to the general form equation, which can be used for any conic. The general form is set
equal to zero, and the terms and coefficients are given in a particular order, as shown below.

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where  A, B, and  C  are not all zero. We can use the values of the coefficients to identify which type conic is represented
by a given equation.

You may notice that the general form equation has an  xy  term that we have not seen in any of the standard form equations.

As we will discuss later, the  xy  term rotates the conic whenever  B is not equal to zero.
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Conic Sections Example

ellipse 4x2 + 9y2 = 1

circle 4x2 + 4y2 = 1

hyperbola 4x2 − 9y2 = 1

parabola 4x2 = 9y or 4y2 = 9x

one line 4x + 9y = 1

intersecting lines (x − 4)⎛
⎝y + 4⎞

⎠ = 0

parallel lines (x − 4)(x − 9) = 0

a point 4x2 + 4y2 = 0

no graph 4x2 + 4y2 =  −  1

Table 12.3

General Form of Conic Sections

A nondegenerate conic section has the general form

(12.9)Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where  A, B, and  C  are not all zero.

Table 12.4 summarizes the different conic sections where  B = 0, and  A  and  C  are nonzero real numbers. This
indicates that the conic has not been rotated.
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ellipse Ax2 + Cy2 + Dx + Ey + F = 0,  A ≠ C and AC > 0

circle Ax2 + Cy2 + Dx + Ey + F = 0,  A = C

hyperbola
Ax2 − Cy2 + Dx + Ey + F = 0 or − Ax2 + Cy2 + Dx + Ey + F = 0,
where  A  and  C  are positive

parabola Ax2 + Dx + Ey + F = 0 or Cy2 + Dx + Ey + F = 0

Table 12.4

Given the equation of a conic, identify the type of conic.

1. Rewrite the equation in the general form, Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

2. Identify the values of  A  and  C  from the general form.

a. If  A  and  C  are nonzero, have the same sign, and are not equal to each other, then the graph is an
ellipse.

b. If  A  and  C  are equal and nonzero and have the same sign, then the graph is a circle.

c. If  A  and  C  are nonzero and have opposite signs, then the graph is a hyperbola.

d. If either  A  or  C  is zero, then the graph is a parabola.

Example 12.20

Identifying a Conic from Its General Form

Identify the graph of each of the following nondegenerate conic sections.

a. 4x2 − 9y2 + 36x + 36y − 125 = 0

b. 9y2 + 16x + 36y − 10 = 0

c. 3x2 + 3y2 − 2x − 6y − 4 = 0

d. −25x2 − 4y2 + 100x + 16y + 20 = 0

Solution
a. Rewriting the general form, we have

A = 4  and  C = −9, so we observe that  A  and  C  have opposite signs. The graph of this equation is a
hyperbola.
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12.20

b. Rewriting the general form, we have

A = 0  and  C = 9. We can determine that the equation is a parabola, since  A  is zero.

c. Rewriting the general form, we have

A = 3  and  C = 3. Because  A = C, the graph of this equation is a circle.

d. Rewriting the general form, we have

A = −25  and  C = −4. Because  AC > 0  and  A ≠ C, the graph of this equation is an ellipse.

Identify the graph of each of the following nondegenerate conic sections.

a. 16y2 − x2 + x − 4y − 9 = 0

b. 16x2 + 4y2 + 16x + 49y − 81 = 0

Finding a New Representation of the Given Equation after Rotating through a Given Angle
Until now, we have looked at equations of conic sections without an  xy  term, which aligns the graphs with the x- and y-

axes. When we add an  xy  term, we are rotating the conic about the origin. If the x- and y-axes are rotated through an angle,

say  θ, then every point on the plane may be thought of as having two representations:  (x, y)  on the Cartesian plane with

the original x-axis and y-axis, and  ⎛⎝x′, y′⎞
⎠  on the new plane defined by the new, rotated axes, called the x'-axis and y'-axis.

See Figure 12.42.
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Figure 12.42 The graph of the rotated ellipse
 x2 + y2 – xy – 15 = 0

We will find the relationships between  x  and  y  on the Cartesian plane with  x′   and  y′   on the new rotated plane. See

Figure 12.43.

Figure 12.43 The Cartesian plane with x- and y-axes and the
resulting x′− and y′−axes formed by a rotation by an angle  θ.

The original coordinate x- and y-axes have unit vectors  i  and   j . The rotated coordinate axes have unit vectors  i′   and   j′.
The angle  θ  is known as the angle of rotation. See Figure 12.44. We may write the new unit vectors in terms of the
original ones.

i′ = cos θi + sin θ j
j′ = − sin θi + cos θ j
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Figure 12.44 Relationship between the old and new
coordinate planes.

Consider a vector  u  in the new coordinate plane. It may be represented in terms of its coordinate axes.

u = x′ i′ + y′ j′
u = x′(i cos θ + j sin θ) + y′( − i sin θ + j cos θ) Substitute.
u = ix ' cos θ + jx ' sin θ − iy ' sin θ + jy ' cos θ Distribute.
u = ix ' cos θ − iy ' sin θ + jx ' sin θ + jy ' cos θ Apply commutative property.
u = (x ' cos θ − y ' sin θ)i + (x ' sin θ + y ' cos θ) j Factor by grouping.

Because  u = x′ i′ + y′ j′, we have representations of  x  and  y  in terms of the new coordinate system.

x = x′ cos θ − y′ sin θ
and

y = x′ sin θ + y′ cos θ

Equations of Rotation

If a point  (x, y)  on the Cartesian plane is represented on a new coordinate plane where the axes of rotation are formed

by rotating an angle  θ  from the positive x-axis, then the coordinates of the point with respect to the new axes are
 ⎛⎝x′, y′⎞

⎠. We can use the following equations of rotation to define the relationship between  (x, y)  and  ⎛⎝x′, y′⎞
⎠ :

(12.10)x = x′ cos θ − y′ sin θ

and

(12.11)y = x′ sin θ + y′ cos θ

Given the equation of a conic, find a new representation after rotating through an angle.

1. Find  x  and  y where  x = x′ cos θ − y′ sin θ  and  y = x′ sin θ + y′ cos θ.

2. Substitute the expression for  x  and  y  into in the given equation, then simplify.

3. Write the equations with  x′   and  y′   in standard form.

Example 12.21
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Finding a New Representation of an Equation after Rotating through a Given Angle

Find a new representation of the equation  2x2 − xy + 2y2 − 30 = 0  after rotating through an angle of  θ = 45°.

Solution
Find  x  and  y, where  x = x′ cos θ − y′ sin θ  and  y = x′ sin θ + y′ cos θ.

Because  θ = 45°,

x = x′ cos(45°) − y′ sin(45°)

x = x′ ⎛
⎝

1
2

⎞
⎠ − y′ ⎛

⎝
1
2

⎞
⎠

x = x′ − y′
2

and

y = x′ sin(45°) + y′ cos(45°)

y = x′ ⎛
⎝

1
2

⎞
⎠ + y′ ⎛

⎝
1
2

⎞
⎠

y = x′ + y′
2

Substitute  x = x′ cosθ − y′ sinθ  and  y = x′ sin θ + y′ cos θ  into  2x2 − xy + 2y2 − 30 = 0.

2⎛
⎝
x′ − y′

2
⎞
⎠

2
− ⎛

⎝
x′ − y′

2
⎞
⎠
⎛
⎝
x′ + y′

2
⎞
⎠ + 2⎛

⎝
x′ + y′

2
⎞
⎠

2
− 30 = 0

Simplify.

2 (x′ − y′)(x′ − y′)
2

− (x′ − y′)(x′ + y′)
2 + 2 (x′ + y′)(x′ + y′)

2
− 30 = 0 FOIL method

           x′ 2 −2x′ y ′ + y′ 2 − (x′ 2 − y′ 2)
2 + x′ 2 +2x′ y′ + y′ 2 − 30 = 0 Combine like terms.

                                                             2x′ 2 + 2y′ 2 − (x′ 2 − y′ 2)
2 = 30 Combine like terms.

                                                       2
⎛

⎝
⎜ 2x′ 2 + 2y′ 2 − (x′ 2 − y′ 2)

2
⎞

⎠
⎟ = 2(30) Multiply both sides by 2.

                                                              4x′ 2 + 4y′ 2 − (x′ 2 − y′ 2) = 60 Simplify.

                                                                 4x′ 2 + 4y′ 2 − x′ 2 + y′ 2 = 60 Distribute.

                                                                                    3x′ 2

60 + 5y′ 2

60 = 60
60 Set equal to 1.

Write the equations with  x′   and  y′   in the standard form.

x′2

20 + y′2

12 = 1

This equation is an ellipse. Figure 12.45 shows the graph.
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Figure 12.45

Writing Equations of Rotated Conics in Standard Form
Now that we can find the standard form of a conic when we are given an angle of rotation, we will learn how to transform
the equation of a conic given in the form  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  into standard form by rotating the axes.

To do so, we will rewrite the general form as an equation in the  x′   and  y′   coordinate system without the  x′ y′   term, by

rotating the axes by a measure of  θ  that satisfies

(12.12)cot(2θ) = A − C
B

We have learned already that any conic may be represented by the second degree equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where  A, B, and  C  are not all zero. However, if  B ≠ 0, then we have an  xy  term that prevents us from rewriting the

equation in standard form. To eliminate it, we can rotate the axes by an acute angle  θ where  cot(2θ) = A − C
B .

• If  cot(2θ) > 0, then  2θ  is in the first quadrant, and  θ  is between  (0°, 45°).

• If  cot(2θ) < 0, then  2θ  is in the second quadrant, and  θ  is between  (45°, 90°).

• If  A = C, then  θ = 45°.
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Given an equation for a conic in the  x′ y′   system, rewrite the equation without the  x′ y′   term in terms of
 x′   and  y′, where the  x′   and  y′   axes are rotations of the standard axes by  θ  degrees.

1. Find  cot(2θ).

2. Find  sin θ  and  cos θ.

3. Substitute  sin θ  and  cos θ  into  x = x′ cos θ − y′ sin θ  and  y = x′ sin θ + y′ cos θ.

4. Substitute the expression for  x  and  y  into in the given equation, and then simplify.

5. Write the equations with  x′   and  y′   in the standard form with respect to the rotated axes.

Example 12.22

Rewriting an Equation with respect to the x′ and y′ axes without the x′y′ Term

Rewrite the equation  8x2 − 12xy + 17y2 = 20  in the  x′ y′   system without an  x′ y′   term.

Solution
First, we find  cot(2θ).  See Figure 12.46.

8x2 − 12xy + 17y2 = 20 ⇒ A = 8,  B = − 12 and C = 17

                    cot(2θ) = A − C
B = 8 − 17

−12
                    cot(2θ) = −9

−12 = 3
4

Figure 12.46

cot(2θ) = 3
4 = adjacent

opposite

So the hypotenuse is

32 + 42 = h2

9 + 16 = h2

25 = h2

h = 5   
Next, we find  sin θ and cos θ.
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sin θ = 1 − cos(2θ)
2 =

1 − 3
5

2 =
5
5 − 3

5
2 = 5 − 3

5 ⋅ 1
2 = 2

10 = 1
5

sin θ = 1
5

cos θ = 1 + cos(2θ)
2 =

1 + 3
5

2 =
5
5 + 3

5
2 = 5 + 3

5 ⋅ 1
2 = 8

10 = 4
5

cos θ = 2
5

Substitute the values of  sin θ  and  cos θ  into  x = x′ cos θ − y′ sin θ  and  y = x′ sin θ + y′ cos θ.

x = x′ cos θ − y′ sin θ

x = x′ ⎛
⎝

2
5

⎞
⎠ − y′ ⎛

⎝
1
5

⎞
⎠

x = 2x′ − y′
5

and

y = x′ sin θ + y′ cos θ

y = x′ ⎛
⎝

1
5

⎞
⎠ + y′ ⎛

⎝
2
5

⎞
⎠

y = x′ + 2y′
5

Substitute the expressions for  x  and  y  into in the given equation, and then simplify.

8⎛
⎝
2x′ − y′

5
⎞
⎠

2
− 12⎛

⎝
2x′ − y′

5
⎞
⎠
⎛
⎝

x′ + 2y′
5

⎞
⎠ + 17⎛

⎝
x′ + 2y′

5
⎞
⎠

2
= 20    

8⎛
⎝
(2x′ − y′)(2x′ − y′)

5
⎞
⎠ − 12⎛

⎝
(2x′ − y′)(x′ + 2y′)

5
⎞
⎠ + 17⎛

⎝
(x′ + 2y′)(x′ + 2y′)

5
⎞
⎠ = 20    

   8⎛
⎝4x′ 2 − 4x′ y′ + y′ 2⎞

⎠ − 12⎛
⎝2x′ 2 + 3x′ y′ − 2y′ 2⎞

⎠ + 17⎛
⎝x′ 2 + 4x′ y′ + 4y′ 2⎞

⎠ = 100

32x′ 2 − 32x′ y′ + 8y′ 2 − 24x′ 2 − 36x′ y′ + 24y′ 2 + 17x′ 2 + 68x′ y′ + 68y′ 2 = 100

25x′ 2 + 100y′ 2 = 100  
25
100x′ 2 + 100

100y′ 2 = 100
100

Write the equations with  x′   and  y′   in the standard form with respect to the new coordinate system.

x′2

4 + y′2

1 = 1

Figure 12.47 shows the graph of the ellipse.
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12.21

Figure 12.47

Rewrite the  13x2 − 6 3xy + 7y2 = 16  in the  x′ y′   system without the  x′ y′   term.

Example 12.23

Graphing an Equation That Has No x′y′ Terms

Graph the following equation relative to the  x′ y′   system:

x2 + 12xy − 4y2 = 30

Solution
First, we find  cot(2θ).

x2 + 12xy − 4y2 = 20 ⇒ A = 1,  B = 12, and C = −4

cot(2θ) = A − C
B

cot(2θ) = 1 − (−4)
12

cot(2θ) = 5
12

Because  cot(2θ) = 5
12, we can draw a reference triangle as in Figure 12.48.
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Figure 12.48

cot(2θ) = 5
12 = adjacent

opposite

Thus, the hypotenuse is

52 + 122 = h2

25 + 144 = h2

169 = h2

h = 13

Next, we find  sin θ  and  cos θ. We will use half-angle identities.

sin θ = 1 − cos(2θ)
2 =

1 − 5
13

2 =
13
13 − 5

13
2 = 8

13 ⋅ 1
2 = 2

13

cos θ = 1 + cos(2θ)
2 =

1 + 5
13

2 =
13
13 + 5

13
2 = 18

13 ⋅ 1
2 = 3

13

Now we find  x  and  y.

x = x′ cos θ − y′ sin θ

x = x′ ⎛
⎝

3
13

⎞
⎠ − y′ ⎛

⎝
2
13

⎞
⎠

x = 3x′ − 2y′
13

and
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y = x′ sin θ + y′ cos θ

y = x′ ⎛
⎝

2
13

⎞
⎠ + y′ ⎛

⎝
3
13

⎞
⎠

y = 2x′ + 3y′
13

Now we substitute  x = 3x′ − 2y′
13

  and  y = 2x′ + 3y′
13

  into  x2 + 12xy − 4y2 = 30.

                                        ⎛⎝
3x′ − 2y′

13
⎞
⎠

2
+ 12⎛

⎝
3x′ − 2y′

13
⎞
⎠
⎛
⎝
2x′ + 3y′

13
⎞
⎠ − 4⎛

⎝
2x′ + 3y′

13
⎞
⎠

2
= 30

                                    ⎛⎝ 1
13

⎞
⎠
⎡
⎣(3x′ − 2y′)2 + 12(3x′ − 2y′)(2x′ + 3y′) − 4(2x′ + 3y′)2⎤

⎦ = 30  Factor.

⎛
⎝

1
13

⎞
⎠
⎡
⎣9x′ 2 − 12x′ y′ + 4y′ 2 + 12⎛

⎝6x′ 2 + 5x′ y′ − 6y′ 2⎞
⎠ − 4⎛

⎝4x′ 2 + 12x′ y′ + 9y′ 2⎞
⎠
⎤
⎦ = 30 Multiply.

  ⎛⎝
1
13

⎞
⎠
⎡
⎣9x′ 2 − 12x′ y′ + 4y′ 2 + 72x′ 2 + 60x′ y′ − 72y′ 2 − 16x′ 2 − 48x′ y′ − 36y′ 2⎤

⎦ = 30 Distribute.

                                                                                                  ⎛⎝ 1
13

⎞
⎠
⎡
⎣65x′ 2 − 104y′ 2⎤

⎦ = 30 Combine like terms.

                                                                                                           65x′ 2 − 104y′ 2 = 390 Multiply.                

                                                                                                                  x′ 2

6 − 4y′ 2

15 = 1  Divide by 390.

Figure 12.49 shows the graph of the hyperbola  x′2

6 − 4y′2

15 = 1.      

Figure 12.49

Identifying Conics without Rotating Axes
Now we have come full circle. How do we identify the type of conic described by an equation? What happens when the
axes are rotated? Recall, the general form of a conic is

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

If we apply the rotation formulas to this equation we get the form
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A′ x′2 + B′ x′ y′ + C′ y′2 + D′ x′ + E′ y′ + F′ = 0

It may be shown that  B2 − 4AC = B′2 − 4A′ C′. The expression does not vary after rotation, so we call the expression

invariant. The discriminant,  B2 − 4AC, is invariant and remains unchanged after rotation. Because the discriminant
remains unchanged, observing the discriminant enables us to identify the conic section.

Using the Discriminant to Identify a Conic

If the equation  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is transformed by rotating axes into the equation

 A′ x′2 + B′ x′ y′ + C′ y′2 + D′ x′ + E′ y′ + F′ = 0, then  B2 − 4AC = B′2 − 4A′ C′.

The equation  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0  is an ellipse, a parabola, or a hyperbola, or a degenerate case of

one of these.

If the discriminant,  B2 − 4AC, is

• < 0, the conic section is an ellipse

• = 0, the conic section is a parabola

• > 0, the conic section is a hyperbola

Example 12.24

Identifying the Conic without Rotating Axes

Identify the conic for each of the following without rotating axes.

a. 5x2 + 2 3xy + 2y2 − 5 = 0

b. 5x2 + 2 3xy + 12y2 − 5 = 0

Solution
a. Let’s begin by determining  A, B, and  C.

5
⏟
A

x2 + 2 3
⏟
B

xy + 2
⏟
C

y2 − 5 = 0

Now, we find the discriminant.

B2 − 4AC = ⎛
⎝2 3⎞

⎠
2 − 4(5)(2)

= 4(3) − 40
= 12 − 40
= − 28 < 0

Therefore,  5x2 + 2 3xy + 2y2 − 5 = 0  represents an ellipse.

b. Again, let’s begin by determining  A, B, and  C.

5
⏟
A

x2 + 2 3
⏟
B

xy + 12
⏟
C

y2 − 5 = 0

Now, we find the discriminant.
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12.22

B2 − 4AC = ⎛
⎝2 3⎞

⎠
2 − 4(5)(12)

                = 4(3) − 240
                = 12 − 240
                = − 228 < 0

Therefore,  5x2 + 2 3xy + 12y2 − 5 = 0  represents an ellipse.

Identify the conic for each of the following without rotating axes.

a. x2 − 9xy + 3y2 − 12 = 0

b. 10x2 − 9xy + 4y2 − 4 = 0

Access this online resource for additional instruction and practice with conic sections and rotation of axes.

• Introduction to Conic Sections (http://openstaxcollege.org/l/introconic)
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12.4 EXERCISES
Verbal

What effect does the  xy  term have on the graph of a

conic section?

If the equation of a conic section is written in the form
 Ax2 + By2 + Cx + Dy + E = 0  and  AB = 0, what can

we conclude?

If the equation of a conic section is written in the form
 Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, and

 B2 − 4AC > 0, what can we conclude?

Given the equation  ax2 + 4x + 3y2 − 12 = 0, what

can we conclude if  a > 0?

For the equation
 Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, the value of  θ
that satisfies  cot(2θ) = A − C

B   gives us what information?

Algebraic
For the following exercises, determine which conic section
is represented based on the given equation.

9x2 + 4y2 + 72x + 36y − 500 = 0

x2 − 10x + 4y − 10 = 0

2x2 − 2y2 + 4x − 6y − 2 = 0

4x2 − y2 + 8x − 1 = 0

4y2 − 5x + 9y + 1 = 0

2x2 + 3y2 − 8x − 12y + 2 = 0

4x2 + 9xy + 4y2 − 36y − 125 = 0

3x2 + 6xy + 3y2 − 36y − 125 = 0

−3x2 + 3 3xy − 4y2 + 9 = 0

2x2 + 4 3xy + 6y2 − 6x − 3 = 0

−x2 + 4 2xy + 2y2 − 2y + 1 = 0

8x2 + 4 2xy + 4y2 − 10x + 1 = 0

For the following exercises, find a new representation of
the given equation after rotating through the given angle.

3x2 + xy + 3y2 − 5 = 0, θ = 45°

4x2 − xy + 4y2 − 2 = 0, θ = 45°

2x2 + 8xy − 1 = 0, θ = 30°

−2x2 + 8xy + 1 = 0, θ = 45°

4x2 + 2xy + 4y2 + y + 2 = 0, θ = 45°

For the following exercises, determine the angle  θ  that will
eliminate the  xy  term and write the corresponding equation

without the  xy  term.

x2 + 3 3xy + 4y2 + y − 2 = 0

4x2 + 2 3xy + 6y2 + y − 2 = 0

9x2 − 3 3xy + 6y2 + 4y − 3 = 0

−3x2 − 3xy − 2y2 − x = 0

16x2 + 24xy + 9y2 + 6x − 6y + 2 = 0

x2 + 4xy + 4y2 + 3x − 2 = 0

x2 + 4xy + y2 − 2x + 1 = 0

4x2 − 2 3xy + 6y2 − 1 = 0

Graphical
For the following exercises, rotate through the given angle
based on the given equation. Give the new equation and
graph the original and rotated equation.

y = − x2, θ = − 45∘

x = y2, θ = 45∘

x2

4 + y2

1 = 1, θ = 45∘

y2

16 + x2

9 = 1, θ = 45∘
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244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

y2 − x2 = 1, θ = 45∘

y = x2

2 , θ = 30∘

x = ⎛
⎝y − 1⎞

⎠
2, θ = 30∘

x2

9 + y2

4 = 1, θ = 30∘

For the following exercises, graph the equation relative to
the  x′ y′   system in which the equation has no  x′ y′   term.

xy = 9

x2 + 10xy + y2 − 6 = 0

x2 − 10xy + y2 − 24 = 0

4x2 − 3 3xy + y2 − 22 = 0

6x2 + 2 3xy + 4y2 − 21 = 0

11x2 + 10 3xy + y2 − 64 = 0

21x2 + 2 3xy + 19y2 − 18 = 0

16x2 + 24xy + 9y2 − 130x + 90y = 0

16x2 + 24xy + 9y2 − 60x + 80y = 0

13x2 − 6 3xy + 7y2 − 16 = 0

4x2 − 4xy + y2 − 8 5x − 16 5y = 0

For the following exercises, determine the angle of rotation
in order to eliminate the  xy  term. Then graph the new set

of axes.

6x2 − 5 3xy + y2 + 10x − 12y = 0

6x2 − 5xy + 6y2 + 20x − y = 0

6x2 − 8 3xy + 14y2 + 10x − 3y = 0

4x2 + 6 3xy + 10y2 + 20x − 40y = 0

8x2 + 3xy + 4y2 + 2x − 4 = 0

16x2 + 24xy + 9y2 + 20x − 44y = 0

For the following exercises, determine the value of  k  based
on the given equation.

Given  4x2 + kxy + 16y2 + 8x + 24y − 48 = 0,
find  k  for the graph to be a parabola.

Given  2x2 + kxy + 12y2 + 10x − 16y + 28 = 0,
find  k  for the graph to be an ellipse.

Given  3x2 + kxy + 4y2 − 6x + 20y + 128 = 0,
find  k  for the graph to be a hyperbola.

Given  kx2 + 8xy + 8y2 − 12x + 16y + 18 = 0,
find  k  for the graph to be a parabola.

Given  6x2 + 12xy + ky2 + 16x + 10y + 4 = 0,
find  k  for the graph to be an ellipse.
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12.5 | Conic Sections in Polar Coordinates

Learning Objectives

In this section, you will:

12.5.1 Identify a conic in polar form.
12.5.2 Graph the polar equations of conics.
12.5.3 Define conics in terms of a focus and a directrix.

Figure 12.50 Planets orbiting the sun follow elliptical paths. (credit: NASA Blueshift, Flickr)

Most of us are familiar with orbital motion, such as the motion of a planet around the sun or an electron around an atomic
nucleus. Within the planetary system, orbits of planets, asteroids, and comets around a larger celestial body are often
elliptical. Comets, however, may take on a parabolic or hyperbolic orbit instead. And, in reality, the characteristics of the
planets’ orbits may vary over time. Each orbit is tied to the location of the celestial body being orbited and the distance and
direction of the planet or other object from that body. As a result, we tend to use polar coordinates to represent these orbits.

In an elliptical orbit, the periapsis is the point at which the two objects are closest, and the apoapsis is the point at which they
are farthest apart. Generally, the velocity of the orbiting body tends to increase as it approaches the periapsis and decrease
as it approaches the apoapsis. Some objects reach an escape velocity, which results in an infinite orbit. These bodies exhibit
either a parabolic or a hyperbolic orbit about a body; the orbiting body breaks free of the celestial body’s gravitational pull
and fires off into space. Each of these orbits can be modeled by a conic section in the polar coordinate system.

Identifying a Conic in Polar Form
Any conic may be determined by three characteristics: a single focus, a fixed line called the directrix, and the ratio of the
distances of each to a point on the graph. Consider the parabola  x = 2 + y2   shown in Figure 12.51.
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Figure 12.51

In The Parabola, we learned how a parabola is defined by the focus (a fixed point) and the directrix (a fixed line). In this
section, we will learn how to define any conic in the polar coordinate system in terms of a fixed point, the focus  P(r, θ)  at
the pole, and a line, the directrix, which is perpendicular to the polar axis.

If  F  is a fixed point, the focus, and  D  is a fixed line, the directrix, then we can let  e  be a fixed positive number, called the
eccentricity, which we can define as the ratio of the distances from a point on the graph to the focus and the point on the
graph to the directrix. Then the set of all points  P  such that  e = PF

PD   is a conic. In other words, we can define a conic as

the set of all points  P with the property that the ratio of the distance from  P  to  F  to the distance from  P  to  D  is equal to
the constant  e.

For a conic with eccentricity  e,

• if  0 ≤ e < 1, the conic is an ellipse

• if  e = 1, the conic is a parabola

• if  e > 1, the conic is an hyperbola

With this definition, we may now define a conic in terms of the directrix,  x = ± p, the eccentricity  e, and the angle  θ.
Thus, each conic may be written as a polar equation, an equation written in terms of  r  and  θ.

The Polar Equation for a Conic

For a conic with a focus at the origin, if the directrix is  x = ± p, where  p  is a positive real number, and the

eccentricity is a positive real number  e, the conic has a polar equation

r = ep
1 ± e cos θ

For a conic with a focus at the origin, if the directrix is  y = ± p, where  p  is a positive real number, and the

eccentricity is a positive real number  e, the conic has a polar equation

r = ep
1 ± e sin θ
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Given the polar equation for a conic, identify the type of conic, the directrix, and the eccentricity.

1. Multiply the numerator and denominator by the reciprocal of the constant in the denominator to rewrite
the equation in standard form.

2. Identify the eccentricity  e  as the coefficient of the trigonometric function in the denominator.

3. Compare  e with 1 to determine the shape of the conic.

4. Determine the directrix as  x = p  if cosine is in the denominator and  y = p  if sine is in the denominator.

Set  ep  equal to the numerator in standard form to solve for  x  or  y.

Example 12.25

Identifying a Conic Given the Polar Form

For each of the following equations, identify the conic with focus at the origin, the directrix, and the eccentricity.

a. r = 6
3 + 2 sin θ

b. r = 12
4 + 5 cos θ

c. r = 7
2 − 2 sin θ

Solution
For each of the three conics, we will rewrite the equation in standard form. Standard form has a 1 as the constant
in the denominator. Therefore, in all three parts, the first step will be to multiply the numerator and denominator
by the reciprocal of the constant of the original equation,  1c , where  c  is that constant.

a. Multiply the numerator and denominator by  13.

r = 6
3 + 2sin θ ⋅

⎛
⎝
1
3

⎞
⎠

⎛
⎝
1
3

⎞
⎠

=
6⎛

⎝
1
3

⎞
⎠

3⎛
⎝
1
3

⎞
⎠ + 2⎛

⎝
1
3

⎞
⎠sin θ

= 2
1 + 2

3 sin θ

Because sin θ is in the denominator, the directrix is  y = p. Comparing to standard form, note that

 e = 2
3. Therefore, from the numerator,

     2 = ep

     2 = 2
3 p

⎛
⎝
3
2

⎞
⎠2 = ⎛

⎝
3
2

⎞
⎠
2
3 p

     3 = p

Since  e < 1, the conic is an ellipse. The eccentricity is  e = 2
3 and the directrix is  y = 3.

b. Multiply the numerator and denominator by  14.
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12.23

r = 12
4 + 5 cos θ ⋅

⎛
⎝
1
4

⎞
⎠

⎛
⎝
1
4

⎞
⎠

r =
12⎛

⎝
1
4

⎞
⎠

4⎛
⎝
1
4

⎞
⎠ + 5⎛

⎝
1
4

⎞
⎠cos θ

r = 3
1 + 5

4 cos θ

Because  cos θ  is in the denominator, the directrix is  x = p. Comparing to standard form,  e = 5
4. 

Therefore, from the numerator,

      3 = ep

      3 = 5
4 p

 ⎛⎝4
5

⎞
⎠3 = ⎛

⎝
4
5

⎞
⎠
5
4 p

    12
5 = p

Since  e > 1, the conic is a hyperbola. The eccentricity is  e = 5
4   and the directrix is  x = 12

5 = 2.4.

c. Multiply the numerator and denominator by  12.

r = 7
2 − 2 sin θ ⋅

⎛
⎝
1
2

⎞
⎠

⎛
⎝
1
2

⎞
⎠

r =
7⎛

⎝
1
2

⎞
⎠

2⎛
⎝
1
2

⎞
⎠ − 2⎛

⎝
1
2

⎞
⎠ sin θ

r =
7
2

1 − sin θ
Because sine is in the denominator, the directrix is  y = −p. Comparing to standard form,  e = 1. 
Therefore, from the numerator,

7
2 = ep

7
2 = (1)p

7
2 = p

Because  e = 1, the conic is a parabola. The eccentricity is  e = 1  and the directrix is  y = − 7
2 = −3.5.

Identify the conic with focus at the origin, the directrix, and the eccentricity for  r = 2
3 − cos θ .

Graphing the Polar Equations of Conics
When graphing in Cartesian coordinates, each conic section has a unique equation. This is not the case when graphing in
polar coordinates. We must use the eccentricity of a conic section to determine which type of curve to graph, and then
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determine its specific characteristics. The first step is to rewrite the conic in standard form as we have done in the previous
example. In other words, we need to rewrite the equation so that the denominator begins with 1. This enables us to determine
 e  and, therefore, the shape of the curve. The next step is to substitute values for  θ  and solve for  r  to plot a few key points.

Setting  θ  equal to  0, π
2, π, and  3π

2   provides the vertices so we can create a rough sketch of the graph.

Example 12.26

Graphing a Parabola in Polar Form

Graph  r = 5
3 + 3 cos θ .

Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 3,
which is  13.

r = 5
3 + 3 cos θ =

5⎛
⎝
1
3

⎞
⎠

3⎛
⎝
1
3

⎞
⎠ + 3⎛

⎝
1
3

⎞
⎠cos θ

r =
5
3

1 + cos θ

Because  e = 1, we will graph a parabola with a focus at the origin. The function has a  cos θ, and there is an
addition sign in the denominator, so the directrix is  x = p.

5
3 = ep

5
3 = (1)p

5
3 = p

The directrix is  x = 5
3.

Plotting a few key points as in Table 12.5 will enable us to see the vertices. See Figure 12.52.

A B C D

θ 0 π
2 π 3π

2

r = 5
3 + 3 cos θ

5
6 ≈ 0.83 5

3 ≈ 1.67 undefined 5
3 ≈ 1.67

Table 12.5
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Figure 12.52

Analysis
We can check our result with a graphing utility. See Figure 12.53.

Figure 12.53

Example 12.27

Graphing a Hyperbola in Polar Form

Graph  r = 8
2 − 3 sin θ .

Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 2,
which is  12.
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r = 8
2 − 3sin θ =

8⎛
⎝
1
2

⎞
⎠

2⎛
⎝
1
2

⎞
⎠ − 3⎛

⎝
1
2

⎞
⎠sin θ

r = 4
1 − 3

2 sin θ

Because  e = 3
2, e > 1, so we will graph a hyperbola with a focus at the origin. The function has a  sin θ  term

and there is a subtraction sign in the denominator, so the directrix is  y = −p.

      4 = ep

      4 = ⎛
⎝
3
2

⎞
⎠p

4⎛
⎝
2
3

⎞
⎠ = p

8
3 = p

The directrix is  y = − 8
3.

Plotting a few key points as in Table 12.6 will enable us to see the vertices. See Figure 12.54.

A B C D

θ 0 π
2 π 3π

2

r = 8
2 − 3sin θ 4 −8 4 8

5 = 1.6

Table 12.6
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Figure 12.54

Example 12.28

Graphing an Ellipse in Polar Form

Graph  r = 10
5 − 4 cos θ .

Solution
First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 5,
which is  15.
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r = 10
5 − 4cos θ =

10⎛
⎝
1
5

⎞
⎠

5⎛
⎝
1
5

⎞
⎠ − 4⎛

⎝
1
5

⎞
⎠cos θ

r = 2
1 − 4

5 cos θ

Because  e = 4
5, e < 1, so we will graph an ellipse with a focus at the origin. The function has a  cos θ, and

there is a subtraction sign in the denominator, so the directrix is  x = −p.

      2 = ep

      2 = ⎛
⎝
4
5

⎞
⎠p

2⎛
⎝
5
4

⎞
⎠ = p

5
2 = p

The directrix is  x = − 5
2.

Plotting a few key points as in Table 12.7 will enable us to see the vertices. See Figure 12.55.

A B C D

θ 0 π
2 π 3π

2

r = 10
5 − 4 cos θ 10 2 10

9 ≈ 1.1 2

Table 12.7

Figure 12.55

Analysis
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We can check our result using a graphing utility. See Figure 12.56.

Figure 12.56 r = 10
5 − 4 cos θ   graphed on a viewing

window of  [–3, 12, 1]  by  [ – 4, 4, 1], θ min = 0 and

 θ max = 2π.

Graph  r = 2
4 − cos θ .

Defining Conics in Terms of a Focus and a Directrix
So far we have been using polar equations of conics to describe and graph the curve. Now we will work in reverse; we will
use information about the origin, eccentricity, and directrix to determine the polar equation.

Given the focus, eccentricity, and directrix of a conic, determine the polar equation.

1. Determine whether the directrix is horizontal or vertical. If the directrix is given in terms of  y, we use

the general polar form in terms of sine. If the directrix is given in terms of  x, we use the general polar
form in terms of cosine.

2. Determine the sign in the denominator. If  p < 0, use subtraction. If  p > 0, use addition.

3. Write the coefficient of the trigonometric function as the given eccentricity.

4. Write the absolute value of  p  in the numerator, and simplify the equation.

Example 12.29

Finding the Polar Form of a Vertical Conic Given a Focus at the Origin and the
Eccentricity and Directrix

Find the polar form of the conic given a focus at the origin,  e = 3  and directrix  y = − 2.
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Solution
The directrix is  y = −p, so we know the trigonometric function in the denominator is sine.

Because  y = −2, –2 < 0, so we know there is a subtraction sign in the denominator. We use the standard form

of

r = ep
1 − e sin θ

and  e = 3  and  |−2| = 2 = p.

Therefore,

r = (3)(2)
1 − 3 sin θ

r = 6
1 − 3 sin θ

Example 12.30

Finding the Polar Form of a Horizontal Conic Given a Focus at the Origin and the
Eccentricity and Directrix

Find the polar form of a conic given a focus at the origin,  e = 3
5, and directrix  x = 4.

Solution
Because the directrix is  x = p, we know the function in the denominator is cosine. Because  x = 4, 4 > 0, so

we know there is an addition sign in the denominator. We use the standard form of

r = ep
1 + e cos θ

and  e = 3
5   and  |4| = 4 = p.

Therefore,
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12.25

12.26

r =
⎛
⎝
3
5

⎞
⎠(4)

1 + 3
5  cos θ

r =
12
5

1 + 3
5  cos θ

r =
12
5

1⎛
⎝
5
5

⎞
⎠ + 3

5  cos θ

r =
12
5

5
5 + 3

5  cos θ

r = 12
5 ⋅ 5

5 + 3 cos θ
r = 12

5 + 3 cos θ

Find the polar form of the conic given a focus at the origin,  e = 1, and directrix  x = −1.

Example 12.31

Converting a Conic in Polar Form to Rectangular Form

Convert the conic  r = 1
5 − 5sin θ to rectangular form.

Solution

We will rearrange the formula to use the identities  r = x2 + y2, x = r cos θ, and y = r sin θ.

                          r = 1
5 − 5 sin θ

 r ⋅ (5 − 5 sin θ) = 1
5 − 5 sin θ ⋅ (5 − 5 sin θ) Eliminate the fraction.

        5r − 5r sin θ = 1 Distribute.
                        5r = 1 + 5r sin θ Isolate 5r.
                    25r2 = (1 + 5r sin θ)2 Square both sides.

         25(x2 + y2) = (1 + 5y)2 Substitute r = x2 + y2 and y = r sin θ.

        25x2 + 25y2 = 1 + 10y + 25y2 Distribute and use FOIL.

          25x2 − 10y = 1 Rearrange terms and set equal to 1.

Convert the conic  r = 2
1 + 2 cos θ   to rectangular form.
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Access these online resources for additional instruction and practice with conics in polar coordinates.

• Polar Equations of Conic Sections (http://openstaxcollege.org/l/determineconic)

• Graphing Polar Equations of Conics - 1 (http://openstaxcollege.org/l/graphconic1)

• Graphing Polar Equations of Conics - 2 (http://openstaxcollege.org/l/graphconic2)

Visit this website (http://openstaxcollege.org/l/PreCalcLPC10) for additional practice questions from
Learningpod.

1434 Chapter 12 Analytic Geometry

This content is available for free at https://cnx.org/content/col11758/1.5

http://openstaxcollege.org/l/determineconic
http://openstaxcollege.org/l/graphconic1
http://openstaxcollege.org/l/graphconic2
http://openstaxcollege.org/l/PreCalcLPC10


269.

270.

271.

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

303.

304.

12.5 EXERCISES
Verbal

Explain how eccentricity determines which conic
section is given.

If a conic section is written as a polar equation, what
must be true of the denominator?

If a conic section is written as a polar equation, and
the denominator involves  sin θ, what conclusion can be
drawn about the directrix?

If the directrix of a conic section is perpendicular to
the polar axis, what do we know about the equation of the
graph?

What do we know about the focus/foci of a conic
section if it is written as a polar equation?

Algebraic
For the following exercises, identify the conic with a focus
at the origin, and then give the directrix and eccentricity.

r = 6
1 − 2 cos θ

r = 3
4 − 4 sin θ

r = 8
4 − 3 cos θ

r = 5
1 + 2 sin θ

r = 16
4 + 3 cos θ

r = 3
10 + 10 cos θ

r = 2
1 − cos θ

r = 4
7 + 2 cos θ

r(1 − cos θ) = 3

r(3 + 5sin θ) = 11

r(4 − 5sin θ) = 1

r(7 + 8cos θ) = 7

For the following exercises, convert the polar equation of a
conic section to a rectangular equation.

r = 4
1 + 3 sin θ

r = 2
5 − 3 sin θ

r = 8
3 − 2 cos θ

r = 3
2 + 5 cos θ

r = 4
2 + 2 sin θ

r = 3
8 − 8 cos θ

r = 2
6 + 7 cos θ

r = 5
5 − 11 sin θ

r(5 + 2 cos θ) = 6

r(2 − cos θ) = 1

r(2.5 − 2.5 sin θ) = 5

r = 6sec θ
−2 + 3 sec θ

r = 6csc θ
3 + 2 csc θ

For the following exercises, graph the given conic section.
If it is a parabola, label the vertex, focus, and directrix. If it
is an ellipse, label the vertices and foci. If it is a hyperbola,
label the vertices and foci.

r = 5
2 + cos θ

r = 2
3 + 3 sin θ

r = 10
5 − 4 sin θ

r = 3
1 + 2 cos θ

r = 8
4 − 5 cos θ

r = 3
4 − 4 cos θ
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305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

r = 2
1 − sin θ

r = 6
3 + 2 sin θ

r(1 + cos θ) = 5

r(3 − 4sin θ) = 9

r(3 − 2sin θ) = 6

r(6 − 4cos θ) = 5

For the following exercises, find the polar equation of the
conic with focus at the origin and the given eccentricity and
directrix.

Directrix: x = 4;  e = 1
5

Directrix: x = − 4;  e = 5

Directrix: y = 2;  e = 2

Directrix: y = − 2;  e = 1
2

Directrix: x = 1;  e = 1

Directrix: x = − 1;  e = 1

Directrix: x = − 1
4;  e = 7

2

Directrix: y = 2
5;  e = 7

2

Directrix: y = 4;  e = 3
2

Directrix: x = −2;  e = 8
3

Directrix: x = −5;  e = 3
4

Directrix: y = 2;  e = 2.5

Directrix: x = −3;  e = 1
3

Extensions
Recall from Rotation of Axes that equations of conics
with an  xy  term have rotated graphs. For the following

exercises, express each equation in polar form with  r  as a
function of  θ.

xy = 2

x2 + xy + y2 = 4

2x2 + 4xy + 2y2 = 9

16x2 + 24xy + 9y2 = 4

2xy + y = 1
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angle of rotation

center of a hyperbola

center of an ellipse

conic section

conjugate axis

degenerate conic sections

directrix

eccentricity

ellipse

foci

focus (of a parabola)

focus (of an ellipse)

hyperbola

latus rectum

major axis

minor axis

nondegenerate conic section

parabola

polar equation

transverse axis

CHAPTER 12 REVIEW

KEY TERMS
an acute angle formed by a set of axes rotated from the Cartesian plane where, if  cot(2θ) > 0, then  θ 

is between  (0°, 45°); if  cot(2θ) < 0, then  θ  is between  (45°, 90°);   and if  cot(2θ) = 0, then  θ = 45°

the midpoint of both the transverse and conjugate axes of a hyperbola

the midpoint of both the major and minor axes

any shape resulting from the intersection of a right circular cone with a plane

the axis of a hyperbola that is perpendicular to the transverse axis and has the co-vertices as its endpoints

any of the possible shapes formed when a plane intersects a double cone through the apex.
Types of degenerate conic sections include a point, a line, and intersecting lines.

a line perpendicular to the axis of symmetry of a parabola; a line such that the ratio of the distance between the
points on the conic and the focus to the distance to the directrix is constant

the ratio of the distances from a point  P  on the graph to the focus  F  and to the directrix  D  represented by

 e = PF
PD, where  e  is a positive real number

the set of all points  (x, y)  in a plane such that the sum of their distances from two fixed points is a constant

plural of focus

a fixed point in the interior of a parabola that lies on the axis of symmetry

one of the two fixed points on the major axis of an ellipse such that the sum of the distances from
these points to any point  (x, y)  on the ellipse is a constant

the set of all points  (x, y)  in a plane such that the difference of the distances between  (x, y)  and the foci is a

positive constant

the line segment that passes through the focus of a parabola parallel to the directrix, with endpoints on the
parabola

the longer of the two axes of an ellipse

the shorter of the two axes of an ellipse

a shape formed by the intersection of a plane with a double right cone such that the plane
does not pass through the apex; nondegenerate conics include circles, ellipses, hyperbolas, and parabolas

the set of all points  (x, y)  in a plane that are the same distance from a fixed line, called the directrix, and a fixed

point (the focus) not on the directrix

an equation of a curve in polar coordinates  r  and  θ
the axis of a hyperbola that includes the foci and has the vertices as its endpoints

KEY EQUATIONS
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Horizontal ellipse, center at origin x2

a2 + y2

b2 = 1,  a > b

Vertical ellipse, center at origin x2

b2 + y2

a2 = 1,  a > b

Horizontal ellipse, center  (h, k) (x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1,  a > b

Vertical ellipse, center  (h, k) (x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1,  a > b

Hyperbola, center at origin, transverse axis on x-axis x2

a2 − y2

b2 = 1

Hyperbola, center at origin, transverse axis on y-axis
y2

a2 − x2

b2 = 1

Hyperbola, center at  (h, k), transverse axis parallel to x-axis (x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1

Hyperbola, center at  (h, k), transverse axis parallel to y-axis
⎛
⎝y − k⎞

⎠
2

a2 − (x − h)2

b2 = 1

Parabola, vertex at origin, axis of symmetry on x-axis y2 = 4px

Parabola, vertex at origin, axis of symmetry on y-axis x2 = 4py

Parabola, vertex at  (h, k), axis of symmetry on x-axis ⎛
⎝y − k⎞

⎠
2 = 4p(x − h)

Parabola, vertex at  (h, k), axis of symmetry on y-axis (x − h)2 = 4p⎛
⎝y − k⎞

⎠

General Form equation of a conic section Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

Rotation of a conic section
x = x′ cos θ − y′ sin θ
y = x′ sin θ + y′ cos θ

Angle of rotation θ, where cot(2θ) = A − C
B
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KEY CONCEPTS
12.1 The Ellipse

• An ellipse is the set of all points  (x, y)  in a plane such that the sum of their distances from two fixed points is a

constant. Each fixed point is called a focus (plural: foci).

• When given the coordinates of the foci and vertices of an ellipse, we can write the equation of the ellipse in standard
form. See Example 12.1 and Example 12.2.

• When given an equation for an ellipse centered at the origin in standard form, we can identify its vertices, co-
vertices, foci, and the lengths and positions of the major and minor axes in order to graph the ellipse. See Example
12.3 and Example 12.4.

• When given the equation for an ellipse centered at some point other than the origin, we can identify its key features
and graph the ellipse. See Example 12.5 and Example 12.6.

• Real-world situations can be modeled using the standard equations of ellipses and then evaluated to find key
features, such as lengths of axes and distance between foci. See Example 12.7.

12.2 The Hyperbola

• A hyperbola is the set of all points  (x, y)  in a plane such that the difference of the distances between  (x, y)  and the

foci is a positive constant.

• The standard form of a hyperbola can be used to locate its vertices and foci. See Example 12.8.

• When given the coordinates of the foci and vertices of a hyperbola, we can write the equation of the hyperbola in
standard form. See Example 12.9 and Example 12.10.

• When given an equation for a hyperbola, we can identify its vertices, co-vertices, foci, asymptotes, and lengths and
positions of the transverse and conjugate axes in order to graph the hyperbola. See Example 12.11 and Example
12.12.

• Real-world situations can be modeled using the standard equations of hyperbolas. For instance, given the
dimensions of a natural draft cooling tower, we can find a hyperbolic equation that models its sides. See Example
12.13.

12.3 The Parabola

• A parabola is the set of all points  (x, y)  in a plane that are the same distance from a fixed line, called the directrix,

and a fixed point (the focus) not on the directrix.

• The standard form of a parabola with vertex  (0, 0)  and the x-axis as its axis of symmetry can be used to graph the
parabola. If  p > 0, the parabola opens right. If  p < 0, the parabola opens left. See Example 12.14.

• The standard form of a parabola with vertex  (0, 0)  and the y-axis as its axis of symmetry can be used to graph the
parabola. If  p > 0, the parabola opens up. If  p < 0, the parabola opens down. See Example 12.15.

• When given the focus and directrix of a parabola, we can write its equation in standard form. See Example 12.16.

• The standard form of a parabola with vertex  (h, k)  and axis of symmetry parallel to the x-axis can be used to graph
the parabola. If  p > 0, the parabola opens right. If  p < 0, the parabola opens left. See Example 12.17.

• The standard form of a parabola with vertex  (h, k)  and axis of symmetry parallel to the y-axis can be used to graph
the parabola. If  p > 0, the parabola opens up. If  p < 0, the parabola opens down. See Example 12.18.

• Real-world situations can be modeled using the standard equations of parabolas. For instance, given the diameter
and focus of a cross-section of a parabolic reflector, we can find an equation that models its sides. See Example
12.19.
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12.4 Rotation of Axes

• Four basic shapes can result from the intersection of a plane with a pair of right circular cones connected tail to tail.
They include an ellipse, a circle, a hyperbola, and a parabola.

• A nondegenerate conic section has the general form  Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 where  A, B  and  C
are not all zero. The values of  A, B, and  C  determine the type of conic. See Example 12.20.

• Equations of conic sections with an  xy  term have been rotated about the origin. See Example 12.21.

• The general form can be transformed into an equation in the  x′   and  y′   coordinate system without the  x′ y′   term.

See Example 12.22 and Example 12.23.

• An expression is described as invariant if it remains unchanged after rotating. Because the discriminant is invariant,
observing it enables us to identify the conic section. See Example 12.24.

12.5 Conic Sections in Polar Coordinates

• Any conic may be determined by a single focus, the corresponding eccentricity, and the directrix. We can also define
a conic in terms of a fixed point, the focus  P(r, θ)  at the pole, and a line, the directrix, which is perpendicular to
the polar axis.

• A conic is the set of all points  e = PF
PD, where eccentricity  e  is a positive real number. Each conic may be written

in terms of its polar equation. See Example 12.25.

• The polar equations of conics can be graphed. See Example 12.26, Example 12.27, and Example 12.28.

• Conics can be defined in terms of a focus, a directrix, and eccentricity. See Example 12.29 and Example 12.30.

• We can use the identities  r = x2 + y2, x = r cos θ, and  y = r sin θ  to convert the equation for a conic from

polar to rectangular form. See Example 12.31.

CHAPTER 12 REVIEW EXERCISES
The Ellipse

For the following exercises, write the equation of the ellipse
in standard form. Then identify the center, vertices, and
foci.

329. x2

25 + y2

64 = 1

330. (x − 2)2

100 +
⎛
⎝y + 3⎞

⎠
2

36 = 1

331. 9x2 + y2 + 54x − 4y + 76 = 0

332. 9x2 + 36y2 − 36x + 72y + 36 = 0

For the following exercises, graph the ellipse, noting center,
vertices, and foci.

333. x2

36 + y2

9 = 1

334. (x − 4)2

25 +
⎛
⎝y + 3⎞

⎠
2

49 = 1

335. 4x2 + y2 + 16x + 4y − 44 = 0

336.  2x2 + 3y2 − 20x + 12y + 38 = 0

For the following exercises, use the given information to
find the equation for the ellipse.

337. Center at  (0, 0), focus at  (3, 0), vertex at  (−5, 0)

338. Center at  (2, −2), vertex at  (7, −2), focus at
 (4, −2)

339. A whispering gallery is to be constructed such that
the foci are located 35 feet from the center. If the length of
the gallery is to be 100 feet, what should the height of the
ceiling be?
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The Hyperbola

For the following exercises, write the equation of the
hyperbola in standard form. Then give the center, vertices,
and foci.

340. x2

81 − y2

9 = 1

341.
⎛
⎝y + 1⎞

⎠
2

16 − (x − 4)2

36 = 1

342. 9y2 − 4x2 + 54y − 16x + 29 = 0

343. 3x2 − y2 − 12x − 6y − 9 = 0

For the following exercises, graph the hyperbola, labeling
vertices and foci.

344. x2

9 − y2

16 = 1

345.
⎛
⎝y − 1⎞

⎠
2

49 − (x + 1)2

4 = 1

346. x2 − 4y2 + 6x + 32y − 91 = 0

347. 2y2 − x2 − 12y − 6 = 0

For the following exercises, find the equation of the
hyperbola.

348. Center at  (0, 0), vertex at  (0, 4), focus at  (0, −6)

349. Foci at  (3, 7)  and  (7, 7), vertex at  (6, 7)

The Parabola

For the following exercises, write the equation of the
parabola in standard form. Then give the vertex, focus, and
directrix.

350. y2 = 12x

351. (x + 2)2 = 1
2

⎛
⎝y − 1⎞

⎠

352. y2 − 6y − 6x − 3 = 0

353. x2 + 10x − y + 23 = 0

For the following exercises, graph the parabola, labeling
vertex, focus, and directrix.

354. x2 + 4y = 0

355. ⎛
⎝y − 1⎞

⎠
2 = 1

2(x + 3)

356. x2 − 8x − 10y + 46 = 0

357. 2y2 + 12y + 6x + 15 = 0

For the following exercises, write the equation of the
parabola using the given information.

358. Focus at  (−4, 0);   directrix is  x = 4

359. Focus at  ⎛⎝2, 9
8

⎞
⎠;   directrix is  y = 7

8

360. A cable TV receiving dish is the shape of a
paraboloid of revolution. Find the location of the receiver,
which is placed at the focus, if the dish is 5 feet across at its
opening and 1.5 feet deep.

Rotation of Axes

For the following exercises, determine which of the conic
sections is represented.

361. 16x2 + 24xy + 9y2 + 24x − 60y − 60 = 0

362. 4x2 + 14xy + 5y2 + 18x − 6y + 30 = 0

363. 4x2 + xy + 2y2 + 8x − 26y + 9 = 0

For the following exercises, determine the angle  θ  that will
eliminate the  xy  term, and write the corresponding

equation without the  xy  term.

364. x2 + 4xy − 2y2 − 6 = 0

365. x2 − xy + y2 − 6 = 0

For the following exercises, graph the equation relative to
the  x′ y′   system in which the equation has no  x′ y′   term.

366. 9x2 − 24xy + 16y2 − 80x − 60y + 100 = 0

367. x2 − xy + y2 − 2 = 0
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368. 6x2 + 24xy − y2 − 12x + 26y + 11 = 0

Conic Sections in Polar Coordinates

For the following exercises, given the polar equation of the
conic with focus at the origin, identify the eccentricity and
directrix.

369. r = 10
1 − 5 cos θ

370. r = 6
3 + 2 cos θ

371. r = 1
4 + 3 sin θ

372. r = 3
5 − 5 sin θ

For the following exercises, graph the conic given in polar
form. If it is a parabola, label the vertex, focus, and
directrix. If it is an ellipse or a hyperbola, label the vertices
and foci.

373. r = 3
1 − sin θ

374. r = 8
4 + 3 sin θ

375. r = 10
4 + 5 cos θ

376. r = 9
3 − 6 cos θ

For the following exercises, given information about the
graph of a conic with focus at the origin, find the equation
in polar form.

377. Directrix is  x = 3  and eccentricity  e = 1

378. Directrix is  y = −2  and eccentricity  e = 4

CHAPTER 12 PRACTICE TEST
For the following exercises, write the equation in standard
form and state the center, vertices, and foci.

379. x2

9 + y2

4 = 1

380. 9y2 + 16x2 − 36y + 32x − 92 = 0

For the following exercises, sketch the graph, identifying
the center, vertices, and foci.

381. (x − 3)2

64 +
⎛
⎝y − 2⎞

⎠
2

36 = 1

382. 2x2 + y2 + 8x − 6y − 7 = 0

383. Write the standard form equation of an ellipse with a
center at  (1, 2), vertex at  (7, 2), and focus at  (4, 2).
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384. A whispering gallery is to be constructed with a
length of 150 feet. If the foci are to be located 20 feet away
from the wall, how high should the ceiling be?

For the following exercises, write the equation of the
hyperbola in standard form, and give the center, vertices,
foci, and asymptotes.

385. x2

49 − y2

81 = 1

386. 16y2 − 9x2 + 128y + 112 = 0

For the following exercises, graph the hyperbola, noting
its center, vertices, and foci. State the equations of the
asymptotes.

387. (x − 3)2

25 −
⎛
⎝y + 3⎞

⎠
2

1 = 1

388. y2 − x2 + 4y − 4x − 18 = 0

389. Write the standard form equation of a hyperbola with
foci at  (1, 0)  and  (1, 6), and a vertex at  (1, 2).

For the following exercises, write the equation of the
parabola in standard form, and give the vertex, focus, and
equation of the directrix.

390. y2 + 10x = 0

391. 3x2 − 12x − y + 11 = 0

For the following exercises, graph the parabola, labeling
the vertex, focus, and directrix.

392. (x − 1)2 = −4⎛
⎝y + 3⎞

⎠

393. y2 + 8x − 8y + 40 = 0

394. Write the equation of a parabola with a focus at
 (2, 3)  and directrix  y = −1.

395. A searchlight is shaped like a paraboloid of
revolution. If the light source is located 1.5 feet from the
base along the axis of symmetry, and the depth of the
searchlight is 3 feet, what should the width of the opening
be?

For the following exercises, determine which conic section
is represented by the given equation, and then determine the
angle  θ  that will eliminate the  xy  term.

396. 3x2 − 2xy + 3y2 = 4

397. x2 + 4xy + 4y2 + 6x − 8y = 0

For the following exercises, rewrite in the  x′ y′   system

without the  x′ y′   term, and graph the rotated graph.

398. 11x2 + 10 3xy + y2 = 4

399. 16x2 + 24xy + 9y2 − 125x = 0

For the following exercises, identify the conic with focus at
the origin, and then give the directrix and eccentricity.

400. r = 3
2 − sin θ

401. r = 5
4 + 6 cos θ

For the following exercises, graph the given conic section.
If it is a parabola, label vertex, focus, and directrix. If it is
an ellipse or a hyperbola, label vertices and foci.

402. r = 12
4 − 8 sin θ

403. r = 2
4 + 4 sin θ

404. Find a polar equation of the conic with focus at the
origin, eccentricity of  e = 2, and directrix:  x = 3.
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13 | SEQUENCES,
PROBABILITY, AND
COUNTING THEORY

Figure 13.1 (credit: Robert S. Donovan, Flickr.)

Chapter Outline
13.1 Sequences and Their Notations

13.2 Arithmetic Sequences

13.3 Geometric Sequences

13.4 Series and Their Notations

13.5 Counting Principles

13.6 Binomial Theorem

13.7 Probability

Introduction
A lottery winner has some big decisions to make regarding what to do with the winnings. Buy a villa in Saint Barthélemy?
A luxury convertible? A cruise around the world?

The likelihood of winning the lottery is slim, but we all love to fantasize about what we could buy with the winnings. One
of the first things a lottery winner has to decide is whether to take the winnings in the form of a lump sum or as a series of
regular payments, called an annuity, over the next 30 years or so.
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This decision is often based on many factors, such as tax implications, interest rates, and investment strategies. There are
also personal reasons to consider when making the choice, and one can make many arguments for either decision. However,
most lottery winners opt for the lump sum.

In this chapter, we will explore the mathematics behind situations such as these. We will take an in-depth look at annuities.
We will also look at the branch of mathematics that would allow us to calculate the number of ways to choose lottery
numbers and the probability of winning.

13.1 | Sequences and Their Notations

Learning Objectives

In this section, you will:

13.1.1 Write the terms of a sequence defined by an explicit formula.
13.1.2 Write the terms of a sequence defined by a recursive formula.
13.1.3 Use factorial notation.

A video game company launches an exciting new advertising campaign. They predict the number of online visits to their
website, or hits, will double each day. The model they are using shows 2 hits the first day, 4 hits the second day, 8 hits the
third day, and so on. See Table 13.1.

Day 1 2 3 4 5 …

Hits 2 4 8 16 32 …

Table 13.1

If their model continues, how many hits will there be at the end of the month? To answer this question, we’ll first need to
know how to determine a list of numbers written in a specific order. In this section, we will explore these kinds of ordered
lists.

Writing the Terms of a Sequence Defined by an Explicit Formula
One way to describe an ordered list of numbers is as a sequence. A sequence is a function whose domain is a subset of the
counting numbers. The sequence established by the number of hits on the website is

 {2, 4, 8, 16, 32, … }.

The ellipsis (…) indicates that the sequence continues indefinitely. Each number in the sequence is called a term. The first
five terms of this sequence are 2, 4, 8, 16, and 32.

Listing all of the terms for a sequence can be cumbersome. For example, finding the number of hits on the website at the
end of the month would require listing out as many as 31 terms. A more efficient way to determine a specific term is by
writing a formula to define the sequence.

One type of formula is an explicit formula, which defines the terms of a sequence using their position in the sequence.
Explicit formulas are helpful if we want to find a specific term of a sequence without finding all of the previous terms. We
can use the formula to find the nth term of the sequence, where n is any positive number. In our example, each number in
the sequence is double the previous number, so we can use powers of 2 to write a formula for the nth term.

The first term of the sequence is  21 = 2,   the second term is  22 = 4,   the third term is  23 = 8,   and so on. The nth term
of the sequence can be found by raising 2 to the nth power. An explicit formula for a sequence is named by a lower case
letter a, b, c... with the subscript n. The explicit formula for this sequence is
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an = 2n.

Now that we have a formula for the nth term of the sequence, we can answer the question posed at the beginning of this
section. We were asked to find the number of hits at the end of the month, which we will take to be 31 days. To find the
number of hits on the last day of the month, we need to find the 31st term of the sequence. We will substitute 31 for n in
the formula.

a31 = 231

      = 2,147,483,648

If the doubling trend continues, the company will get 2,147,483,648 hits on the last day of the month. That is over 2.1
billion hits! The huge number is probably a little unrealistic because it does not take consumer interest and competition into
account. It does, however, give the company a starting point from which to consider business decisions.

Another way to represent the sequence is by using a table. The first five terms of the sequence and the nth term of the
sequence are shown in Table 13.2.

n 1 2 3 4 5 n

nth term of the sequence, an 2 4 8 16 32 2n

Table 13.2

Graphing provides a visual representation of the sequence as a set of distinct points. We can see from the graph in Figure
13.2 that the number of hits is rising at an exponential rate. This particular sequence forms an exponential function.

Figure 13.2

Lastly, we can write this particular sequence as

 ⎧⎩⎨2, 4, 8, 16, 32, … , 2n, … ⎫

⎭
⎬.

A sequence that continues indefinitely is called an infinite sequence. The domain of an infinite sequence is the set of
counting numbers. If we consider only the first 10 terms of the sequence, we could write

 ⎧⎩⎨2, 4, 8, 16, 32, … , 2n, … , 1024⎫

⎭
⎬.

This sequence is called a finite sequence because it does not continue indefinitely.
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Sequence

A sequence is a function whose domain is the set of positive integers. A finite sequence is a sequence whose domain
consists of only the first n positive integers. The numbers in a sequence are called terms. The variable a with a
number subscript is used to represent the terms in a sequence and to indicate the position of the term in the sequence.

a1, a2, a3, … , an, …

We call a1 the first term of the sequence, a2 the second term of the sequence, a3 the third term of the sequence, and

so on. The term an is called the nth term of the sequence, or the general term of the sequence. An explicit formula
defines the nth term of a sequence using the position of the term. A sequence that continues indefinitely is an infinite
sequence.

Does a sequence always have to begin with  a1?

No. In certain problems, it may be useful to define the initial term as a0 instead of  a1.  In these problems, the

domain of the function includes 0.

Given an explicit formula, write the first  n  terms of a sequence.

1. Substitute each value of n into the formula. Begin with n = 1 to find the first term, a1.

2. To find the second term, a2, use n = 2.

3. Continue in the same manner until you have identified all n terms.

Example 13.1

Writing the Terms of a Sequence Defined by an Explicit Formula

Write the first five terms of the sequence defined by the explicit formula an = − 3n + 8.

Solution
Substitute n = 1 into the formula. Repeat with values 2 through 5 for n.

n = 1 a1 = − 3(1) + 8 = 5
n = 2 a2 = − 3(2) + 8 = 2
n = 3 a3 = − 3(3) + 8 = − 1
n = 4 a4 = − 3(4) + 8 = − 4
n = 5 a5 = − 3(5) + 8 = − 7

The first five terms are  {5,  2,  −1,  −4,  −7}.

Analysis
The sequence values can be listed in a table. A table, such as Table 13.2, is a convenient way to input the function
into a graphing utility.
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13.1

n 1 2 3 4 5

an 5 2 –1 –4 –7

Table 13.2

A graph can be made from this table of values. From the graph in Figure 13.3, we can see that this sequence
represents a linear function, but notice the graph is not continuous because the domain is over the positive integers
only.

Figure 13.3

Write the first five terms of the sequence defined by the explicit formula  tn = 5n − 4.

Investigating Alternating Sequences
Sometimes sequences have terms that are alternate. In fact, the terms may actually alternate in sign. The steps to finding
terms of the sequence are the same as if the signs did not alternate. However, the resulting terms will not show increase or
decrease as n increases. Let’s take a look at the following sequence.

{2, −4, 6, −8}

Notice the first term is greater than the second term, the second term is less than the third term, and the third term is greater
than the fourth term. This trend continues forever. Do not rearrange the terms in numerical order to interpret the sequence.
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Given an explicit formula with alternating terms, write the first n terms of a sequence.

1. Substitute each value of n into the formula. Begin with n = 1 to find the first term, a1. The sign of the

term is given by the (−1)n in the explicit formula.

2. To find the second term,  a2,   use  n = 2.

3. Continue in the same manner until you have identified all n terms.

Example 13.2

Writing the Terms of an Alternating Sequence Defined by an Explicit Formula

Write the first five terms of the sequence.

an = ( − 1)n n2

n + 1

Solution
Substitute n = 1, n = 2, and so on in the formula.

n = 1 a1 = ( − 1)1 22

1 + 1 = − 1
2

n = 2 a2 = ( − 1)2 22

2 + 1 = 4
3

n = 3 a3 = ( − 1)3 32

3 + 1 = − 9
4

n = 4 a4 = ( − 1)4 42

4 + 1 = 16
5

n = 5 a5 = ( − 1)5 52

5 + 1 = − 25
6

The first five terms are
⎧

⎩
⎨−1

2, 4
3,−9

4, 16
5 ,−25

6
⎫

⎭
⎬.

Analysis
The graph of this function, shown in Figure 13.4, looks different from the ones we have seen previously in this
section because the terms of the sequence alternate between positive and negative values.
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13.2

Figure 13.4

In Example 13.2, does the (–1) to the power of n account for the oscillations of signs?

Yes, the power might be n, n + 1, n − 1,   and so on, but any odd powers will result in a negative term, and any
even power will result in a positive term.

Write the first five terms of the sequence:

an = 4n
( − 2)n

Investigating Piecewise Explicit Formulas
We’ve learned that sequences are functions whose domain is over the positive integers. This is true for other types
of functions, including some piecewise functions. Recall that a piecewise function is a function defined by multiple
subsections. A different formula might represent each individual subsection.

Given an explicit formula for a piecewise function, write the first  n  terms of a sequence

1. Identify the formula to which n = 1 applies.

2. To find the first term,  a1,   use  n = 1  in the appropriate formula.

3. Identify the formula to which  n = 2  applies.

4. To find the second term,  a2,   use  n = 2  in the appropriate formula.

5. Continue in the same manner until you have identified all  n  terms.

Example 13.3

Writing the Terms of a Sequence Defined by a Piecewise Explicit Formula
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13.3

Write the first six terms of the sequence.

an =
⎧

⎩
⎨

n2 if n is not divisible by 3
n
3 if n is divisible by 3

Solution

Substitute  n = 1, n = 2,   and so on in the appropriate formula. Use n2 when n is not a multiple of 3. Use n
3

when n is a multiple of 3.

a1 = 12 = 1 1 is not a multiple of 3.  Use n2.

a2 = 22 = 4 2 is not a multiple of 3.  Use n2.

a3 = 3
3 = 1 3 is a multiple of 3.  Use n3.

a4 = 42 = 16 4 is not a multiple of 3.  Use n2.

a5 = 52 = 25 5 is not a multiple of 3.  Use n2.

a6 = 6
3 = 2 6 is a multiple of 3.  Use n3.

The first six terms are {1,  4,  1,  16,  25,  2}.

Analysis
Every third point on the graph shown in Figure 13.5 stands out from the two nearby points. This occurs because
the sequence was defined by a piecewise function.

Figure 13.5

Write the first six terms of the sequence.

an =
⎧

⎩
⎨

2n3 if n is odd
5n
2 if n is even

Finding an Explicit Formula
Thus far, we have been given the explicit formula and asked to find a number of terms of the sequence. Sometimes, the
explicit formula for the  nth  term of a sequence is not given. Instead, we are given several terms from the sequence. When
this happens, we can work in reverse to find an explicit formula from the first few terms of a sequence. The key to finding an
explicit formula is to look for a pattern in the terms. Keep in mind that the pattern may involve alternating terms, formulas
for numerators, formulas for denominators, exponents, or bases.
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13.4

13.5

Given the first few terms of a sequence, find an explicit formula for the sequence.

1. Look for a pattern among the terms.

2. If the terms are fractions, look for a separate pattern among the numerators and denominators.

3. Look for a pattern among the signs of the terms.

4. Write a formula for an in terms of n. Test your formula for n = 1,  n = 2, and n = 3.

Example 13.4

Writing an Explicit Formula for the nth Term of a Sequence

Write an explicit formula for the nth term of each sequence.

a.
⎧

⎩
⎨− 2

11, 3
13, − 4

15, 5
17, − 6

19, …
⎫

⎭
⎬

b.
⎧

⎩
⎨ − 2

25, − 2
125, − 2

625, − 2
3,125, − 2

15,625, …
⎫

⎭
⎬

c.
⎧

⎩
⎨e4 ,e5 ,e6 ,e7 ,e8 , … ⎫

⎭
⎬

Solution
Look for the pattern in each sequence.

a. The terms alternate between positive and negative. We can use  ( − 1)n   to make the terms alternate. The
numerator can be represented by n + 1. The denominator can be represented by 2n + 9.

an = ( − 1)n(n + 1)
2n + 9

b. The terms are all negative.

So we know that the fraction is negative, the numerator is 2, and the denominator can be represented by
5n + 1.

an = − 2
5n + 1

c. The terms are powers of e. For n = 1, the first term is e4 so the exponent must be n + 3.

an = en + 3

Write an explicit formula for the nth term of the sequence.

{9, − 81, 729, − 6,561, 59,049, …}

Write an explicit formula for the  nth  term of the sequence.
⎧

⎩
⎨−3

4, − 9
8, − 27

12, − 81
16, − 243

20 , ...
⎫

⎭
⎬
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13.6 Write an explicit formula for the  nth  term of the sequence.

⎧

⎩
⎨ 1

e2,  1
e ,  1,  e,  e2, ...

⎫

⎭
⎬

Writing the Terms of a Sequence Defined by a Recursive Formula
Sequences occur naturally in the growth patterns of nautilus shells, pinecones, tree branches, and many other natural
structures. We may see the sequence in the leaf or branch arrangement, the number of petals of a flower, or the pattern of
the chambers in a nautilus shell. Their growth follows the Fibonacci sequence, a famous sequence in which each term can
be found by adding the preceding two terms. The numbers in the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34,…. Other examples
from the natural world that exhibit the Fibonacci sequence are the Calla Lily, which has just one petal, the Black-Eyed
Susan with 13 petals, and different varieties of daisies that may have 21 or 34 petals.

Each term of the Fibonacci sequence depends on the terms that come before it. The Fibonacci sequence cannot easily be
written using an explicit formula. Instead, we describe the sequence using a recursive formula, a formula that defines the
terms of a sequence using previous terms.

A recursive formula always has two parts: the value of an initial term (or terms), and an equation defining an in terms of
preceding terms. For example, suppose we know the following:

a1 = 3
an = 2an − 1 − 1,  for  n ≥ 2

We can find the subsequent terms of the sequence using the first term.
a1 = 3
a2 = 2a1 − 1 = 2(3) − 1 = 5
a3 = 2a2 − 1 = 2(5) − 1 = 9
a4 = 2a3 − 1 = 2(9) − 1 = 17

So the first four terms of the sequence are {3,  5,  9,  17} .

The recursive formula for the Fibonacci sequence states the first two terms and defines each successive term as the sum of
the preceding two terms.

a1 = 1
a2 = 1
an = an − 1 + an − 2,  for   n ≥ 3

To find the tenth term of the sequence, for example, we would need to add the eighth and ninth terms. We were told
previously that the eighth and ninth terms are 21 and 34, so

a10 = a9 + a8 = 34 + 21 = 55

Recursive Formula

A recursive formula is a formula that defines each term of a sequence using preceding term(s). Recursive formulas
must always state the initial term, or terms, of the sequence.

Must the first two terms always be given in a recursive formula?

No. The Fibonacci sequence defines each term using the two preceding terms, but many recursive formulas define
each term using only one preceding term. These sequences need only the first term to be defined.
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13.7

Given a recursive formula with only the first term provided, write the first n terms of a sequence.

1. Identify the initial term,  a1, which is given as part of the formula. This is the first term.

2. To find the second term,  a2, substitute the initial term into the formula for an − 1. Solve.

3. To find the third term,  a3, substitute the second term into the formula. Solve.

4. Repeat until you have solved for the nth term.

Example 13.5

Writing the Terms of a Sequence Defined by a Recursive Formula

Write the first five terms of the sequence defined by the recursive formula.

a1 = 9

an = 3an − 1 − 20, for n ≥ 2

Solution
The first term is given in the formula. For each subsequent term, we replace an − 1 with the value of the

preceding term.

n = 1 a1 = 9
n = 2 a2 = 3a1 − 20 = 3(9) − 20 = 27 − 20 = 7
n = 3 a3 = 3a2 − 20 = 3(7) − 20 = 21 − 20 = 1
n = 4 a4 = 3a3 − 20 = 3(1) − 20 = 3 − 20 = − 17
n = 5 a5 = 3a4 − 20 = 3( − 17) − 20 = − 51 − 20 = − 71

The first five terms are {9,  7,  1,  – 17,  – 71}. See Figure 13.6.

Figure 13.6

Write the first five terms of the sequence defined by the recursive formula.
a1 = 2
an = 2an − 1 + 1, for n ≥ 2
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13.8

Given a recursive formula with two initial terms, write the first n terms of a sequence.

1. Identify the initial term,  a1,  which is given as part of the formula.

2. Identify the second term,  a2,  which is given as part of the formula.

3. To find the third term, substitute the initial term and the second term into the formula. Evaluate.

4. Repeat until you have evaluated the nth term.

Example 13.6

Writing the Terms of a Sequence Defined by a Recursive Formula

Write the first six terms of the sequence defined by the recursive formula.
a1 = 1
a2 = 2
an = 3an − 1 + 4an − 2 , for n ≥ 3

Solution
The first two terms are given. For each subsequent term, we replace an − 1 and an − 2 with the values of the two

preceding terms.

n = 3 a3 = 3a2 + 4a1 = 3(2) + 4(1) = 10
n = 4 a4 = 3a3 + 4a2 = 3(10) + 4(2) = 38
n = 5 a5 = 3a4 + 4a3 = 3(38) + 4(10) = 154
n = 6 a6 = 3a5 + 4a4 = 3(154) + 4(38) = 614

The first six terms are  {1,2,10,38,154,614}. See Figure 13.7.

Figure 13.7

Write the first 8 terms of the sequence defined by the recursive formula.

a1 = 0

a2 = 1
a3 = 1

an = an − 1
an − 2

+ an − 3 , for n ≥ 4
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Using Factorial Notation
The formulas for some sequences include products of consecutive positive integers. n factorial, written as n !, is the
product of the positive integers from 1 to n. For example,

4! = 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24
5! = 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120

An example of formula containing a factorial is an = (n + 1)!. The sixth term of the sequence can be found by substituting
6 for n.

a6 = (6 + 1)! = 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040

The factorial of any whole number n is n(n − 1)! We can therefore also think of 5! as  5 ⋅ 4!.

Factorial

n factorial is a mathematical operation that can be defined using a recursive formula. The factorial of  n,   denoted
 n !,   is defined for a positive integer n as:

(13.1)0! = 1
1! = 1
n ! = n(n − 1)(n − 2) ⋯ (2)(1), for n ≥ 2

The special case 0! is defined as 0! = 1.

Can factorials always be found using a calculator?

No. Factorials get large very quickly—faster than even exponential functions! When the output gets too large for
the calculator, it will not be able to calculate the factorial.

Example 13.7

Writing the Terms of a Sequence Using Factorials

Write the first five terms of the sequence defined by the explicit formula an = 5n
(n + 2)!.

Solution
Substitute  n = 1, n = 2,   and so on in the formula.

n = 1 a1 = 5(1)
(1 + 2)! = 5

3! = 5
3 · 2 · 1 = 5

6

n = 2 a2 = 5(2)
(2 + 2)! = 10

4! = 10
4 · 3 · 2 · 1 = 5

12

n = 3 a3 = 5(3)
(3 + 2)! = 15

5! = 15
5 · 4 · 3 · 2 · 1 = 1

8

n = 4 a4 = 5(4)
(4 + 2)! = 20

6! = 20
6 · 5 · 4 · 3 · 2 · 1 = 1

36

n = 5 a5 = 5(5)
(5 + 2)! = 25

7! = 25
7 · 6 · 5 · 4 · 3 · 2 · 1 = 5

1,008
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13.9

The first five terms are
⎧

⎩
⎨5
6, 5

12, 1
8, 1

36, 5
1,008

⎫

⎭
⎬.

Analysis
Figure 13.8 shows the graph of the sequence. Notice that, since factorials grow very quickly, the presence of
the factorial term in the denominator results in the denominator becoming much larger than the numerator as n
increases. This means the quotient gets smaller and, as the plot of the terms shows, the terms are decreasing and
nearing zero.

Figure 13.8

Write the first five terms of the sequence defined by the explicit formula an = (n + 1)!
2n .

Access this online resource for additional instruction and practice with sequences.

• Finding Terms in a Sequence (http://openstaxcollege.org/l/findingterms)
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1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

13.1 EXERCISES
Verbal

Discuss the meaning of a sequence. If a finite sequence
is defined by a formula, what is its domain? What about an
infinite sequence?

Describe three ways that a sequence can be defined.

Is the ordered set of even numbers an infinite sequence?
What about the ordered set of odd numbers? Explain why
or why not.

What happens to the terms an of a sequence when there
is a negative factor in the formula that is raised to a power
that includes n? What is the term used to describe this
phenomenon?

What is a factorial, and how is it denoted? Use an
example to illustrate how factorial notation can be
beneficial.

Algebraic
For the following exercises, write the first four terms of the
sequence.

an = 2n − 2

an = − 16
n + 1

an = − (−5)n − 1

an = 2n

n3

an = 2n + 1
n3

an = 1.25 ⋅ (−4)n − 1

an = − 4 ⋅ (−6)n − 1

an = n2

2n + 1

an = (−10)n + 1

an = −
⎛

⎝
⎜ 4 ⋅ ( − 5)n − 1

5
⎞

⎠
⎟

For the following exercises, write the first eight terms of the
piecewise sequence.

an =
⎧

⎩
⎨

( − 2)n − 2 if n is even
(3)n − 1 if n is odd

an =
⎧

⎩
⎨

n2

2n + 1 if n ≤ 5

n2 − 5 if n >5

an =
⎧

⎩
⎨

(2n + 1)2 if n is divisible by 4
2
n if n is not divisible by 4

an =
⎧

⎩
⎨−0.6 ⋅ 5n − 1 if n is prime or 1

2.5 ⋅ ( − 2)n − 1 if n is composite

an =
⎧

⎩
⎨

4(n2 − 2) if n ≤ 3 or n > 6
n2 − 2

4 if 3 < n ≤ 6

For the following exercises, write an explicit formula for
each sequence.

4,  7,  12,  19,  28, …

−4, 2, − 10, 14, − 34, …

1, 1, 4
3, 2, 16

5 , …

0, 1 − e1

1 + e2, 1 − e2

1 + e3, 1 − e3

1 + e4, 1 − e4

1 + e5, …

1, − 1
2, 1

4, − 1
8, 1

16, …

For the following exercises, write the first five terms of the
sequence.

a1 = 9,  an = an − 1 + n

a1 = 3,  an = (−3)an − 1

a1 = − 4,  an = an − 1 + 2n
an − 1 − 1

a1 = − 1,  an = (−3)n − 1

an − 1 − 2

a1 = − 30,  an = ⎛
⎝2 + an − 1

⎞
⎠
⎛
⎝
1
2

⎞
⎠
n

For the following exercises, write the first eight terms of the
sequence.
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

a1 = 1
24,  a2 = 1,  an = ⎛

⎝2an − 2
⎞
⎠
⎛
⎝3an − 1

⎞
⎠

a1 = − 1,  a2 = 5,  an = an − 2
⎛
⎝3 − an − 1

⎞
⎠

a1 = 2,  a2 = 10,  an = 2⎛
⎝an − 1 + 2⎞

⎠
an − 2

For the following exercises, write a recursive formula for
each sequence.

−2.5, − 5, − 10, − 20, − 40, …

−8, − 6, − 3, 1, 6, …

2,  4,  12,  48,  240,  …

35,  38,  41,  44,  47,  …

15, 3, 3
5, 3

25, 3
125, ⋯

For the following exercises, evaluate the factorial.

6!

⎛
⎝
12
6

⎞
⎠!

12!
6!

100!
99!

For the following exercises, write the first four terms of the
sequence.

an = n !
n2

an = 3 ⋅ n !
4 ⋅ n !

an = n !
n2 − n − 1

an = 100 ⋅ n
n(n − 1)!

Graphical
For the following exercises, graph the first five terms of the
indicated sequence

an = (−1)n
n + n

an =
⎧

⎩
⎨

4 + n
2n if n is even

3 + n if n is odd

a1 = 2,  an = ⎛
⎝−an − 1 + 1⎞

⎠
2

an = 1,  an = an − 1 + 8

an = (n + 1)!
(n − 1)!

For the following exercises, write an explicit formula for
the sequence using the first five points shown on the graph.

For the following exercises, write a recursive formula for
the sequence using the first five points shown on the graph.
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55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Technology
Follow these steps to evaluate a sequence defined
recursively using a graphing calculator:

• On the home screen, key in the value for the initial
term  a1   and press [ENTER].

• Enter the recursive formula by keying in all
numerical values given in the formula, along with
the key strokes [2ND] ANS for the previous term
 an − 1.  Press [ENTER].

• Continue pressing [ENTER] to calculate the values
for each successive term.

For the following exercises, use the steps above to find the
indicated term or terms for the sequence.

Find the first five terms of the sequence
a1 = 87

111,  an = 4
3an − 1 + 12

37. Use the >Frac feature to

give fractional results.

Find the 15th term of the sequence
 a1 = 625,  an = 0.8an − 1 + 18.

Find the first five terms of the sequence

 a1 = 2,  an = 2[(an − 1) − 1] + 1.

Find the first ten terms of the sequence

a1 = 8,  an =
⎛
⎝an − 1 + 1⎞

⎠!
an − 1 ! .

Find the tenth term of the sequence
a1 = 2,  an = nan − 1

Follow these steps to evaluate a finite sequence defined by
an explicit formula. Using a TI-84, do the following.

• In the home screen, press [2ND] LIST.

• Scroll over to OPS and choose “seq(” from the
dropdown list. Press [ENTER].

• In the line headed “Expr:” type in the explicit
formula, using the  [X,T, θ, n]  button for  n

• In the line headed “Variable:” type in the variable
used on the previous step.

• In the line headed “start:” key in the value of  n 
that begins the sequence.

• In the line headed “end:” key in the value of  n  that
ends the sequence.

• Press [ENTER] 3 times to return to the home
screen. You will see the sequence syntax on the
screen. Press [ENTER] to see the list of terms for
the finite sequence defined. Use the right arrow key
to scroll through the list of terms.

Using a TI-83, do the following.

• In the home screen, press [2ND] LIST.

• Scroll over to OPS and choose “seq(” from the
dropdown list. Press [ENTER].

• Enter the items in the order “Expr”, “Variable”,
“start”, “end” separated by commas. See the
instructions above for the description of each item.

• Press [ENTER] to see the list of terms for the finite
sequence defined. Use the right arrow key to scroll
through the list of terms.

For the following exercises, use the steps above to find
the indicated terms for the sequence. Round to the nearest
thousandth when necessary.

List the first five terms of the sequence
an = − 28

9 n + 5
3.

List the first six terms of the sequence

 an = n3 − 3.5n2 +  4.1n − 1.5
2.4n .
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65.

66.

67.

68.

69.

70.

71.

List the first five terms of the sequence

an = 15n ⋅ (−2)n − 1

47

List the first four terms of the sequence
an = 5.7n + 0.275(n − 1)!

List the first six terms of the sequence an = n !
n .

Extensions

Consider the sequence defined by an = − 6 − 8n. Is
an = − 421 a term in the sequence? Verify the result.

What term in the sequence an = n2 + 4n + 4
2(n + 2) has the

value 41? Verify the result.

Find a recursive formula for the sequence
1,  0,  − 1,  − 1,  0,  1,  1,  0,  − 1,  − 1,  0,  1,  1,  ... .
(Hint: find a pattern for  an   based on the first two terms.)

Calculate the first eight terms of the sequences

an = (n + 2)!
(n − 1)! and bn = n3 + 3n2 + 2n, and then make

a conjecture about the relationship between these two
sequences.

Prove the conjecture made in the preceding exercise.
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13.2 | Arithmetic Sequences

Learning Objectives

In this section, you will:

13.2.1 Find the common difference for an arithmetic sequence.
13.2.2 Write terms of an arithmetic sequence.
13.2.3 Use a recursive formula for an arithmetic sequence.
13.2.4 Use an explicit formula for an arithmetic sequence.

Companies often make large purchases, such as computers and vehicles, for business use. The book-value of these supplies
decreases each year for tax purposes. This decrease in value is called depreciation. One method of calculating depreciation
is straight-line depreciation, in which the value of the asset decreases by the same amount each year.

As an example, consider a woman who starts a small contracting business. She purchases a new truck for $25,000. After five
years, she estimates that she will be able to sell the truck for $8,000. The loss in value of the truck will therefore be $17,000,
which is $3,400 per year for five years. The truck will be worth $21,600 after the first year; $18,200 after two years; $14,800
after three years; $11,400 after four years; and $8,000 at the end of five years. In this section, we will consider specific
kinds of sequences that will allow us to calculate depreciation, such as the truck’s value.

Finding Common Differences
The values of the truck in the example are said to form an arithmetic sequence because they change by a constant amount
each year. Each term increases or decreases by the same constant value called the common difference of the sequence. For
this sequence, the common difference is –3,400.

The sequence below is another example of an arithmetic sequence. In this case, the constant difference is 3. You can choose
any term of the sequence, and add 3 to find the subsequent term.

Arithmetic Sequence

An arithmetic sequence is a sequence that has the property that the difference between any two consecutive terms is
a constant. This constant is called the common difference. If a1 is the first term of an arithmetic sequence and d is

the common difference, the sequence will be:
⎧

⎩
⎨an

⎫

⎭
⎬ = ⎧

⎩
⎨a1, a1 + d, a1 + 2d, a1 + 3d, ...⎫

⎭
⎬

Example 13.8

Finding Common Differences

Is each sequence arithmetic? If so, find the common difference.

a. {1, 2, 4, 8, 16, ...}

b. { − 3, 1, 5, 9, 13, ...}
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13.10

13.11

Solution
Subtract each term from the subsequent term to determine whether a common difference exists.

a. The sequence is not arithmetic because there is no common difference.

b. The sequence is arithmetic because there is a common difference. The common difference is 4.

Analysis
The graph of each of these sequences is shown in Figure 13.9. We can see from the graphs that, although both
sequences show growth, a is not linear whereas b is linear. Arithmetic sequences have a constant rate of change
so their graphs will always be points on a line.

Figure 13.9

If we are told that a sequence is arithmetic, do we have to subtract every term from the following term to
find the common difference?

No. If we know that the sequence is arithmetic, we can choose any one term in the sequence, and subtract it from
the subsequent term to find the common difference.

Is the given sequence arithmetic? If so, find the common difference.

{18,  16,  14,  12,  10, … }

Is the given sequence arithmetic? If so, find the common difference.

{1,  3,  6,  10,  15, … }

Writing Terms of Arithmetic Sequences
Now that we can recognize an arithmetic sequence, we will find the terms if we are given the first term and the common
difference. The terms can be found by beginning with the first term and adding the common difference repeatedly. In
addition, any term can also be found by plugging in the values of n and d into formula below.

an = a1 + (n − 1)d
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Given the first term and the common difference of an arithmetic sequence, find the first several terms.

1. Add the common difference to the first term to find the second term.

2. Add the common difference to the second term to find the third term.

3. Continue until all of the desired terms are identified.

4. Write the terms separated by commas within brackets.

Example 13.9

Writing Terms of Arithmetic Sequences

Write the first five terms of the arithmetic sequence with a1 = 17 and d = − 3 .

Solution
Adding  − 3  is the same as subtracting 3. Beginning with the first term, subtract 3 from each term to find the next
term.

The first five terms are  {17,  14,  11,  8,  5}

Analysis
As expected, the graph of the sequence consists of points on a line as shown in Figure 13.10.

Figure 13.10

List the first five terms of the arithmetic sequence with a1 = 1 and d = 5 .

Given any the first term and any other term in an arithmetic sequence, find a given term.

1. Substitute the values given for a1, an, n into the formula  an = a1 + (n − 1)d  to solve for  d.

2. Find a given term by substituting the appropriate values for  a1, n,   and  d  into the formula

an = a1 + (n − 1)d.

Example 13.10

Writing Terms of Arithmetic Sequences
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Given a1 = 8 and a4 = 14 , find a5 .

Solution
The sequence can be written in terms of the initial term 8 and the common difference d .

{8, 8 + d, 8 + 2d, 8 + 3d}

We know the fourth term equals 14; we know the fourth term has the form a1 + 3d = 8 + 3d .

We can find the common difference d .

an = a1 + (n − 1)d
a4 = a1 + 3d
a4 = 8 + 3d Write the fourth term of the sequence in terms of  a1  and  d.
14 = 8 + 3d Substitute  14  for  a4.
  d = 2 Solve for the common diffe ence .

Find the fifth term by adding the common difference to the fourth term.

a5 = a4 + 2 = 16

Analysis
Notice that the common difference is added to the first term once to find the second term, twice to find the
third term, three times to find the fourth term, and so on. The tenth term could be found by adding the common
difference to the first term nine times or by using the equation an = a1 + (n − 1)d.

Given a3 = 7 and a5 = 17 , find a2 .

Using Recursive Formulas for Arithmetic Sequences
Some arithmetic sequences are defined in terms of the previous term using a recursive formula. The formula provides an
algebraic rule for determining the terms of the sequence. A recursive formula allows us to find any term of an arithmetic
sequence using a function of the preceding term. Each term is the sum of the previous term and the common difference. For
example, if the common difference is 5, then each term is the previous term plus 5. As with any recursive formula, the first
term must be given.

an = an − 1 + d n ≥ 2

Recursive Formula for an Arithmetic Sequence

The recursive formula for an arithmetic sequence with common difference d is:

(13.2)an = an − 1 + d n ≥ 2

Given an arithmetic sequence, write its recursive formula.

1. Subtract any term from the subsequent term to find the common difference.

2. State the initial term and substitute the common difference into the recursive formula for arithmetic
sequences.

1466 Chapter 13 Sequences, Probability, and Counting Theory

This content is available for free at https://cnx.org/content/col11758/1.5



13.14

Example 13.11

Writing a Recursive Formula for an Arithmetic Sequence

Write a recursive formula for the arithmetic sequence.

{ − 18, − 7, 4, 15, 26, …}

Solution
The first term is given as −18 . The common difference can be found by subtracting the first term from the second
term.

d = −7 − (−18) = 11

Substitute the initial term and the common difference into the recursive formula for arithmetic sequences.

a1 = − 18
an = an − 1 + 11,  for n ≥ 2

Analysis
We see that the common difference is the slope of the line formed when we graph the terms of the sequence, as
shown in Figure 13.11. The growth pattern of the sequence shows the constant difference of 11 units.

Figure 13.11

Do we have to subtract the first term from the second term to find the common difference?

No. We can subtract any term in the sequence from the subsequent term. It is, however, most common to subtract
the first term from the second term because it is often the easiest method of finding the common difference.

Write a recursive formula for the arithmetic sequence.

{25,  37,  49,  61,  …}

Using Explicit Formulas for Arithmetic Sequences
We can think of an arithmetic sequence as a function on the domain of the natural numbers; it is a linear function because
it has a constant rate of change. The common difference is the constant rate of change, or the slope of the function. We can
construct the linear function if we know the slope and the vertical intercept.

an = a1 + d(n − 1)

To find the y-intercept of the function, we can subtract the common difference from the first term of the sequence. Consider
the following sequence.
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The common difference is −50 , so the sequence represents a linear function with a slope of −50 . To find the y -

intercept, we subtract −50 from 200 :  200 − ( − 50) = 200 + 50 = 250 . You can also find the y -intercept by graphing

the function and determining where a line that connects the points would intersect the vertical axis. The graph is shown in
Figure 13.12.

Figure 13.12

Recall the slope-intercept form of a line is  y = mx + b. When dealing with sequences, we use an in place of y and n in

place of x.  If we know the slope and vertical intercept of the function, we can substitute them for m and b in the slope-
intercept form of a line. Substituting  − 50  for the slope and 250 for the vertical intercept, we get the following equation:

an = − 50n + 250

We do not need to find the vertical intercept to write an explicit formula for an arithmetic sequence. Another explicit formula
for this sequence is an = 200 − 50(n − 1) , which simplifies to  an = − 50n + 250.

Explicit Formula for an Arithmetic Sequence

An explicit formula for the nth term of an arithmetic sequence is given by

(13.3)an = a1 + d(n − 1)

Given the first several terms for an arithmetic sequence, write an explicit formula.

1. Find the common difference, a2 − a1.

2. Substitute the common difference and the first term into an = a1 + d(n − 1).

Example 13.12

Writing the nth Term Explicit Formula for an Arithmetic Sequence

Write an explicit formula for the arithmetic sequence.

{2, 12, 22, 32, 42, …}

Solution
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The common difference can be found by subtracting the first term from the second term.

d = a2 − a1
= 12 − 2
= 10

The common difference is 10. Substitute the common difference and the first term of the sequence into the
formula and simplify.

an = 2 + 10(n − 1)
an = 10n − 8

Analysis
The graph of this sequence, represented in Figure 13.13, shows a slope of 10 and a vertical intercept of −8 .

Figure 13.13

Write an explicit formula for the following arithmetic sequence.

{50, 47, 44, 41, … }

Finding the Number of Terms in a Finite Arithmetic Sequence
Explicit formulas can be used to determine the number of terms in a finite arithmetic sequence. We need to find the common
difference, and then determine how many times the common difference must be added to the first term to obtain the final
term of the sequence.

Given the first three terms and the last term of a finite arithmetic sequence, find the total number of terms.

1. Find the common difference d.

2. Substitute the common difference and the first term into an = a1 + d(n – 1).

3. Substitute the last term for an and solve for n.

Example 13.13

Finding the Number of Terms in a Finite Arithmetic Sequence

Find the number of terms in the finite arithmetic sequence.

{8, 1, –6, ..., –41}
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Solution
The common difference can be found by subtracting the first term from the second term.

1 − 8 = − 7

The common difference is −7 . Substitute the common difference and the initial term of the sequence into the
nth term formula and simplify.

an = a1 + d(n − 1)
an = 8 + − 7(n − 1)
an = 15 − 7n

Substitute −41 for an and solve for n

−41 = 15 − 7n
  8 = n

There are eight terms in the sequence.

Find the number of terms in the finite arithmetic sequence.

{6, 11, 16, ..., 56}

Solving Application Problems with Arithmetic Sequences
In many application problems, it often makes sense to use an initial term of a0 instead of a1. In these problems, we alter

the explicit formula slightly to account for the difference in initial terms. We use the following formula:

an = a0 + dn

Example 13.14

Solving Application Problems with Arithmetic Sequences

A five-year old child receives an allowance of $1 each week. His parents promise him an annual increase of $2
per week.

a. Write a formula for the child’s weekly allowance in a given year.

b. What will the child’s allowance be when he is 16 years old?

Solution
a. The situation can be modeled by an arithmetic sequence with an initial term of 1 and a common difference

of 2.

Let A be the amount of the allowance and n be the number of years after age 5. Using the altered explicit
formula for an arithmetic sequence we get:

An = 1 + 2n
b. We can find the number of years since age 5 by subtracting.

16 − 5 = 11
We are looking for the child’s allowance after 11 years. Substitute 11 into the formula to find the child’s
allowance at age 16.
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A11 = 1 + 2(11) = 23
The child’s allowance at age 16 will be $23 per week.

A woman decides to go for a 10-minute run every day this week and plans to increase the time of her
daily run by 4 minutes each week. Write a formula for the time of her run after n weeks. How long will her daily
run be 8 weeks from today?

Access this online resource for additional instruction and practice with arithmetic sequences.

• Arithmetic Sequences (http://openstaxcollege.org/l/arithmeticseq)
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13.2 EXERCISES
Verbal

What is an arithmetic sequence?

How is the common difference of an arithmetic
sequence found?

How do we determine whether a sequence is
arithmetic?

What are the main differences between using a
recursive formula and using an explicit formula to describe
an arithmetic sequence?

Describe how linear functions and arithmetic
sequences are similar. How are they different?

Algebraic
For the following exercises, find the common difference for
the arithmetic sequence provided.

{5, 11, 17, 23, 29, ...}

⎧

⎩
⎨0, 1

2, 1, 3
2, 2, ...

⎫

⎭
⎬

For the following exercises, determine whether the
sequence is arithmetic. If so find the common difference.

{11.4, 9.3, 7.2, 5.1, 3, ...}

{4, 16, 64, 256, 1024, ...}

For the following exercises, write the first five terms of
the arithmetic sequence given the first term and common
difference.

a1 = −25 , d = −9

a1 = 0 , d = 2
3

For the following exercises, write the first five terms of the
arithmetic series given two terms.

a1 = 17,  a7 = − 31

a13 = − 60,  a33 = − 160

For the following exercises, find the specified term for
the arithmetic sequence given the first term and common
difference.

First term is 3, common difference is 4, find the 5th

term.

First term is 4, common difference is 5, find the 4th term.

First term is 5, common difference is 6, find the 8th

term.

First term is 6, common difference is 7, find the 6th

term.

First term is 7, common difference is 8, find the 7th

term.

For the following exercises, find the first term given two
terms from an arithmetic sequence.

Find the first term or a1 of an arithmetic sequence if

a6 = 12 and a14 = 28.

Find the first term or a1 of an arithmetic sequence if

a7 = 21 and a15 = 42.

Find the first term or a1 of an arithmetic sequence if

a8 = 40 and a23 = 115.

Find the first term or a1 of an arithmetic sequence if

a9 = 54 and a17 = 102.

Find the first term or a1 of an arithmetic sequence if

a11 = 11 and a21 = 16.

For the following exercises, find the specified term given
two terms from an arithmetic sequence.

a1 = 33  and  a7 = − 15. Find  a4.

a3 = − 17.1  and  a10 = − 15.7. Find a21.

For the following exercises, use the recursive formula to
write the first five terms of the arithmetic sequence.

a1 = 39;  an = an − 1 − 3

a1 = − 19;  an = an − 1 − 1.4

For the following exercises, write a recursive formula for
each arithmetic sequence.

an = {40, 60, 80, ...}

an = ⎧

⎩
⎨17, 26, 35, ...⎫

⎭
⎬

an = ⎧

⎩
⎨ − 1, 2, 5, ...⎫

⎭
⎬
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109.

110.

111.
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116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

an = {12, 17, 22, ...}

an = ⎧

⎩
⎨ − 15, − 7, 1, ...⎫

⎭
⎬

an = {8.9, 10.3, 11.7, ...}

an = ⎧

⎩
⎨ − 0.52, − 1.02, − 1.52, ...⎫

⎭
⎬

an =
⎧

⎩
⎨1
5, 9

20, 7
10, ...

⎫

⎭
⎬

an =
⎧

⎩
⎨−1

2, − 5
4, − 2, ...

⎫

⎭
⎬

an =
⎧

⎩
⎨1
6, − 11

12, − 2, ...
⎫

⎭
⎬

For the following exercises, write a recursive formula for
the given arithmetic sequence, and then find the specified
term.

an = {7, 4, 1, ...};   Find the 17th term.

an = {4, 11, 18, ...};   Find the 14th term.

an = ⎧

⎩
⎨2, 6, 10, ...⎫

⎭
⎬;   Find the 12th term.

For the following exercises, use the explicit formula to
write the first five terms of the arithmetic sequence.

an = 24 − 4n

an = 1
2n − 1

2

For the following exercises, write an explicit formula for
each arithmetic sequence.

an = ⎧

⎩
⎨3, 5, 7, ...⎫

⎭
⎬

an = ⎧

⎩
⎨32, 24, 16, ...⎫

⎭
⎬

an = ⎧

⎩
⎨ − 5, 95, 195, ...⎫

⎭
⎬

an = {−17, −217, −417,...}

an = ⎧

⎩
⎨1.8, 3.6, 5.4, ...⎫

⎭
⎬

an = ⎧

⎩
⎨−18.1, −16.2, −14.3, ...⎫

⎭
⎬

an = ⎧

⎩
⎨15.8, 18.5, 21.2, ...⎫

⎭
⎬

an =
⎧

⎩
⎨1
3, − 4

3, −3, ...
⎫

⎭
⎬

an =
⎧

⎩
⎨0, 1

3, 2
3, ...

⎫

⎭
⎬

an =
⎧

⎩
⎨−5, − 10

3 , − 5
3, …

⎫

⎭
⎬

For the following exercises, find the number of terms in the
given finite arithmetic sequence.

an = ⎧

⎩
⎨3, − 4, − 11, ..., − 60⎫

⎭
⎬

an = ⎧

⎩
⎨1.2, 1.4, 1.6, ..., 3.8⎫

⎭
⎬

an =
⎧

⎩
⎨1
2, 2, 7

2, ..., 8
⎫

⎭
⎬

Graphical
For the following exercises, determine whether the graph
shown represents an arithmetic sequence.
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130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

For the following exercises, use the information provided
to graph the first 5 terms of the arithmetic sequence.

a1 = 0, d = 4

a1 = 9; an = an − 1 − 10

an = − 12 + 5n

Technology
For the following exercises, follow the steps to work with
the arithmetic sequence an = 3n − 2 using a graphing
calculator:

• Press [MODE]

◦ Select SEQ in the fourth line

◦ Select DOT in the fifth line

◦ Press [ENTER]

• Press [Y=]

◦ nMin  is the first counting number for the
sequence. Set  nMin = 1

◦ u(n)  is the pattern for the sequence. Set
 u(n) = 3n − 2

◦ u(nMin)  is the first number in the
sequence. Set  u(nMin) = 1

• Press [2ND] then [WINDOW] to go to TBLSET

◦ Set  TblStart = 1

◦ Set  ΔTbl = 1

◦ Set Indpnt: Auto and Depend: Auto

• Press [2ND] then [GRAPH] to go to the TABLE

What are the first seven terms shown in the column
with the heading u(n)?

Use the scroll-down arrow to scroll to n = 50. What
value is given for u(n)?

Press [WINDOW]. Set
 nMin = 1, nMax = 5, xMin = 0, xMax = 6, yMin = − 1,
and  yMax = 14. Then press [GRAPH]. Graph the

sequence as it appears on the graphing calculator.

For the following exercises, follow the steps given above
to work with the arithmetic sequence an = 1

2n + 5 using a

graphing calculator.

What are the first seven terms shown in the column
with the heading  u(n)  in the TABLE feature?

Graph the sequence as it appears on the graphing
calculator. Be sure to adjust the WINDOW settings as
needed.

Extensions

Give two examples of arithmetic sequences whose 4th

terms are 9.

Give two examples of arithmetic sequences whose
10th terms are 206.

Find the 5th term of the arithmetic sequence
{9b, 5b, b, … }.

Find the 11th term of the arithmetic sequence
{3a − 2b, a + 2b, − a + 6b … }.

At which term does the sequence
{5.4, 14.5, 23.6, ...} exceed 151?

At which term does the sequence
⎧

⎩
⎨17

3 , 31
6 , 14

3 , ...
⎫

⎭
⎬

begin to have negative values?

For which terms does the finite arithmetic sequence
⎧

⎩
⎨5
2, 19

8 , 9
4, ..., 1

8
⎫

⎭
⎬ have integer values?

Write an arithmetic sequence using a recursive
formula. Show the first 4 terms, and then find the 31st term.
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145. Write an arithmetic sequence using an explicit
formula. Show the first 4 terms, and then find the 28th term.
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13.3 | Geometric Sequences

Learning Objectives

In this section, you will:

13.3.1 Find the common ratio for a geometric sequence.
13.3.2 List the terms of a geometric sequence.
13.3.3 Use a recursive formula for a geometric sequence.
13.3.4 Use an explicit formula for a geometric sequence.

Many jobs offer an annual cost-of-living increase to keep salaries consistent with inflation. Suppose, for example, a recent
college graduate finds a position as a sales manager earning an annual salary of $26,000. He is promised a 2% cost of living
increase each year. His annual salary in any given year can be found by multiplying his salary from the previous year by
102%. His salary will be $26,520 after one year; $27,050.40 after two years; $27,591.41 after three years; and so on. When a
salary increases by a constant rate each year, the salary grows by a constant factor. In this section, we will review sequences
that grow in this way.

Finding Common Ratios
The yearly salary values described form a geometric sequence because they change by a constant factor each year. Each
term of a geometric sequence increases or decreases by a constant factor called the common ratio. The sequence below
is an example of a geometric sequence because each term increases by a constant factor of 6. Multiplying any term of the
sequence by the common ratio 6 generates the subsequent term.

Definition of a Geometric Sequence

A geometric sequence is one in which any term divided by the previous term is a constant. This constant is called the
common ratio of the sequence. The common ratio can be found by dividing any term in the sequence by the previous
term. If a1 is the initial term of a geometric sequence and r is the common ratio, the sequence will be

⎧

⎩
⎨a1,   a1 r,  a1 r2,  a1 r3,  ...⎫

⎭
⎬.

Given a set of numbers, determine if they represent a geometric sequence.

1. Divide each term by the previous term.

2. Compare the quotients. If they are the same, a common ratio exists and the sequence is geometric.

Example 13.15

Finding Common Ratios

Is the sequence geometric? If so, find the common ratio.

a. 1, 2, 4, 8, 16, ...
b. 48, 12, 4, 2, ...
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Solution
Divide each term by the previous term to determine whether a common ratio exists.

a. 2
1 = 2 4

2 = 2 8
4 = 2 16

8 = 2

The sequence is geometric because there is a common ratio. The common ratio is 2.

b. 12
48 = 1

4
4
12 = 1

3
2
4 = 1

2
The sequence is not geometric because there is not a common ratio.

Analysis
The graph of each sequence is shown in Figure 13.14. It seems from the graphs that both (a) and (b) appear have
the form of the graph of an exponential function in this viewing window. However, we know that (a) is geometric
and so this interpretation holds, but (b) is not.

Figure 13.14

If you are told that a sequence is geometric, do you have to divide every term by the previous term to find
the common ratio?

No. If you know that the sequence is geometric, you can choose any one term in the sequence and divide it by the
previous term to find the common ratio.

Is the sequence geometric? If so, find the common ratio.

5, 10, 15, 20, ...

Is the sequence geometric? If so, find the common ratio.

100, 20, 4, 4
5, ...

Writing Terms of Geometric Sequences
Now that we can identify a geometric sequence, we will learn how to find the terms of a geometric sequence if we are
given the first term and the common ratio. The terms of a geometric sequence can be found by beginning with the first term
and multiplying by the common ratio repeatedly. For instance, if the first term of a geometric sequence is a1 = − 2 and

the common ratio is r = 4, we can find subsequent terms by multiplying −2 ⋅ 4 to get −8 then multiplying the result
−8 ⋅ 4 to get −32 and so on.
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a1 = − 2
a2 = ( − 2 ⋅ 4) = − 8
a3 = ( − 8 ⋅ 4) = − 32
a4 = ( − 32 ⋅ 4) − 128

The first four terms are {–2, –8, –32, –128}.

Given the first term and the common factor, find the first four terms of a geometric sequence.

1. Multiply the initial term, a1, by the common ratio to find the next term, a2.

2. Repeat the process, using an = a2 to find a3 and then a3 to find a4, until all four terms have been

identified.

3. Write the terms separated by commons within brackets.

Example 13.16

Writing the Terms of a Geometric Sequence

List the first four terms of the geometric sequence with a1 = 5 and r = –2.

Solution
Multiply a1 by −2 to find a2. Repeat the process, using a2 to find a3, and so on.

a1 = 5
a2 = − 2a1 = − 10
a3 = − 2a2 = 20
a4 = − 2a3 = − 40

The first four terms are {5, –10, 20, –40}.

List the first five terms of the geometric sequence with a1 = 18 and r = 1
3.

Using Recursive Formulas for Geometric Sequences
A recursive formula allows us to find any term of a geometric sequence by using the previous term. Each term is the product
of the common ratio and the previous term. For example, suppose the common ratio is 9. Then each term is nine times the
previous term. As with any recursive formula, the initial term must be given.

Recursive Formula for a Geometric Sequence

The recursive formula for a geometric sequence with common ratio r and first term a1 is

(13.4)an = ran − 1, n ≥ 2
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Given the first several terms of a geometric sequence, write its recursive formula.

1. State the initial term.

2. Find the common ratio by dividing any term by the preceding term.

3. Substitute the common ratio into the recursive formula for a geometric sequence.

Example 13.17

Using Recursive Formulas for Geometric Sequences

Write a recursive formula for the following geometric sequence.

{6, 9, 13.5, 20.25, ...}

Solution
The first term is given as 6. The common ratio can be found by dividing the second term by the first term.

r = 9
6 = 1.5

Substitute the common ratio into the recursive formula for geometric sequences and define a1.

an = ran − 1
an = 1.5an − 1  for n ≥ 2
a1 = 6

Analysis
The sequence of data points follows an exponential pattern. The common ratio is also the base of an exponential
function as shown in Figure 13.15

Figure 13.15

Do we have to divide the second term by the first term to find the common ratio?

No. We can divide any term in the sequence by the previous term. It is, however, most common to divide the second
term by the first term because it is often the easiest method of finding the common ratio.

Write a recursive formula for the following geometric sequence.
⎧

⎩
⎨2, 43, 89, 16

27, ...
⎫

⎭
⎬

Using Explicit Formulas for Geometric Sequences
Because a geometric sequence is an exponential function whose domain is the set of positive integers, and the common ratio
is the base of the function, we can write explicit formulas that allow us to find particular terms.
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an = a1 rn − 1

Let’s take a look at the sequence {18, 36, 72, 144, 288, ...}. This is a geometric sequence with a common ratio of 2 and
an exponential function with a base of 2. An explicit formula for this sequence is

an = 18 · 2n − 1

The graph of the sequence is shown in Figure 13.16.

Figure 13.16

Explicit Formula for a Geometric Sequence

The nth term of a geometric sequence is given by the explicit formula:

(13.5)an = a1 rn − 1

Example 13.18

Writing Terms of Geometric Sequences Using the Explicit Formula

Given a geometric sequence with  a1 = 3  and  a4 = 24,   find a2.

Solution
The sequence can be written in terms of the initial term and the common ratio  r.

3, 3r, 3r2, 3r3, ...

Find the common ratio using the given fourth term.
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an = a1 rn − 1

a4 = 3r3 Write the fourth term of sequence in terms of α1  and r

24 = 3r3 Substitute 24 for a4

   8 = r3 Divide
   r = 2 Solve for the common ratio

Find the second term by multiplying the first term by the common ratio.

a2 = 2a1
= 2(3)
= 6

Analysis
The common ratio is multiplied by the first term once to find the second term, twice to find the third term, three
times to find the fourth term, and so on. The tenth term could be found by multiplying the first term by the
common ratio nine times or by multiplying by the common ratio raised to the ninth power.

Given a geometric sequence with a2 = 4 and a3 = 32 , find a6.

Example 13.19

Writing an Explicit Formula for the nth Term of a Geometric Sequence

Write an explicit formula for the nth term of the following geometric sequence.

{2, 10, 50, 250, ...}

Solution
The first term is 2. The common ratio can be found by dividing the second term by the first term.

10
2 = 5

The common ratio is 5. Substitute the common ratio and the first term of the sequence into the formula.

an = a1 r (n − 1)

an = 2 ⋅ 5n − 1

The graph of this sequence in Figure 13.17 shows an exponential pattern.
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Figure 13.17

Write an explicit formula for the following geometric sequence.

{–1, 3, –9, 27, ...}

Solving Application Problems with Geometric Sequences
In real-world scenarios involving arithmetic sequences, we may need to use an initial term of a0 instead of a1.  In these

problems, we can alter the explicit formula slightly by using the following formula:

an = a0 rn

Example 13.20

Solving Application Problems with Geometric Sequences

In 2013, the number of students in a small school is 284. It is estimated that the student population will increase
by 4% each year.

a. Write a formula for the student population.

b. Estimate the student population in 2020.

Solution
a. The situation can be modeled by a geometric sequence with an initial term of 284. The student population

will be 104% of the prior year, so the common ratio is 1.04.

Let P be the student population and n be the number of years after 2013. Using the explicit formula for
a geometric sequence we get

Pn  = 284 ⋅ 1.04n

b. We can find the number of years since 2013 by subtracting.

2020 − 2013 = 7
We are looking for the population after 7 years. We can substitute 7 for n to estimate the population in
2020.

P7 = 284 ⋅ 1.047 ≈ 374
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The student population will be about 374 in 2020.

A business starts a new website. Initially the number of hits is 293 due to the curiosity factor. The
business estimates the number of hits will increase by 2.6% per week.

a. Write a formula for the number of hits.

b. Estimate the number of hits in 5 weeks.

Access these online resources for additional instruction and practice with geometric sequences.

• Geometric Sequences (http://openstaxcollege.org/l/geometricseq)

• Determine the Type of Sequence (http://openstaxcollege.org/l/sequencetype)

• Find the Formula for a Sequence (http://openstaxcollege.org/l/sequenceformula)
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13.3 EXERCISES
Verbal

What is a geometric sequence?

How is the common ratio of a geometric sequence
found?

What is the procedure for determining whether a
sequence is geometric?

What is the difference between an arithmetic
sequence and a geometric sequence?

Describe how exponential functions and geometric
sequences are similar. How are they different?

Algebraic
For the following exercises, find the common ratio for the
geometric sequence.

1, 3, 9, 27, 81, ...

−0.125, 0.25, − 0.5, 1, − 2, ...

−2, − 1
2, − 1

8, − 1
32, − 1

128, ...

For the following exercises, determine whether the
sequence is geometric. If so, find the common ratio.

−6, − 12, − 24, − 48, − 96, ...

5, 5.2, 5.4, 5.6, 5.8, ...

−1, 1
2, − 1

4, 1
8, − 1

16, ...

6, 8, 11, 15, 20, ...

0.8, 4, 20, 100, 500, ...

For the following exercises, write the first five terms of the
geometric sequence, given the first term and common ratio.

a1 = 8, r = 0.3

a1 = 5, r = 1
5

For the following exercises, write the first five terms of the
geometric sequence, given any two terms.

a7 = 64, a10 = 512

a6 = 25, a8 = 6.25

For the following exercises, find the specified term for the
geometric sequence, given the first term and common ratio.

The first term is 2, and the common ratio is 3. Find

the 5th term.

The first term is 16 and the common ratio is −1
3.

Find the 4th term.

For the following exercises, find the specified term for the
geometric sequence, given the first four terms.

an = {−1, 2, − 4, 8, ...}. Find a12.

an =
⎧

⎩
⎨−2, 2

3, − 2
9, 2

27, ...
⎫

⎭
⎬. Find a7.

For the following exercises, write the first five terms of the
geometric sequence.

a1 = − 486, an = − 1
3an − 1

a1 = 7, an = 0.2an − 1

For the following exercises, write a recursive formula for
each geometric sequence.

an = {−1, 5, − 25, 125, ...}

an = {−32, − 16, − 8, − 4, ...}

an = {14, 56, 224, 896, ...}

an = {10, − 3, 0.9, − 0.27, ...}

an = {0.61, 1.83, 5.49, 16.47, ...}

an =
⎧

⎩
⎨3
5, 1

10, 1
60, 1

360, ...
⎫

⎭
⎬

an =
⎧

⎩
⎨−2, 4

3, − 8
9, 16

27, ...
⎫

⎭
⎬

an =
⎧

⎩
⎨ 1
512, − 1

128, 1
32, − 1

8, ...
⎫

⎭
⎬

For the following exercises, write the first five terms of the
geometric sequence.

an = − 4 ⋅ 5n − 1

an = 12 ⋅ ⎛
⎝−

1
2

⎞
⎠
n − 1
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187.
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190.

191.

192.

193.

194.

195.

196.

For the following exercises, write an explicit formula for
each geometric sequence.

an = {−2, − 4, − 8, − 16, ...}

an = {1, 3, 9, 27, ...}

an = {−4, − 12, − 36, − 108, ...}

an = {0.8, − 4, 20, − 100, ...}

an = ⎧

⎩
⎨ − 1.25, − 5, − 20, − 80, ...⎫

⎭
⎬

an =
⎧

⎩
⎨−1, − 4

5, − 16
25, − 64

125, ...
⎫

⎭
⎬

an =
⎧

⎩
⎨2, 1

3, 1
18, 1

108, ...
⎫

⎭
⎬

an =
⎧

⎩
⎨3, − 1, 1

3, − 1
9, ...

⎫

⎭
⎬

For the following exercises, find the specified term for the
geometric sequence given.

Let a1 = 4, an = − 3an − 1. Find a8.

Let an = − ⎛
⎝−

1
3

⎞
⎠

n − 1
. Find a12.

For the following exercises, find the number of terms in the
given finite geometric sequence.

an = {−1, 3, − 9, ..., 2187}

an =
⎧

⎩
⎨2, 1, 1

2, ..., 1
1024

⎫

⎭
⎬

Graphical
For the following exercises, determine whether the graph
shown represents a geometric sequence.

For the following exercises, use the information provided
to graph the first five terms of the geometric sequence.

a1 = 1, r = 1
2

a1 = 3, an = 2an − 1

an = 27 ⋅ 0.3n − 1

Extensions
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198.

199.

200.

201.

202.

203.

204.

205.

Use recursive formulas to give two examples of geometric
sequences whose 3rd terms are  200.

Use explicit formulas to give two examples of
geometric sequences whose 7th terms are 1024.

Find the 5th term of the geometric sequence
{b, 4b, 16b, ...}.

Find the 7th term of the geometric sequence
{64a( − b), 32a( − 3b), 16a( − 9b), ...}.

At which term does the sequence
{10, 12, 14.4, 17.28,  ...} exceed 100?

At which term does the sequence
⎧

⎩
⎨ 1
2187, 1

729, 1
243, 1

81 ...
⎫

⎭
⎬ begin to have integer values?

For which term does the geometric sequence

a n = − 36⎛
⎝
2
3

⎞
⎠

n − 1
first have a non-integer value?

Use the recursive formula to write a geometric
sequence whose common ratio is an integer. Show the first
four terms, and then find the 10th term.

Use the explicit formula to write a geometric
sequence whose common ratio is a decimal number
between 0 and 1. Show the first 4 terms, and then find the
8th term.

Is it possible for a sequence to be both arithmetic and
geometric? If so, give an example.
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13.4 | Series and Their Notations

Learning Objectives
13.4.1 Use summation notation.
13.4.2 Use the formula for the sum of the first n terms of an arithmetic series.
13.4.3 Use the formula for the sum of the first n terms of a geometric series.
13.4.4 Use the formula for the sum of an infinite geometric series.
13.4.5 Solve annuity problems.

A couple decides to start a college fund for their daughter. They plan to invest $50 in the fund each month. The fund pays
6% annual interest, compounded monthly. How much money will they have saved when their daughter is ready to start
college in 6 years? In this section, we will learn how to answer this question. To do so, we need to consider the amount of
money invested and the amount of interest earned.

Using Summation Notation
To find the total amount of money in the college fund and the sum of the amounts deposited, we need to add the amounts
deposited each month and the amounts earned monthly. The sum of the terms of a sequence is called a series. Consider, for
example, the following series.

3 + 7 + 11 + 15 + 19 + ...

The nth partial sum of a series is the sum of a finite number of consecutive terms beginning with the first term. The
notation  Sn  represents the partial sum.

S1 = 3
S2 = 3 + 7 = 10
S3 = 3 + 7 + 11 = 21
S4 = 3 + 7 + 11 + 15 = 36

Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses the
Greek capital letter sigma, Σ, to represent the sum. Summation notation includes an explicit formula and specifies the first
and last terms in the series. An explicit formula for each term of the series is given to the right of the sigma. A variable called
the index of summation is written below the sigma. The index of summation is set equal to the lower limit of summation,
which is the number used to generate the first term in the series. The number above the sigma, called the upper limit of
summation, is the number used to generate the last term in a series.

If we interpret the given notation, we see that it asks us to find the sum of the terms in the series  ak = 2k for k = 1 through

k = 5.  We can begin by substituting the terms for k and listing out the terms of this series.

a1 = 2(1) = 2

a2 = 2(2) = 4
a3 = 2(3) = 6
a4 = 2(4) = 8
a5 = 2(5) = 10

We can find the sum of the series by adding the terms:

∑
k = 1

5
2k = 2 + 4 + 6 + 8 + 10 = 30
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Summation Notation

The sum of the first n terms of a series can be expressed in summation notation as follows:

∑
k = 1

n
ak

This notation tells us to find the sum of ak from k = 1 to k = n.

k  is called the index of summation, 1 is the lower limit of summation, and n is the upper limit of summation.

Does the lower limit of summation have to be 1?

No. The lower limit of summation can be any number, but 1 is frequently used. We will look at examples with lower
limits of summation other than 1.

Given summation notation for a series, evaluate the value.

1. Identify the lower limit of summation.

2. Identify the upper limit of summation.

3. Substitute each value of k from the lower limit to the upper limit into the formula.

4. Add to find the sum.

Example 13.21

Using Summation Notation

Evaluate ∑
k = 3

7
k2.

Solution
According to the notation, the lower limit of summation is 3 and the upper limit is 7. So we need to find the
sum of k2 from k = 3 to k = 7. We find the terms of the series by substituting k = 3,4,5,6,  and 7 into the

function k2. We add the terms to find the sum.

∑
k = 3

7
k2 = 32 + 42 + 52 + 62 + 72

= 9 + 16 + 25 + 36 + 49
= 135

Evaluate ∑
k = 2

5
(3k – 1).

Using the Formula for Arithmetic Series
Just as we studied special types of sequences, we will look at special types of series. Recall that an arithmetic sequence is a
sequence in which the difference between any two consecutive terms is the common difference, d. The sum of the terms of
an arithmetic sequence is called an arithmetic series. We can write the sum of the first n terms of an arithmetic series as:
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Sn = a1 + (a1 + d) + (a1 + 2d) + ... + (an – d) + an.

We can also reverse the order of the terms and write the sum as

Sn = an + (an – d) + (an – 2d) + ... + (a1 + d) + a1.

If we add these two expressions for the sum of the first n terms of an arithmetic series, we can derive a formula for the sum
of the first n terms of any arithmetic series.

      Sn = a1 + (a1 + d) + (a1 + 2d) + ... + (an – d) + an
+  Sn = an + (an – d) + (an – 2d) + ... + (a1 + d) + a1

2Sn = (a1 + an) + (a1 + an) + ... + (a1 + an)

Because there are n terms in the series, we can simplify this sum to

2Sn = n(a1 + an).

We divide by 2 to find the formula for the sum of the first n terms of an arithmetic series.

Sn = n(a1 + an)
2

Formula for the Sum of the First n Terms of an Arithmetic Series

An arithmetic series is the sum of the terms of an arithmetic sequence. The formula for the sum of the first n terms
of an arithmetic sequence is

(13.6)Sn = n(a1 + an)
2

Given terms of an arithmetic series, find the sum of the first n terms.

1. Identify a1 and an.

2. Determine n.

3. Substitute values for a1 , an ,  and  n  into the formula Sn = n(a1 + an)
2 .

4. Simplify to find Sn.

Example 13.22

Finding the First n Terms of an Arithmetic Series

Find the sum of each arithmetic series.

a. 5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 + 32

b. 20 + 15 + 10 +…+ −50

c. ∑
k = 1

12
3k − 8

Solution
a. We are given a1 = 5 and  an = 32.
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13.27

13.28

Count the number of terms in the sequence to find n = 10.

Substitute values for  a1, an  , and n into the formula and simplify.

Sn = n(a1 + an)
2

S10 = 10(5 + 32)
2 = 185

b. We are given a1 = 20 and an = − 50.

Use the formula for the general term of an arithmetic sequence to find n.

 an = a1 + (n − 1)d
−50 = 20 + (n − 1)( − 5)
−70 = (n − 1)( − 5)
  14 = n − 1
  15 = n

Substitute values for a1, an , n into the formula and simplify.

Sn = n(a1 + an)
2

S15 = 15(20 − 50)
2 = − 225

c. To find a1,   substitute k = 1 into the given explicit formula.

ak = 3k − 8
 a1 = 3(1) − 8 = − 5

We are given that n = 12. To find a12,   substitute k = 12 into the given explicit formula.

 ak = 3k − 8
a12 = 3(12) − 8 = 28

Substitute values for a1, an, and n into the formula and simplify.

Sn = n(a1 + an)
2

S12 = 12( − 5 + 28)
2 = 138

Use the formula to find the sum of each arithmetic series.

1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 2.8 + 3.0 + 3.2 + 3.4

13 + 21 + 29 + … + 69

∑
k = 1

10
5 − 6k
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Example 13.23

Solving Application Problems with Arithmetic Series

On the Sunday after a minor surgery, a woman is able to walk a half-mile. Each Sunday, she walks an additional
quarter-mile. After 8 weeks, what will be the total number of miles she has walked?

Solution

This problem can be modeled by an arithmetic series with  a1 = 1
2   and  d = 1

4. We are looking for the total

number of miles walked after 8 weeks, so we know that n = 8, and we are looking for  S8. To find a8, we can

use the explicit formula for an arithmetic sequence.

an = a1 + d(n − 1)

a8 = 1
2 + 1

4(8 − 1) = 9
4

We can now use the formula for arithmetic series.

 Sn = n(a1 + an)
2

  S8 =
8(1

2 + 9
4)

2 = 11

She will have walked a total of 11 miles.

A man earns $100 in the first week of June. Each week, he earns $12.50 more than the previous week.
After 12 weeks, how much has he earned?

Using the Formula for Geometric Series
Just as the sum of the terms of an arithmetic sequence is called an arithmetic series, the sum of the terms in a geometric
sequence is called a geometric series. Recall that a geometric sequence is a sequence in which the ratio of any two
consecutive terms is the common ratio,  r. We can write the sum of the first n terms of a geometric series as

Sn = a1 + ra1 + r2 a1 + ... + rn – 1 a1.

Just as with arithmetic series, we can do some algebraic manipulation to derive a formula for the sum of the first  n  terms
of a geometric series. We will begin by multiplying both sides of the equation by  r. 

rSn = ra1 + r2 a1 + r3 a1 + ... + rn a1

Next, we subtract this equation from the original equation.

    Sn = a1 + ra1 + r2 a1 + ... + rn – 1 a1

−rSn = − (ra1 + r2 a1 + r3 a1 + ... + rn a1)
(1 − r)Sn = a1 − rn a1

Notice that when we subtract, all but the first term of the top equation and the last term of the bottom equation cancel out.
To obtain a formula for Sn, divide both sides by (1 − r).

Sn = a1(1 − rn)
1 − r  r ≠ 1
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Formula for the Sum of the First n Terms of a Geometric Series

A geometric series is the sum of the terms in a geometric sequence. The formula for the sum of the first  n  terms of a
geometric sequence is represented as

(13.7)
Sn = a1(1 − rn)

1 − r  r ≠ 1

Given a geometric series, find the sum of the first n terms.
1. Identify  a1,  r,  and n.

2. Substitute values for  a1,  r, and n into the formula Sn = a1(1 – rn)
1 – r .

3. Simplify to find Sn.

Example 13.24

Finding the First n Terms of a Geometric Series

Use the formula to find the indicated partial sum of each geometric series.

a. S11 for the series  8 + -4 + 2 + …

b. ∑
6

k = 1
3 ⋅ 2k

Solution
a. a1 = 8, and we are given that n = 11.

We can find r by dividing the second term of the series by the first.

r = −4
8 = − 1

2
Substitute values for a1,  r,  and  n into the formula and simplify.

Sn = a1 (1 − rn)
1 − r

S11 =
8⎛
⎝1 − ⎛

⎝− 1
2

⎞
⎠
11⎞

⎠
1 − ⎛

⎝− 1
2

⎞
⎠

≈ 5.336

b. Find a1 by substituting k = 1 into the given explicit formula.

a1 = 3 ⋅ 21 = 6
We can see from the given explicit formula that r = 2. The upper limit of summation is 6, so n = 6.

Substitute values for a1,  r, and n into the formula, and simplify.

Sn = a1(1 − rn)
1 − r

S6 = 6(1 − 26)
1 − 2 = 378
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13.32

Use the formula to find the indicated partial sum of each geometric series.

S20 for the series  1,000 + 500 + 250 + …

∑
k = 1

8
3k

Example 13.25

Solving an Application Problem with a Geometric Series

At a new job, an employee’s starting salary is $26,750. He receives a 1.6% annual raise. Find his total earnings at
the end of 5 years.

Solution
The problem can be represented by a geometric series with a1 = 26, 750;  n = 5;  and  r = 1.016. Substitute

values for  a1 ,  r, and n into the formula and simplify to find the total amount earned at the end of 5 years.

Sn = a1(1 − rn)
1 − r

S5 = 26,750(1 − 1.0165)
1 − 1.016 ≈ 138,099.03

He will have earned a total of $138,099.03 by the end of 5 years.

At a new job, an employee’s starting salary is $32,100. She receives a 2% annual raise. How much will
she have earned by the end of 8 years?

Using the Formula for the Sum of an Infinite Geometric Series
Thus far, we have looked only at finite series. Sometimes, however, we are interested in the sum of the terms of an infinite
sequence rather than the sum of only the first n terms. An infinite series is the sum of the terms of an infinite sequence. An
example of an infinite series is 2 + 4 + 6 + 8 + ...

This series can also be written in summation notation as ∑
k = 1

∞
2k, where the upper limit of summation is infinity. Because

the terms are not tending to zero, the sum of the series increases without bound as we add more terms. Therefore, the sum
of this infinite series is not defined. When the sum is not a real number, we say the series diverges.

Determining Whether the Sum of an Infinite Geometric Series is Defined
If the terms of an infinite geometric series approach 0, the sum of an infinite geometric series can be defined. The terms in
this series approach 0:

1 + 0.2 + 0.04 + 0.008 + 0.0016 + ...

The common ratio  r = 0.2.  As n gets very large, the values of rn get very small and approach 0. Each successive term
affects the sum less than the preceding term. As each succeeding term gets closer to 0, the sum of the terms approaches
a finite value. The terms of any infinite geometric series with −1 < r < 1 approach 0; the sum of a geometric series is
defined when −1 < r < 1.
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Determining Whether the Sum of an Infinite Geometric Series is Defined

The sum of an infinite series is defined if the series is geometric and −1 < r < 1.

Given the first several terms of an infinite series, determine if the sum of the series exists.

1. Find the ratio of the second term to the first term.

2. Find the ratio of the third term to the second term.

3. Continue this process to ensure the ratio of a term to the preceding term is constant throughout. If so, the
series is geometric.

4. If a common ratio, r, was found in step 3, check to see if −1 < r < 1 . If so, the sum is defined. If not,
the sum is not defined.

Example 13.26

Determining Whether the Sum of an Infinite Series is Defined

Determine whether the sum of each infinite series is defined.

a. 12 + 8 + 4 + …

b. 3
4 + 1

2 + 1
3 + ...

c. ∑
k = 1

∞
27 ⋅ (1

3)
k

d. ∑
k = 1

∞
5k

Solution

a. The ratio of the second term to the first is 2
3, which is not the same as the ratio of the third term to the

second, 1
2. The series is not geometric.

b. The ratio of the second term to the first is the same as the ratio of the third term to the second. The series
is geometric with a common ratio of 2

3. The sum of the infinite series is defined.

c. The given formula is exponential with a base of 1
3; the series is geometric with a common ratio of 1

3.

The sum of the infinite series is defined.

d. The given formula is not exponential; the series is not geometric because the terms are increasing, and so
cannot yield a finite sum.

Determine whether the sum of the infinite series is defined.

1
3 + 1

2 + 3
4 + 9

8 + ...
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13.34

13.35

24 + (−12) + 6 + (−3) + ...

∑
k = 1

∞
15 ⋅ ( – 0.3)k

Finding Sums of Infinite Series
When the sum of an infinite geometric series exists, we can calculate the sum. The formula for the sum of an infinite series
is related to the formula for the sum of the first n terms of a geometric series.

Sn = a1(1 − rn)
1 − r

We will examine an infinite series with r = 1
2. What happens to rn as n increases?

⎛
⎝
1
2

⎞
⎠
2

= 1
4

⎛
⎝
1
2

⎞
⎠
3

= 1
8

⎛
⎝
1
2

⎞
⎠
4

= 1
16

The value of  rn   decreases rapidly. What happens for greater values of n?

(1
2)

10
= 1

1,024

(1
2)

20
= 1

1,048,576

(1
2)

30
= 1

1,073,741,824

As n gets very large, rn gets very small. We say that, as n increases without bound, rn approaches 0. As rn approaches
0, 1 − rn approaches 1. When this happens, the numerator approaches  a1. This give us a formula for the sum of an infinite

geometric series.

Formula for the Sum of an Infinite Geometric Series

The formula for the sum of an infinite geometric series with −1 < r < 1 is

(13.8)S = a1
1 − r

Given an infinite geometric series, find its sum.

1. Identify a1 and r.

2. Confirm that – 1 < r < 1.

3. Substitute values for a1 and r into the formula, S = a1
1 − r .

4. Simplify to find  S.
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Example 13.27

Finding the Sum of an Infinite Geometric Series

Find the sum, if it exists, for the following:

a. 10 + 9 + 8 + 7 + …

b. 248.6 + 99.44 + 39.776 +  …

c. ∑
k = 1

∞
4,374 ⋅ ( – 1

3)
k – 1

d. ∑
k = 1

∞
1
9 ⋅ (4

3)
k

Solution
a. There is not a constant ratio; the series is not geometric.

b. There is a constant ratio; the series is geometric. a1 = 248.6 and r = 99.44
248.6 = 0.4, so the sum exists.

Substitute a1 = 248.6 and r = 0.4 into the formula and simplify to find the sum:

S = a1
1 − r

S = 248.6
1 − 0.4 = 414. 3

¯

c. The formula is exponential, so the series is geometric with r = – 1
3. Find a1 by substituting k = 1 into

the given explicit formula:

a1 = 4,374 ⋅ ( – 1
3)

1 – 1
= 4,374

Substitute a1 = 4,374 and r = − 1
3 into the formula, and simplify to find the sum:

S = a1
1 − r

S = 4,374
1 − ( − 1

3)
= 3,280.5

d. The formula is exponential, so the series is geometric, but  r > 1. The sum does not exist.

Example 13.28

Finding an Equivalent Fraction for a Repeating Decimal

Find an equivalent fraction for the repeating decimal 0. 3
¯

Solution

We notice the repeating decimal 0. 3
¯

= 0.333... so we can rewrite the repeating decimal as a sum of terms.
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13.36

13.37

13.38

0. 3
¯

= 0.3 + 0.03 + 0.003 + ...

Looking for a pattern, we rewrite the sum, noticing that we see the first term multiplied to 0.1 in the second term,
and the second term multiplied to 0.1 in the third term.

Notice the pattern; we multiply each consecutive term by a common ratio of 0.1 starting with the first term of 0.3.
So, substituting into our formula for an infinite geometric sum, we have

Sn = a1
1 − r = 0.3

1 − 0.1 = 0.3
0.9 = 1

3.

Find the sum, if it exists.

2 + 2
3 + 2

9 + ...

∑
k = 1

∞
0.76k + 1

∑
k = 1

∞
⎛
⎝−

3
8

⎞
⎠

k

Solving Annuity Problems
At the beginning of the section, we looked at a problem in which a couple invested a set amount of money each month
into a college fund for six years. An annuity is an investment in which the purchaser makes a sequence of periodic, equal
payments. To find the amount of an annuity, we need to find the sum of all the payments and the interest earned. In the
example, the couple invests $50 each month. This is the value of the initial deposit. The account paid 6% annual interest,
compounded monthly. To find the interest rate per payment period, we need to divide the 6% annual percentage interest
(APR) rate by 12. So the monthly interest rate is 0.5%. We can multiply the amount in the account each month by 100.5%
to find the value of the account after interest has been added.

We can find the value of the annuity right after the last deposit by using a geometric series with a1 = 50 and

r = 100.5% = 1.005. After the first deposit, the value of the annuity will be $50. Let us see if we can determine the
amount in the college fund and the interest earned.

We can find the value of the annuity after n deposits using the formula for the sum of the first n terms of a geometric series.
In 6 years, there are 72 months, so n = 72. We can substitute a1 = 50,  r = 1.005,  and  n = 72 into the formula,

and simplify to find the value of the annuity after 6 years.

S72 = 50(1 − 1.00572)
1 − 1.005 ≈ 4,320.44

After the last deposit, the couple will have a total of $4,320.44 in the account. Notice, the couple made 72 payments of $50
each for a total of  72(50) = $3,600. This means that because of the annuity, the couple earned $720.44 interest in their
college fund.
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Given an initial deposit and an interest rate, find the value of an annuity.

1. Determine  a1 ,  the value of the initial deposit.

2. Determine  n,  the number of deposits.

3. Determine  r.

a. Divide the annual interest rate by the number of times per year that interest is compounded.

b. Add 1 to this amount to find r.

4. Substitute values for  a1 , r,  and n  into the formula for the sum of the first n terms of a geometric series,

Sn = a1(1 – rn)
1 – r .

5. Simplify to find Sn, the value of the annuity after n deposits.

Example 13.29

Solving an Annuity Problem

A deposit of $100 is placed into a college fund at the beginning of every month for 10 years. The fund earns 9%
annual interest, compounded monthly, and paid at the end of the month. How much is in the account right after
the last deposit?

Solution
The value of the initial deposit is $100, so  a1 = 100. A total of 120 monthly deposits are made in the 10 years, so

n = 120. To find r,   divide the annual interest rate by 12 to find the monthly interest rate and add 1 to represent
the new monthly deposit.

r = 1 + 0.09
12 = 1.0075

Substitute  a1 = 100, r = 1.0075, and n = 120  into the formula for the sum of the first n terms of a geometric

series, and simplify to find the value of the annuity.

S120 = 100(1 − 1.0075120)
1 − 1.0075 ≈ 19,351.43

So the account has $19,351.43 after the last deposit is made.

At the beginning of each month, $200 is deposited into a retirement fund. The fund earns 6% annual
interest, compounded monthly, and paid into the account at the end of the month. How much is in the account if
deposits are made for 10 years?

Access these online resources for additional instruction and practice with series.

• Arithmetic Series (http://openstaxcollege.org/l/arithmeticser)

• Geometric Series (http://openstaxcollege.org/l/geometricser)

• Summation Notation (http://openstaxcollege.org/l/sumnotation)
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206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

13.4 EXERCISES
Verbal

What is an nth partial sum?

What is the difference between an arithmetic
sequence and an arithmetic series?

What is a geometric series?

How is finding the sum of an infinite geometric series
different from finding the nth partial sum?

What is an annuity?

Algebraic
For the following exercises, express each description of a
sum using summation notation.

The sum of terms m2 + 3m from m = 1 to m = 5

The sum from of n = 0 to n = 4 of 5n

The sum of 6k − 5 from k = − 2 to k = 1

The sum that results from adding the number 4 five
times

For the following exercises, express each arithmetic sum
using summation notation.

5 + 10 + 15 + 20 + 25 + 30 + 35 + 40 + 45 + 50

10 + 18 + 26 + … + 162

1
2 + 1 + 3

2 + 2 + … + 4

For the following exercises, use the formula for the sum of
the first n terms of each arithmetic sequence.

3
2 + 2 + 5

2 + 3 + 7
2

19 + 25 + 31 + … + 73

3.2 + 3.4 + 3.6 + … + 5.6

For the following exercises, express each geometric sum
using summation notation.

1 + 3 + 9 + 27 + 81 + 243 + 729 + 2187

8 + 4 + 2 + … + 0.125

−1
6 + 1

12 − 1
24 + … + 1

768

For the following exercises, use the formula for the sum of
the first n terms of each geometric sequence, and then state
the indicated sum.

9 + 3 + 1 + 1
3 + 1

9

∑
n = 1

9
5 ⋅ 2n − 1

∑
a = 1

11
64 ⋅ 0.2a − 1

For the following exercises, determine whether the infinite
series has a sum. If so, write the formula for the sum. If not,
state the reason.

12 + 18 + 24 + 30 + ...

2 + 1.6 + 1.28 + 1.024 + ...

∑
m = 1

∞
4m − 1

∑
∞

k = 1
− ⎛

⎝−
1
2

⎞
⎠
k − 1

Graphical
For the following exercises, use the following scenario.
Javier makes monthly deposits into a savings account. He
opened the account with an initial deposit of $50. Each
month thereafter he increased the previous deposit amount
by $20.

Graph the arithmetic sequence showing one year of
Javier’s deposits.

Graph the arithmetic series showing the monthly
sums of one year of Javier’s deposits.

For the following exercises, use the geometric series

∑
k = 1

∞
⎛
⎝
1
2

⎞
⎠

k

.

Graph the first 7 partial sums of the series.

What number does Sn seem to be approaching in the
graph? Find the sum to explain why this makes sense.

Numeric
For the following exercises, find the indicated sum.
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236.

237.

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

262.

∑
a = 1

14
a

∑
n = 1

6
n(n − 2)

∑
k = 1

17
k2

∑
k = 1

7
2k

For the following exercises, use the formula for the sum of
the first n terms of an arithmetic series to find the sum.

−1.7 + − 0.4 + 0.9 + 2.2 + 3.5 + 4.8

6 + 15
2 + 9 + 21

2 + 12 + 27
2 + 15

−1 + 3 + 7 + ... + 31

∑
k = 1

11
⎛
⎝
k
2 − 1

2
⎞
⎠

For the following exercises, use the formula for the sum of
the first n terms of a geometric series to find the partial
sum.

S6 for the series −2 − 10 − 50 − 250...

S7 for the series 0.4 − 2 + 10 − 50...

∑
k = 1

9
2k − 1

∑
n = 1

10
−2 ⋅ ⎛

⎝
1
2

⎞
⎠
n − 1

For the following exercises, find the sum of the infinite
geometric series.

4 + 2 + 1 + 1
2...

−1 − 1
4 − 1

16 − 1
64...

∑
∞

k = 1
3 ⋅ ⎛

⎝
1
4

⎞
⎠
k − 1

∑
n = 1

∞
4.6 ⋅ 0.5n − 1

For the following exercises, determine the value of the
annuity for the indicated monthly deposit amount, the
number of deposits, and the interest rate.

Deposit amount: $50; total deposits: 60; interest
rate: 5%, compounded monthly

Deposit amount: $150; total deposits: 24; interest
rate: 3%, compounded monthly

Deposit amount: $450; total deposits: 60; interest
rate: 4.5%, compounded quarterly

Deposit amount: $100; total deposits: 120; interest
rate: 10%, compounded semi-annually

Extensions

The sum of terms 50 − k2 from k = x through 7 is
115. What is x?

Write an explicit formula for ak such that

∑
k = 0

6
ak = 189. Assume this is an arithmetic series.

Find the smallest value of n such that

∑
k = 1

n
(3k – 5) > 100.

How many terms must be added before the series
−1 − 3 − 5 − 7.... has a sum less than −75?

Write 0.65 as an infinite geometric series using
summation notation. Then use the formula for finding the

sum of an infinite geometric series to convert 0.65 to a
fraction.

The sum of an infinite geometric series is five times
the value of the first term. What is the common ratio of the
series?

To get the best loan rates available, the Riches want to
save enough money to place 20% down on a $160,000
home. They plan to make monthly deposits of $125 in an
investment account that offers 8.5% annual interest
compounded semi-annually. Will the Riches have enough
for a 20% down payment after five years of saving? How
much money will they have saved?
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263.

264.

265.

266.

267.

Karl has two years to save $10, 000 to buy a used car
when he graduates. To the nearest dollar, what would his
monthly deposits need to be if he invests in an account
offering a 4.2% annual interest rate that compounds
monthly?

Real-World Applications

Keisha devised a week-long study plan to prepare for
finals. On the first day, she plans to study for  1  hour, and
each successive day she will increase her study time by  30 
minutes. How many hours will Keisha have studied after
one week?

A boulder rolled down a mountain, traveling 6 feet in
the first second. Each successive second, its distance
increased by 8 feet. How far did the boulder travel after 10
seconds?

A scientist places 50 cells in a petri dish. Every hour,
the population increases by 1.5%. What will the cell count
be after 1 day?

A pendulum travels a distance of 3 feet on its first
swing. On each successive swing, it travels 3

4 the distance

of the previous swing. What is the total distance traveled by
the pendulum when it stops swinging?

Rachael deposits $1,500 into a retirement fund each
year. The fund earns 8.2% annual interest, compounded
monthly. If she opened her account when she was 19 years
old, how much will she have by the time she is 55? How
much of that amount will be interest earned?
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13.5 | Counting Principles

Learning Objectives

In this section, you will:

13.5.1 Solve counting problems using the Addition Principle.
13.5.2 Solve counting problems using the Multiplication Principle.
13.5.3 Solve counting problems using permutations involving n distinct objects.
13.5.4 Solve counting problems using combinations.
13.5.5 Find the number of subsets of a given set.
13.5.6 Solve counting problems using permutations involving n non-distinct objects.

A new company sells customizable cases for tablets and smartphones. Each case comes in a variety of colors and can be
personalized for an additional fee with images or a monogram. A customer can choose not to personalize or could choose
to have one, two, or three images or a monogram. The customer can choose the order of the images and the letters in the
monogram. The company is working with an agency to develop a marketing campaign with a focus on the huge number of
options they offer. Counting the possibilities is challenging!

We encounter a wide variety of counting problems every day. There is a branch of mathematics devoted to the study of
counting problems such as this one. Other applications of counting include secure passwords, horse racing outcomes, and
college scheduling choices. We will examine this type of mathematics in this section.

Using the Addition Principle
The company that sells customizable cases offers cases for tablets and smartphones. There are 3 supported tablet models
and 5 supported smartphone models. The Addition Principle tells us that we can add the number of tablet options to the
number of smartphone options to find the total number of options. By the Addition Principle, there are 8 total options, as
we can see in Figure 13.18.

Figure 13.18

The Addition Principle

According to the Addition Principle, if one event can occur in m ways and a second event with no common outcomes
can occur in n ways, then the first or second event can occur in m + n ways.

Example 13.30
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Using the Addition Principle

There are 2 vegetarian entrée options and 5 meat entrée options on a dinner menu. What is the total number of
entrée options?

Solution
We can add the number of vegetarian options to the number of meat options to find the total number of entrée
options.

There are 7 total options.

A student is shopping for a new computer. He is deciding among 3 desktop computers and 4 laptop
computers. What is the total number of computer options?

Using the Multiplication Principle
The Multiplication Principle applies when we are making more than one selection. Suppose we are choosing an appetizer,
an entrée, and a dessert. If there are 2 appetizer options, 3 entrée options, and 2 dessert options on a fixed-price dinner menu,
there are a total of 12 possible choices of one each as shown in the tree diagram in Figure 13.19.

Figure 13.19

The possible choices are:

1. soup, chicken, cake

2. soup, chicken, pudding

3. soup, fish, cake

4. soup, fish, pudding

5. soup, steak, cake

6. soup, steak, pudding

7. salad, chicken, cake

8. salad, chicken, pudding

9. salad, fish, cake

10. salad, fish, pudding
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11. salad, steak, cake

12. salad, steak, pudding We can also find the total number of possible dinners by multiplying.

We could also conclude that there are 12 possible dinner choices simply by applying the Multiplication Principle.

#  of appetizer options × #  of entree options × #  of dessert options
               2 ×               3               ×                2 = 12

The Multiplication Principle

According to the Multiplication Principle, if one event can occur in m ways and a second event can occur in n ways
after the first event has occurred, then the two events can occur in m×n ways. This is also known as the Fundamental
Counting Principle.

Example 13.31

Using the Multiplication Principle

Diane packed 2 skirts, 4 blouses, and a sweater for her business trip. She will need to choose a skirt and a blouse
for each outfit and decide whether to wear the sweater. Use the Multiplication Principle to find the total number
of possible outfits.

Solution
To find the total number of outfits, find the product of the number of skirt options, the number of blouse options,
and the number of sweater options.

There are 16 possible outfits.

A restaurant offers a breakfast special that includes a breakfast sandwich, a side dish, and a beverage.
There are 3 types of breakfast sandwiches, 4 side dish options, and 5 beverage choices. Find the total number of
possible breakfast specials.

Finding the Number of Permutations of n Distinct Objects
The Multiplication Principle can be used to solve a variety of problem types. One type of problem involves placing objects
in order. We arrange letters into words and digits into numbers, line up for photographs, decorate rooms, and more. An
ordering of objects is called a permutation.

Finding the Number of Permutations of n Distinct Objects Using the Multiplication Principle
To solve permutation problems, it is often helpful to draw line segments for each option. That enables us to determine the
number of each option so we can multiply. For instance, suppose we have four paintings, and we want to find the number
of ways we can hang three of the paintings in order on the wall. We can draw three lines to represent the three places on the
wall.

There are four options for the first place, so we write a 4 on the first line.
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After the first place has been filled, there are three options for the second place so we write a 3 on the second line.

After the second place has been filled, there are two options for the third place so we write a 2 on the third line. Finally, we
find the product.

There are 24 possible permutations of the paintings.

Given  n  distinct options, determine how many permutations there are.

1. Determine how many options there are for the first situation.

2. Determine how many options are left for the second situation.

3. Continue until all of the spots are filled.

4. Multiply the numbers together.

Example 13.32

Finding the Number of Permutations Using the Multiplication Principle

At a swimming competition, nine swimmers compete in a race.

a. How many ways can they place first, second, and third?

b. How many ways can they place first, second, and third if a swimmer named Ariel wins first place?
(Assume there is only one contestant named Ariel.)

c. How many ways can all nine swimmers line up for a photo?

Solution
a. Draw lines for each place.

There are 9 options for first place. Once someone has won first place, there are 8 remaining options for
second place. Once first and second place have been won, there are 7 remaining options for third place.

Multiply to find that there are 504 ways for the swimmers to place.

b. Draw lines for describing each place.
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13.43

13.44

We know Ariel must win first place, so there is only 1 option for first place. There are 8 remaining options
for second place, and then 7 remaining options for third place.

Multiply to find that there are 56 ways for the swimmers to place if Ariel wins first.

c. Draw lines for describing each place in the photo.

There are 9 choices for the first spot, then 8 for the second, 7 for the third, 6 for the fourth, and so on until
only 1 person remains for the last spot.

There are 362,880 possible permutations for the swimmers to line up.

Analysis
Note that in part c, we found there were 9! ways for 9 people to line up. The number of permutations of  n  distinct
objects can always be found by  n !.

A family of five is having portraits taken. Use the Multiplication Principle to find the following.

How many ways can the family line up for the portrait?

How many ways can the photographer line up 3 family members?

How many ways can the family line up for the portrait if the parents are required to stand on each end?

Finding the Number of Permutations of n Distinct Objects Using a Formula
For some permutation problems, it is inconvenient to use the Multiplication Principle because there are so many numbers
to multiply. Fortunately, we can solve these problems using a formula. Before we learn the formula, let’s look at two
common notations for permutations. If we have a set of  n  objects and we want to choose  r  objects from the set in order,
we write  P(n, r). Another way to write this is nPr,   a notation commonly seen on computers and calculators. To calculate
 P(n, r),  we begin by finding  n !,   the number of ways to line up all n objects. We then divide by  (n − r) !  to cancel out
the  (n − r)  items that we do not wish to line up.

Let’s see how this works with a simple example. Imagine a club of six people. They need to elect a president, a vice
president, and a treasurer. Six people can be elected president, any one of the five remaining people can be elected vice
president, and any of the remaining four people could be elected treasurer. The number of ways this may be done is
6×5×4 = 120. Using factorials, we get the same result.
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 6!
3! = 6 · 5 · 4 · 3!

3! = 6 · 5 · 4 = 120 

There are 120 ways to select 3 officers in order from a club with 6 members. We refer to this as a permutation of 6 taken 3
at a time. The general formula is as follows.

 P(n, r) = n !
(n − r) !  

Note that the formula stills works if we are choosing all  n  objects and placing them in order. In that case we would be
dividing by  (n − n) !  or  0!,  which we said earlier is equal to 1. So the number of permutations of  n  objects taken  n  at a

time is  n !
1   or just  n !.

Formula for Permutations of n Distinct Objects

Given  n  distinct objects, the number of ways to select  r  objects from the set in order is

(13.9)P(n, r) = n !
(n − r) !

Given a word problem, evaluate the possible permutations.

1. Identify  n  from the given information.

2. Identify  r  from the given information.

3. Replace  n  and  r  in the formula with the given values.

4. Evaluate.

Example 13.33

Finding the Number of Permutations Using the Formula

A professor is creating an exam of 9 questions from a test bank of 12 questions. How many ways can she select
and arrange the questions?

Solution
Substitute  n = 12  and  r = 9  into the permutation formula and simplify.

  P(n, r) = n !
(n − r) !  

P(12, 9) = 12!
(12 − 9)! = 12!

3! = 79,833,600

There are 79,833,600 possible permutations of exam questions!

Analysis
We can also use a calculator to find permutations. For this problem, we would enter 15, press the  n Pr   function,

enter 12, and then press the equal sign. The  n Pr   function may be located under the MATH menu with

probability commands.

Could we have solved Example 13.33 using the Multiplication Principle?

Yes. We could have multiplied  15 ⋅ 14 ⋅ 13 ⋅ 12 ⋅ 11 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4  to find the same answer.
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A play has a cast of 7 actors preparing to make their curtain call. Use the permutation formula to find the following.

How many ways can the 7 actors line up?

How many ways can 5 of the 7 actors be chosen to line up?

Find the Number of Combinations Using the Formula
So far, we have looked at problems asking us to put objects in order. There are many problems in which we want to select
a few objects from a group of objects, but we do not care about the order. When we are selecting objects and the order does
not matter, we are dealing with combinations. A selection of  r  objects from a set of  n  objects where the order does not
matter can be written as  C(n, r).  Just as with permutations,  C(n, r)  can also be written as  n Cr.  In this case, the general

formula is as follows.

 C(n, r) = n !
r !(n − r) !  

An earlier problem considered choosing 3 of 4 possible paintings to hang on a wall. We found that there were 24 ways to
select 3 of the 4 paintings in order. But what if we did not care about the order? We would expect a smaller number because
selecting paintings 1, 2, 3 would be the same as selecting paintings 2, 3, 1. To find the number of ways to select 3 of the
4 paintings, disregarding the order of the paintings, divide the number of permutations by the number of ways to order 3
paintings. There are 3! = 3 · 2 · 1 = 6 ways to order 3 paintings. There are 24

6 ,   or 4 ways to select 3 of the 4 paintings.

This number makes sense because every time we are selecting 3 paintings, we are not selecting 1 painting. There are 4
paintings we could choose not to select, so there are 4 ways to select 3 of the 4 paintings.

Formula for Combinations of n Distinct Objects

Given  n  distinct objects, the number of ways to select  r  objects from the set is

(13.10) C(n, r) = n !
r !(n − r) !  

Given a number of options, determine the possible number of combinations.

1. Identify  n  from the given information.

2. Identify  r  from the given information.

3. Replace  n  and  r  in the formula with the given values.

4. Evaluate.

Example 13.34

Finding the Number of Combinations Using the Formula

A fast food restaurant offers five side dish options. Your meal comes with two side dishes.

a. How many ways can you select your side dishes?

b. How many ways can you select 3 side dishes?
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Solution
a. We want to choose 2 side dishes from 5 options.

 C(5, 2) = 5!
2!(5 − 2)! = 10 

b. We want to choose 3 side dishes from 5 options.

 C(5, 3) = 5!
3!(5 − 3)! = 10 

Analysis
We can also use a graphing calculator to find combinations. Enter 5, then press  n Cr,   enter 3, and then press the

equal sign. The  n Cr,   function may be located under the MATH menu with probability commands.

Is it a coincidence that parts (a) and (b) in Example 13.34 have the same answers?

No. When we choose r objects from n objects, we are not choosing  (n – r)  objects. Therefore,
 C(n, r) = C(n, n – r). 

An ice cream shop offers 10 flavors of ice cream. How many ways are there to choose 3 flavors for a
banana split?

Finding the Number of Subsets of a Set
We have looked only at combination problems in which we chose exactly r objects. In some problems, we want to consider
choosing every possible number of objects. Consider, for example, a pizza restaurant that offers 5 toppings. Any number of
toppings can be ordered. How many different pizzas are possible?

To answer this question, we need to consider pizzas with any number of toppings. There is C(5, 0) = 1 way to order a
pizza with no toppings. There are C(5, 1) = 5 ways to order a pizza with exactly one topping. If we continue this process,
we get

 C(5, 0) + C(5, 1) + C(5, 2) + C(5, 3) + C(5, 4) + C(5, 5) = 32 

There are 32 possible pizzas. This result is equal to  25. 
We are presented with a sequence of choices. For each of the n objects we have two choices: include it in the subset or not.
So for the whole subset we have made n  choices, each with two options. So there are a total of 2 · 2 · 2 · … · 2 possible
resulting subsets, all the way from the empty subset, which we obtain when we say “no” each time, to the original set itself,
which we obtain when we say “yes” each time.

Formula for the Number of Subsets of a Set

A set containing n distinct objects has 2n subsets.

Example 13.35

Finding the Number of Subsets of a Set
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A restaurant offers butter, cheese, chives, and sour cream as toppings for a baked potato. How many different
ways are there to order a potato?

Solution
We are looking for the number of subsets of a set with 4 objects. Substitute n = 4 into the formula.

 2n = 24

= 16
 

There are 16 possible ways to order a potato.

A sundae bar at a wedding has 6 toppings to choose from. Any number of toppings can be chosen. How
many different sundaes are possible?

Finding the Number of Permutations of n Non-Distinct Objects
We have studied permutations where all of the objects involved were distinct. What happens if some of the objects are
indistinguishable? For example, suppose there is a sheet of 12 stickers. If all of the stickers were distinct, there would be
12! ways to order the stickers. However, 4 of the stickers are identical stars, and 3 are identical moons. Because all of the
objects are not distinct, many of the 12! permutations we counted are duplicates. The general formula for this situation is
as follows.

  n !
r1 !r2 ! … rk !  

In this example, we need to divide by the number of ways to order the 4 stars and the ways to order the 3 moons to find the
number of unique permutations of the stickers. There are 4! ways to order the stars and 3! ways to order the moon.

12!
4!3! = 3,326,400

There are 3,326,400 ways to order the sheet of stickers.

Formula for Finding the Number of Permutations of n Non-Distinct Objects

If there are n elements in a set and r1   are alike,  r2   are alike, r3   are alike, and so on through rk,   the number of

permutations can be found by

(13.11)  n !
r1 !r2 ! … rk !  

Example 13.36

Finding the Number of Permutations of n Non-Distinct Objects

Find the number of rearrangements of the letters in the word DISTINCT.

Solution
There are 8 letters. Both I and T are repeated 2 times. Substitute  n = 8,  r1 = 2,    and    r2 = 2    into the

formula.
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  8!
2!2! = 10,080   

There are 10,080 arrangements.

Find the number of rearrangements of the letters in the word CARRIER.

Access these online resources for additional instruction and practice with combinations and permutations.

• Combinations (http://openstaxcollege.org/l/combinations)

• Permutations (http://openstaxcollege.org/l/permutations)
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13.5 EXERCISES
Verbal
For the following exercises, assume that there are n ways
an event A can happen, m ways an event B can happen,
and that A and B are non-overlapping.

Use the Addition Principle of counting to explain how
many ways event A or B can occur.

Use the Multiplication Principle of counting to
explain how many ways event  A and B  can occur.

Answer the following questions.

When given two separate events, how do we know
whether to apply the Addition Principle or the
Multiplication Principle when calculating possible
outcomes? What conjunctions may help to determine which
operations to use?

Describe how the permutation of n objects differs
from the permutation of choosing r objects from a set of
n objects. Include how each is calculated.

What is the term for the arrangement that selects r
objects from a set of n objects when the order of the r
objects is not important? What is the formula for
calculating the number of possible outcomes for this type of
arrangement?

Numeric
For the following exercises, determine whether to use the
Addition Principle or the Multiplication Principle. Then
perform the calculations.

Let the set A = { − 5, − 3, − 1, 2, 3, 4, 5, 6}.
How many ways are there to choose a negative or an even
number from A?

Let the set
B = { − 23, − 16, − 7, − 2, 20, 36, 48, 72}. How
many ways are there to choose a positive or an odd number
from A?

How many ways are there to pick a red ace or a club
from a standard card playing deck?

How many ways are there to pick a paint color from 5
shades of green, 4 shades of blue, or 7 shades of yellow?

How many outcomes are possible from tossing a pair
of coins?

How many outcomes are possible from tossing a coin
and rolling a 6-sided die?

How many two-letter strings—the first letter from  A 
and the second letter from  B — can be formed from the
sets  A = {b, c, d}  and  B = {a, e, i, o, u}?  

How many ways are there to construct a string of 3
digits if numbers can be repeated?

How many ways are there to construct a string of 3
digits if numbers cannot be repeated?

For the following exercises, compute the value of the
expression.

 P(5, 2) 

 P(8, 4) 

 P(3, 3) 

 P(9, 6) 

 P(11, 5) 

 C(8, 5) 

 C(12, 4) 

 C(26, 3) 

 C(7, 6) 

 C(10, 3) 

For the following exercises, find the number of subsets in
each given set.

 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

 {a, b, c, … , z} 

A set containing 5 distinct numbers, 4 distinct letters,
and 3 distinct symbols

The set of even numbers from 2 to 28

The set of two-digit numbers between 1 and 100
containing the digit 0

For the following exercises, find the distinct number of
arrangements.

The letters in the word “juggernaut”

The letters in the word “academia”
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The letters in the word “academia” that begin and end in
“a”

The symbols in the string #,#,#,@,@,$,$,$,%,%,%,%

The symbols in the string #,#,#,@,@,$,$,$,%,%,%,%
that begin and end with “%”

Extensions

The set,  S  consists of  900,000,000 whole numbers,
each being the same number of digits long. How many
digits long is a number from  S?   (Hint: use the fact that a
whole number cannot start with the digit 0.)

The number of 5-element subsets from a set
containing  n  elements is equal to the number of 6-element
subsets from the same set. What is the value of n?   (Hint:
the order in which the elements for the subsets are chosen is
not important.)

Can C(n, r) ever equal P(n, r)? Explain.

Suppose a set A has 2,048 subsets. How many
distinct objects are contained in A?

How many arrangements can be made from the letters
of the word “mountains” if all the vowels must form a
string?

Real-World Applications

A family consisting of 2 parents and 3 children is to
pose for a picture with 2 family members in the front and 3
in the back.

a. How many arrangements are possible with no
restrictions?

b. How many arrangements are possible if the parents
must sit in the front?

c. How many arrangements are possible if the parents
must be next to each other?

A cell phone company offers 6 different voice
packages and 8 different data packages. Of those, 3
packages include both voice and data. How many ways are
there to choose either voice or data, but not both?

In horse racing, a “trifecta” occurs when a bettor wins
by selecting the first three finishers in the exact order (1st
place, 2nd place, and 3rd place). How many different
trifectas are possible if there are 14 horses in a race?

A wholesale T-shirt company offers sizes small,
medium, large, and extra-large in organic or non-organic
cotton and colors white, black, gray, blue, and red. How
many different T-shirts are there to choose from?

Hector wants to place billboard advertisements throughout
the county for his new business. How many ways can
Hector choose 15 neighborhoods to advertise in if there are
30 neighborhoods in the county?

An art store has 4 brands of paint pens in 12 different
colors and 3 types of ink. How many paint pens are there to
choose from?

How many ways can a committee of 3 freshmen and 4
juniors be formed from a group of  8  freshmen and  11 
juniors?

How many ways can a baseball coach arrange the
order of 9 batters if there are 15 players on the team?

A conductor needs 5 cellists and 5 violinists to play at
a diplomatic event. To do this, he ranks the orchestra’s 10
cellists and 16 violinists in order of musical proficiency.
What is the ratio of the total cellist rankings possible to the
total violinist rankings possible?

A motorcycle shop has 10 choppers, 6 bobbers, and 5
café racers—different types of vintage motorcycles. How
many ways can the shop choose 3 choppers, 5 bobbers, and
2 café racers for a weekend showcase?

A skateboard shop stocks 10 types of board decks, 3
types of trucks, and 4 types of wheels. How many different
skateboards can be constructed?

Just-For-Kicks Sneaker Company offers an online
customizing service. How many ways are there to design a
custom pair of Just-For-Kicks sneakers if a customer can
choose from a basic shoe up to 11 customizable options?

A car wash offers the following optional services to
the basic wash: clear coat wax, triple foam polish,
undercarriage wash, rust inhibitor, wheel brightener, air
freshener, and interior shampoo. How many washes are
possible if any number of options can be added to the basic
wash?

Susan bought 20 plants to arrange along the border of
her garden. How many distinct arrangements can she make
if the plants are comprised of 6 tulips, 6 roses, and 8
daisies?

How many unique ways can a string of Christmas
lights be arranged from 9 red, 10 green, 6 white, and 12
gold color bulbs?
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13.6 | Binomial Theorem

Learning Objectives

In this section, you will:

13.6.1 Apply the Binomial Theorem.

A polynomial with two terms is called a binomial. We have already learned to multiply binomials and to raise binomials
to powers, but raising a binomial to a high power can be tedious and time-consuming. In this section, we will discuss a
shortcut that will allow us to find  (x + y)n  without multiplying the binomial by itself n times.

Identifying Binomial Coefficients
In Counting Principles, we studied combinations. In the shortcut to finding  (x + y)n,  we will need to use combinations

to find the coefficients that will appear in the expansion of the binomial. In this case, we use the notation  ⎛⎝nr
⎞
⎠  instead of

C(n, r), but it can be calculated in the same way. So

()  ⎛⎝nr
⎞
⎠ = C(n, r) = n !

r !(n − r) !  

The combination  ⎛⎝nr
⎞
⎠  is called a binomial coefficient. An example of a binomial coefficient is  ⎛⎝

5
2

⎞
⎠ = C(5, 2) = 10. 

Binomial Coefficients

If n and r are integers greater than or equal to 0 with n ≥ r, then the binomial coefficient is

⎛
⎝
n
r

⎞
⎠ = C(n, r) = n !

r !(n − r) !

Is a binomial coefficient always a whole number?

Yes. Just as the number of combinations must always be a whole number, a binomial coefficient will always be a
whole number.

Example 13.37

Finding Binomial Coefficients

Find each binomial coefficient.

a. ⎛
⎝
5
3

⎞
⎠

b. ⎛
⎝
9
2

⎞
⎠

c. ⎛
⎝
9
7

⎞
⎠

Solution
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Use the formula to calculate each binomial coefficient. You can also use the nCr function on your calculator.

⎛
⎝
n
r

⎞
⎠ = C(n, r) = n !

r !(n − r) !

a. ⎛
⎝
5
3

⎞
⎠ = 5!

3!(5 − 3)! = 5 ⋅ 4 ⋅ 3!
3!2! = 10

b. ⎛
⎝
9
2

⎞
⎠ = 9!

2!(9 − 2)! = 9 ⋅ 8 ⋅ 7!
2!7! = 36

c. ⎛
⎝
9
7

⎞
⎠ = 9!

7!(9 − 7)! = 9 ⋅ 8 ⋅ 7!
7!2! = 36

Analysis
Notice that we obtained the same result for parts (b) and (c). If you look closely at the solution for these two parts,
you will see that you end up with the same two factorials in the denominator, but the order is reversed, just as
with combinations.

() ⎛
⎝
n
r

⎞
⎠ = ⎛

⎝
n

n − r
⎞
⎠

Find each binomial coefficient.

a.  ⎛⎝
7
3

⎞
⎠ 

b.  ⎛⎝
11
4

⎞
⎠ 

Using the Binomial Theorem
When we expand (x + y)n by multiplying, the result is called a binomial expansion, and it includes binomial coefficients.

If we wanted to expand (x + y)52, we might multiply (x + y) by itself fifty-two times. This could take hours! If we

examine some simple binomial expansions, we can find patterns that will lead us to a shortcut for finding more complicated
binomial expansions.

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2 y + 3xy2 + y3

(x + y)4 = x4 + 4x3 y + 6x2 y2 + 4xy3 + y4

First, let’s examine the exponents. With each successive term, the exponent for x decreases and the exponent for y
increases. The sum of the two exponents is n for each term.

Next, let’s examine the coefficients. Notice that the coefficients increase and then decrease in a symmetrical pattern. The
coefficients follow a pattern:

⎛
⎝
n
0

⎞
⎠,

⎛
⎝
n
1

⎞
⎠,

⎛
⎝
n
2

⎞
⎠, ..., ⎛

⎝
n
n

⎞
⎠.

These patterns lead us to the Binomial Theorem, which can be used to expand any binomial.

(x + y)n = ∑
k = 0

n
⎛
⎝
n
k

⎞
⎠x

n − kyk

= xn + ⎛
⎝
n
1

⎞
⎠x

n − 1 y + ⎛
⎝
n
2

⎞
⎠x

n − 2 y2 + ... + ⎛
⎝

n
n − 1

⎞
⎠xyn − 1 + yn
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Another way to see the coefficients is to examine the expansion of a binomial in general form,  x + y,   to successive powers

1, 2, 3, and 4.

(x + y)1 = x + y

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2 y + 3xy2 + y3

(x + y)4 = x4 + 4x3 y + 6x2 y2 + 4xy3 + y4

Can you guess the next expansion for the binomial  (x + y)5?  

Figure 13.20

See Figure 13.20, which illustrates the following:

• There are n + 1 terms in the expansion of (x + y)n.

• The degree (or sum of the exponents) for each term is n.

• The powers on x begin with n and decrease to 0.

• The powers on y begin with 0 and increase to n.

• The coefficients are symmetric.

To determine the expansion on (x + y)5, we see n = 5, thus, there will be 5+1 = 6 terms. Each term has a combined

degree of 5. In descending order for powers of x, the pattern is as follows:

• Introduce x5, and then for each successive term reduce the exponent on x by 1 until x0 = 1 is reached.

• Introduce y0 = 1, and then increase the exponent on y by 1 until y5 is reached.

x5,   x4 y,   x3 y2,   x2 y3,   xy4,   y5

The next expansion would be

(x + y)5 = x5 + 5x4 y + 10x3 y2 + 10x2 y3 + 5xy4 + y5.

But where do those coefficients come from? The binomial coefficients are symmetric. We can see these coefficients in an
array known as Pascal's Triangle, shown in Figure 13.21.
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Figure 13.21

To generate Pascal’s Triangle, we start by writing a 1. In the row below, row 2, we write two 1’s. In the 3rd row, flank the
ends of the rows with 1’s, and add 1 + 1 to find the middle number, 2. In the nth row, flank the ends of the row with 1’s.
Each element in the triangle is the sum of the two elements immediately above it.

To see the connection between Pascal’s Triangle and binomial coefficients, let us revisit the expansion of the binomials in
general form.

The Binomial Theorem

The Binomial Theorem is a formula that can be used to expand any binomial.

(13.12)
(x + y)n = ∑

k = 0

n
⎛
⎝
n
k

⎞
⎠x

n − k yk

= xn + ⎛
⎝
n
1

⎞
⎠x

n − 1 y + ⎛
⎝
n
2

⎞
⎠x

n − 2 y2 + ... + ⎛
⎝

n
n − 1

⎞
⎠xyn − 1 + yn

Given a binomial, write it in expanded form.

1. Determine the value of n according to the exponent.

2. Evaluate the k = 0 through k = n using the Binomial Theorem formula.

3. Simplify.

Example 13.38

Expanding a Binomial

Write in expanded form.

a.  (x + y)5  
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b.  ⎛⎝3x − y⎞
⎠
4

Solution
a. Substitute n = 5 into the formula. Evaluate the k = 0 through k = 5 terms. Simplify.

(x + y)5 = ⎛
⎝
5
0

⎞
⎠x5 y0 + ⎛

⎝
5
1

⎞
⎠x4 y1 + ⎛

⎝
5
2

⎞
⎠x3 y2 + ⎛

⎝
5
3

⎞
⎠x2 y3 + ⎛

⎝
5
4

⎞
⎠x1 y4 + ⎛

⎝
5
5

⎞
⎠x0 y5

(x + y)5 = x5 + 5x4 y + 10x3 y2 + 10x2 y3 + 5xy4 + y5

b. Substitute n = 4 into the formula. Evaluate the k = 0 through k = 4 terms. Notice that 3x is in the
place that was occupied by x and that – y is in the place that was occupied by y. So we substitute

them. Simplify.

(3x − y)4 = ⎛
⎝
4
0

⎞
⎠(3x)4 ( − y)0 + ⎛

⎝
4
1

⎞
⎠(3x)3 ( − y)1 + ⎛

⎝
4
2

⎞
⎠(3x)2 ( − y)2 + ⎛

⎝
4
3

⎞
⎠(3x)1 ( − y)3 + ⎛

⎝
4
4

⎞
⎠(3x)0 ( − y)4

(3x − y)4 = 81x4 − 108x3 y + 54x2 y2 − 12xy3 + y4

Analysis
Notice the alternating signs in part b. This happens because  ( − y)  raised to odd powers is negative, but  ( − y) 
raised to even powers is positive. This will occur whenever the binomial contains a subtraction sign.

Write in expanded form.

a. (x − y)5

b. (2x + 5y)3

Using the Binomial Theorem to Find a Single Term
Expanding a binomial with a high exponent such as  (x + 2y)16   can be a lengthy process.

Sometimes we are interested only in a certain term of a binomial expansion. We do not need to fully expand a binomial to
find a single specific term.

Note the pattern of coefficients in the expansion of  (x + y)5.

(x + y)5 = x5 + ⎛
⎝
5
1

⎞
⎠x4 y + ⎛

⎝
5
2

⎞
⎠x3 y2 + ⎛

⎝
5
3

⎞
⎠x2 y3 + ⎛

⎝
5
4

⎞
⎠xy4 + y5

The second term is  ⎛⎝
5
1

⎞
⎠x4 y. The third term is  ⎛⎝

5
2

⎞
⎠x3 y2. We can generalize this result.

⎛
⎝
n
r

⎞
⎠xn − r yr

The (r+1)th Term of a Binomial Expansion

The  (r + 1)th  term of the binomial expansion of  (x + y)n   is:

(13.13)⎛
⎝
n
r

⎞
⎠xn − r yr

1518 Chapter 13 Sequences, Probability, and Counting Theory

This content is available for free at https://cnx.org/content/col11758/1.5



13.52

Given a binomial, write a specific term without fully expanding.

1. Determine the value of n according to the exponent.

2. Determine (r + 1).

3. Determine r.

4. Replace r in the formula for the (r + 1)th term of the binomial expansion.

Example 13.39

Writing a Given Term of a Binomial Expansion

Find the tenth term of  (x + 2y)16  without fully expanding the binomial.

Solution
Because we are looking for the tenth term,  r + 1 = 10,   we will use  r = 9 in our calculations.

⎛
⎝
n
r

⎞
⎠xn − r yr

⎛
⎝
16
9

⎞
⎠x16 − 9 (2y)9 = 5,857,280x7 y9

Find the sixth term of  (3x − y)9  without fully expanding the binomial.

Access these online resources for additional instruction and practice with binomial expansion.

• The Binomial Theorem (http://openstaxcollege.org/l/binomialtheorem)

• Binomial Theorem Example (http://openstaxcollege.org/l/btexample)
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13.6 EXERCISES
Verbal

What is a binomial coefficient, and how it is
calculated?

What role do binomial coefficients play in a binomial
expansion? Are they restricted to any type of number?

What is the Binomial Theorem and what is its use?

When is it an advantage to use the Binomial
Theorem? Explain.

Algebraic
For the following exercises, evaluate the binomial
coefficient.

⎛
⎝
6
2

⎞
⎠

⎛
⎝
5
3

⎞
⎠

⎛
⎝
7
4

⎞
⎠

⎛
⎝
9
7

⎞
⎠

⎛
⎝
10
9

⎞
⎠

⎛
⎝
25
11

⎞
⎠

⎛
⎝
17
6

⎞
⎠

⎛
⎝
200
199

⎞
⎠

For the following exercises, use the Binomial Theorem to
expand each binomial.

(4a − b)3

(5a + 2)3

(3a + 2b)3

(2x + 3y)4

(4x + 2y)5

(3x − 2y)4

(4x − 3y)5

⎛
⎝
1
x + 3y⎞

⎠
5

(x−1 + 2y−1)4

( x − y)5

For the following exercises, use the Binomial Theorem to
write the first three terms of each binomial.

(a + b)17

(x − 1)18

(a − 2b)15

(x − 2y)8

(3a + b)20

(2a + 4b)7

(x3 − y)8

For the following exercises, find the indicated term of each
binomial without fully expanding the binomial.

The fourth term of  (2x − 3y)4

The fourth term of  (3x − 2y)5

The third term of  (6x − 3y)7

The eighth term of  (7 + 5y)14

The seventh term of  (a + b)11

The fifth term of  (x − y)7

The tenth term of  (x − 1)12

The ninth term of  (a − 3b2)11
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361.
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363.

364.

365.

366.

367.

368.

369.

370.

The fourth term of  ⎛⎝x3 − 1
2

⎞
⎠
10

The eighth term of  ⎛⎝
y
2 + 2

x
⎞
⎠
9

Graphical
For the following exercises, use the Binomial Theorem
to expand the binomial f (x) = (x + 3)4. Then find and

graph each indicated sum on one set of axes.

Find and graph   f1(x),   such that   f1(x)  is the first

term of the expansion.

Find and graph   f2(x),   such that   f2(x)  is the sum of

the first two terms of the expansion.

Find and graph   f3(x),   such that   f3(x)  is the sum of

the first three terms of the expansion.

Find and graph   f4(x),   such that   f4(x)  is the sum of

the first four terms of the expansion.

Find and graph   f5(x),   such that   f5(x)  is the sum of

the first five terms of the expansion.

Extensions

In the expansion of  (5x + 3y)n,   each term has the

form  ⎛⎝
n
k

⎞
⎠a

n – k bk,  where  k  successively takes on the

value  0, 1, 2,  ...,  n. If  ⎛⎝
n
k

⎞
⎠ = ⎛

⎝
7
2

⎞
⎠,  what is the

corresponding term?

In the expansion of  (a + b)n,   the coefficient of

 an − k bk   is the same as the coefficient of which other
term?

Consider the expansion of  (x + b)40. What is the
exponent of b in the kth term?

Find  ⎛⎝
n

k − 1
⎞
⎠ + ⎛

⎝
n
k

⎞
⎠  and write the answer as a

binomial coefficient in the form  ⎛⎝
n
k

⎞
⎠.  Prove it. Hint: Use

the fact that, for any integer  p,   such that

 p ≥ 1,  p ! = p(p − 1)!.

Which expression cannot be expanded using the
Binomial Theorem? Explain.

• (x2 − 2x + 1)

• ( a + 4 a − 5)8

• (x3 + 2y2 − z)5

• (3x2 − 2y3)
12
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13.7 | Probability

Learning Objectives

In this section, you will:

13.7.1 Construct probability models.
13.7.2 Compute probabilities of equally likely outcomes.
13.7.3 Compute probabilities of the union of two events.
13.7.4 Use the complement rule to find probabilities.
13.7.5 Compute probability using counting theory.

Figure 13.22 An example of a “spaghetti model,” which can be used to predict possible paths of a tropical storm.[1]

Residents of the Southeastern United States are all too familiar with charts, known as spaghetti models, such as the one in
Figure 13.22. They combine a collection of weather data to predict the most likely path of a hurricane. Each colored line
represents one possible path. The group of squiggly lines can begin to resemble strands of spaghetti, hence the name. In this
section, we will investigate methods for making these types of predictions.

Constructing Probability Models
Suppose we roll a six-sided number cube. Rolling a number cube is an example of an experiment, or an activity with
an observable result. The numbers on the cube are possible results, or outcomes, of this experiment. The set of all
possible outcomes of an experiment is called the sample space of the experiment. The sample space for this experiment is
{1, 2, 3, 4, 5, 6}. An event is any subset of a sample space.

The likelihood of an event is known as probability. The probability of an event p is a number that always satisfies

0 ≤ p ≤ 1, where 0 indicates an impossible event and 1 indicates a certain event. A probability model is a mathematical

1. The figure is for illustrative purposes only and does not model any particular storm.
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description of an experiment listing all possible outcomes and their associated probabilities. For instance, if there is a 1%
chance of winning a raffle and a 99% chance of losing the raffle, a probability model would look much like Table 13.3.

Outcome Probability

Winning the raffle 1%

Losing the raffle 99%

Table 13.3

The sum of the probabilities listed in a probability model must equal 1, or 100%.

Given a probability event where each event is equally likely, construct a probability model.

1. Identify every outcome.

2. Determine the total number of possible outcomes.

3. Compare each outcome to the total number of possible outcomes.

Example 13.40

Constructing a Probability Model

Construct a probability model for rolling a single, fair die, with the event being the number shown on the die.

Solution
Begin by making a list of all possible outcomes for the experiment. The possible outcomes are the numbers that
can be rolled: 1, 2, 3, 4, 5, and 6. There are six possible outcomes that make up the sample space.

Assign probabilities to each outcome in the sample space by determining a ratio of the outcome to the number of
possible outcomes. There is one of each of the six numbers on the cube, and there is no reason to think that any
particular face is more likely to show up than any other one, so the probability of rolling any number is  16.

Outcome Roll of 1 Roll of 2 Roll of 3 Roll of 4 Roll of 5 Roll of 6

Probability 1
6

1
6

1
6

1
6

1
6

1
6

Table 13.4

Do probabilities always have to be expressed as fractions?

No. Probabilities can be expressed as fractions, decimals, or percents. Probability must always be a number
between 0 and 1, inclusive of 0 and 1.

Construct a probability model for tossing a fair coin.
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Computing Probabilities of Equally Likely Outcomes
Let  S  be a sample space for an experiment. When investigating probability, an event is any subset of  S. When the outcomes
of an experiment are all equally likely, we can find the probability of an event by dividing the number of outcomes in
the event by the total number of outcomes in  S.  Suppose a number cube is rolled, and we are interested in finding the
probability of the event “rolling a number less than or equal to 4.” There are 4 possible outcomes in the event and 6 possible
outcomes in  S,   so the probability of the event is  46 = 2

3. 

Computing the Probability of an Event with Equally Likely Outcomes

The probability of an event E in an experiment with sample space S with equally likely outcomes is given by

(13.14) P(E) = number of elements in E
number of elements in S = n(E)

n(S)

 E is a subset of S, so it is always true that 0 ≤ P(E) ≤ 1. 

Example 13.41

Computing the Probability of an Event with Equally Likely Outcomes

A number cube is rolled. Find the probability of rolling an odd number.

Solution
The event “rolling an odd number” contains three outcomes. There are 6 equally likely outcomes in the sample
space. Divide to find the probability of the event.

 P(E) = 3
6 = 1

2

A number cube is rolled. Find the probability of rolling a number greater than 2.

Computing the Probability of the Union of Two Events
We are often interested in finding the probability that one of multiple events occurs. Suppose we are playing a card game,
and we will win if the next card drawn is either a heart or a king. We would be interested in finding the probability of the
next card being a heart or a king. The union of two events  E and F, written E ∪ F,   is the event that occurs if either or
both events occur.

 P(E ∪ F) = P(E) + P(F) − P(E ∩ F) 

Suppose the spinner in Figure 13.23 is spun. We want to find the probability of spinning orange or spinning a  b.
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Figure 13.23

There are a total of 6 sections, and 3 of them are orange. So the probability of spinning orange is  36 = 1
2. There are a total

of 6 sections, and 2 of them have a  b.  So the probability of spinning a  b is 2
6 = 1

3. If we added these two probabilities,

we would be counting the sector that is both orange and a b twice. To find the probability of spinning an orange or a b,
we need to subtract the probability that the sector is both orange and has a b.

 12 + 1
3 − 1

6 = 2
3  

The probability of spinning orange or a b  is 2
3.

Probability of the Union of Two Events

The probability of the union of two events E and F (written  E ∪ F ) equals the sum of the probability of E and the
probability of F minus the probability of E and F occurring together ( which is called the intersection of E and F
and is written as E ∩ F ).

(13.15) P(E ∪ F) = P(E) + P(F) − P(E ∩ F) 

Example 13.42

Computing the Probability of the Union of Two Events

A card is drawn from a standard deck. Find the probability of drawing a heart or a 7.

Solution
A standard deck contains an equal number of hearts, diamonds, clubs, and spades. So the probability of drawing
a heart is  14. There are four 7s in a standard deck, and there are a total of 52 cards. So the probability of drawing

a 7 is   1
13.

The only card in the deck that is both a heart and a 7 is the 7 of hearts, so the probability of drawing both a heart
and a 7 is   1

52.  Substitute  P(H) = 1
4,  P(7) = 1

13,  and  P(H ∩ 7) = 1
52   into the formula.
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P(E ∪ F) = P(E) + P(F) − P(E ∩ F)

= 1
4 + 1

13 − 1
52

= 4
13

The probability of drawing a heart or a 7 is   4
13.

A card is drawn from a standard deck. Find the probability of drawing a red card or an ace.

Computing the Probability of Mutually Exclusive Events
Suppose the spinner in Figure 13.23 is spun again, but this time we are interested in the probability of spinning an orange
or a  d. There are no sectors that are both orange and contain a  d,   so these two events have no outcomes in common.
Events are said to be mutually exclusive events when they have no outcomes in common. Because there is no overlap,
there is nothing to subtract, so the general formula is

 P(E ∪ F) = P(E) + P(F) 
Notice that with mutually exclusive events, the intersection of  E  and  F  is the empty set. The probability of spinning an

orange is  36 = 1
2   and the probability of spinning a d is  16. We can find the probability of spinning an orange or a d simply

by adding the two probabilities.

P(E ∪ F) = P(E) + P(F)

= 1
2 + 1

6
= 2

3

The probability of spinning an orange or a d is  23.

Probability of the Union of Mutually Exclusive Events

The probability of the union of two mutually exclusive events  E and F  is given by

(13.16) P(E ∪ F) = P(E) + P(F) 

Given a set of events, compute the probability of the union of mutually exclusive events.

1. Determine the total number of outcomes for the first event.

2. Find the probability of the first event.

3. Determine the total number of outcomes for the second event.

4. Find the probability of the second event.

5. Add the probabilities.
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Example 13.43

Computing the Probability of the Union of Mutually Exclusive Events

A card is drawn from a standard deck. Find the probability of drawing a heart or a spade.

Solution
The events “drawing a heart” and “drawing a spade” are mutually exclusive because they cannot occur at the
same time. The probability of drawing a heart is  14,   and the probability of drawing a spade is also  14,   so the

probability of drawing a heart or a spade is

 14 + 1
4 = 1

2  

A card is drawn from a standard deck. Find the probability of drawing an ace or a king.

Using the Complement Rule to Compute Probabilities
We have discussed how to calculate the probability that an event will happen. Sometimes, we are interested in finding the
probability that an event will not happen. The complement of an event  E,   denoted  E′,   is the set of outcomes in the
sample space that are not in  E.  For example, suppose we are interested in the probability that a horse will lose a race. If
event  W   is the horse winning the race, then the complement of event  W   is the horse losing the race.

To find the probability that the horse loses the race, we need to use the fact that the sum of all probabilities in a probability
model must be 1.

 P(E′) = 1 − P(E) 
The probability of the horse winning added to the probability of the horse losing must be equal to 1. Therefore, if the
probability of the horse winning the race is  19,   the probability of the horse losing the race is simply

 1 − 1
9 = 8

9  

The Complement Rule

The probability that the complement of an event will occur is given by

(13.17) P(E′) = 1 − P(E) 

Example 13.44

Using the Complement Rule to Calculate Probabilities

Two six-sided number cubes are rolled.

a. Find the probability that the sum of the numbers rolled is less than or equal to 3.

b. Find the probability that the sum of the numbers rolled is greater than 3.
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Solution
The first step is to identify the sample space, which consists of all the possible outcomes. There are two number
cubes, and each number cube has six possible outcomes. Using the Multiplication Principle, we find that there are
6×6,   or  36 total possible outcomes. So, for example, 1-1 represents a 1 rolled on each number cube.

1-1 1-2 1-3 1-4 1-5 1-6

2-1 2-2 2-3 2-4 2-5 2-6

3-1 3-2 3-3 3-4 3-5 3-6

4-1 4-2 4-3 4-4 4-5 4-6

5-1 5-2 5-3 5-4 5-5 5-6

6-1 6-2 6-3 6-4 6-5 6-6

Table 13.5

a. We need to count the number of ways to roll a sum of 3 or less. These would include the following
outcomes: 1-1, 1-2, and 2-1. So there are only three ways to roll a sum of 3 or less. The probability is

3
36 = 1

12  
b. Rather than listing all the possibilities, we can use the Complement Rule. Because we have already found

the probability of the complement of this event, we can simply subtract that probability from 1 to find the
probability that the sum of the numbers rolled is greater than 3.

P(E′) = 1 − P(E)

= 1 − 1
12

= 11
12

Two number cubes are rolled. Use the Complement Rule to find the probability that the sum is less than
10.

Computing Probability Using Counting Theory
Many interesting probability problems involve counting principles, permutations, and combinations. In these problems, we
will use permutations and combinations to find the number of elements in events and sample spaces. These problems can
be complicated, but they can be made easier by breaking them down into smaller counting problems.

Assume, for example, that a store has 8 cellular phones and that 3 of those are defective. We might want to find the
probability that a couple purchasing 2 phones receives 2 phones that are not defective. To solve this problem, we need to
calculate all of the ways to select 2 phones that are not defective as well as all of the ways to select 2 phones. There are 5
phones that are not defective, so there are  C(5, 2) ways to select 2 phones that are not defective. There are 8 phones, so
there are  C(8, 2) ways to select 2 phones. The probability of selecting 2 phones that are not defective is:
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ways to select 2 phones that are not defective
ways to select 2 phones = C(5, 2)

C(8, 2)

                                                                        = 10
28

                                                                        = 5
14

Example 13.45

Computing Probability Using Counting Theory

A child randomly selects 5 toys from a bin containing 3 bunnies, 5 dogs, and 6 bears.

a. Find the probability that only bears are chosen.

b. Find the probability that 2 bears and 3 dogs are chosen.

c. Find the probability that at least 2 dogs are chosen.

Solution
a. We need to count the number of ways to choose only bears and the total number of possible ways to select

5 toys. There are 6 bears, so there are  C(6, 5) ways to choose 5 bears. There are 14 toys, so there are
 C(14, 5) ways to choose any 5 toys.

  C(6,5)
C(14,5) = 6

2,002 = 3
1,001  

b. We need to count the number of ways to choose 2 bears and 3 dogs and the total number of possible ways
to select 5 toys. There are 6 bears, so there are  C(6, 2) ways to choose 2 bears. There are 5 dogs, so there
are  C(5, 3) ways to choose 3 dogs. Since we are choosing both bears and dogs at the same time, we will
use the Multiplication Principle. There are  C(6, 2) ⋅ C(5, 3) ways to choose 2 bears and 3 dogs. We can
use this result to find the probability.

 C(6,2)C(5,3)
C(14,5) = 15 ⋅ 10

2,002 = 75
1,001  

c. It is often easiest to solve “at least” problems using the Complement Rule. We will begin by finding the
probability that fewer than 2 dogs are chosen. If less than 2 dogs are chosen, then either no dogs could be
chosen, or 1 dog could be chosen.
When no dogs are chosen, all 5 toys come from the 9 toys that are not dogs. There are  C(9, 5) ways to
choose toys from the 9 toys that are not dogs. Since there are 14 toys, there are  C(14, 5) ways to choose
the 5 toys from all of the toys.

  C(9,5)
C(14,5) = 63

1,001  

If there is 1 dog chosen, then 4 toys must come from the 9 toys that are not dogs, and 1 must come
from the 5 dogs. Since we are choosing both dogs and other toys at the same time, we will use the
Multiplication Principle. There are  C(5, 1) ⋅ C(9, 4) ways to choose 1 dog and 1 other toy.

 C(5,1)C(9,4)
C(14,5) = 5 ⋅ 126

2,002 = 315
1,001  

Because these events would not occur together and are therefore mutually exclusive, we add the
probabilities to find the probability that fewer than 2 dogs are chosen.

  63
1,001 + 315

1,001 = 378
1,001  

We then subtract that probability from 1 to find the probability that at least 2 dogs are chosen.
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 1 − 378
1,001 = 623

1,001  

A child randomly selects 3 gumballs from a container holding 4 purple gumballs, 8 yellow gumballs,
and 2 green gumballs.

a. Find the probability that all 3 gumballs selected are purple.

b. Find the probability that no yellow gumballs are selected.

c. Find the probability that at least 1 yellow gumball is selected.

Access these online resources for additional instruction and practice with probability.

• Introduction to Probability (http://openstaxcollege.org/l/introprob)

• Determining Probability (http://openstaxcollege.org/l/determineprob)

Visit this website (http://openstaxcollege.org/l/PreCalcLPC11) for additional practice questions from
Learningpod.
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13.7 EXERCISES
Verbal

What term is used to express the likelihood of an
event occurring? Are there restrictions on its values? If so,
what are they? If not, explain.

What is a sample space?

What is an experiment?

What is the difference between events and outcomes?
Give an example of both using the sample space of tossing
a coin 50 times.

The union of two sets is defined as a set of elements
that are present in at least one of the sets. How is this
similar to the definition used for the union of two events
from a probability model? How is it different?

Numeric
For the following exercises, use the spinner shown in
Figure 13.24 to find the probabilities indicated.

Figure 13.24

Landing on red

Landing on a vowel

Not landing on blue

Landing on purple or a vowel

Landing on blue or a vowel

Landing on green or blue

Landing on yellow or a consonant

Not landing on yellow or a consonant

For the following exercises, two coins are tossed.

What is the sample space?

Find the probability of tossing two heads.

Find the probability of tossing exactly one tail.

Find the probability of tossing at least one tail.

For the following exercises, four coins are tossed.

What is the sample space?

Find the probability of tossing exactly two heads.

Find the probability of tossing exactly three heads.

Find the probability of tossing four heads or four tails.

Find the probability of tossing all tails.

Find the probability of tossing not all tails.

Find the probability of tossing exactly two heads or at
least two tails.

Find the probability of tossing either two heads or
three heads.

For the following exercises, one card is drawn from a
standard deck of  52  cards. Find the probability of drawing
the following:

A club

A two

Six or seven

Red six

An ace or a diamond

A non-ace

A heart or a non-jack

For the following exercises, two dice are rolled, and the
results are summed.

Construct a table showing the sample space of
outcomes and sums.

Find the probability of rolling a sum of  3. 

Find the probability of rolling at least one four or a
sum of  8.

Find the probability of rolling an odd sum less than
 9.

Find the probability of rolling a sum greater than or
equal to  15.
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425.

426.

427.

428.

429.

430.

Find the probability of rolling a sum less than  15.

Find the probability of rolling a sum less than  6  or
greater than  9.

Find the probability of rolling a sum between  6  and
 9,  inclusive.

Find the probability of rolling a sum of  5  or  6.

Find the probability of rolling any sum other than  5 
or  6.

For the following exercises, a coin is tossed, and a card
is pulled from a standard deck. Find the probability of the
following:

A head on the coin or a club

A tail on the coin or red ace

A head on the coin or a face card

No aces

For the following exercises, use this scenario: a bag of
M&Ms contains  12  blue,  6  brown,  10  orange,  8  yellow,
 8  red, and  4  green M&Ms. Reaching into the bag, a
person grabs 5 M&Ms.

What is the probability of getting all blue M&Ms?

What is the probability of getting  4  blue M&Ms?

What is the probability of getting  3  blue M&Ms?

What is the probability of getting no brown M&Ms?

Extensions
Use the following scenario for the exercises that follow: In
the game of Keno, a player starts by selecting  20  numbers
from the numbers  1  to  80. After the player makes his
selections,  20 winning numbers are randomly selected
from numbers  1  to  80. A win occurs if the player has
correctly selected  3, 4,   or  5  of the  20 winning numbers.
(Round all answers to the nearest hundredth of a percent.)

What is the percent chance that a player selects
exactly 3 winning numbers?

What is the percent chance that a player selects
exactly 4 winning numbers?

What is the percent chance that a player selects all 5
winning numbers?

What is the percent chance of winning?

How much less is a player’s chance of selecting 3
winning numbers than the chance of selecting either 4 or 5
winning numbers?

Real-World Applications
Use this data for the exercises that follow: In 2013, there
were roughly 317 million citizens in the United States, and
about 40 million were elderly (aged 65 and over).[2]

If you meet a U.S. citizen, what is the percent chance
that the person is elderly? (Round to the nearest tenth of a
percent.)

If you meet five U.S. citizens, what is the percent
chance that exactly one is elderly? (Round to the nearest
tenth of a percent.)

If you meet five U.S. citizens, what is the percent
chance that three are elderly? (Round to the nearest tenth of
a percent.)

If you meet five U.S. citizens, what is the percent
chance that four are elderly? (Round to the nearest
thousandth of a percent.)

It is predicted that by 2030, one in five U.S. citizens
will be elderly. How much greater will the chances of
meeting an elderly person be at that time? What policy
changes do you foresee if these statistics hold true?

2. United States Census Bureau. http://www.census.gov
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Addition Principle

annuity

arithmetic sequence

arithmetic series

binomial coefficient

binomial expansion

Binomial Theorem

combination

common difference

common ratio

complement of an event

diverge

event

experiment

explicit formula

finite sequence

Fundamental Counting Principle

geometric sequence

geometric series

index of summation

infinite sequence

infinite series

lower limit of summation

Multiplication Principle

mutually exclusive events

n factorial

nth partial sum

nth term of a sequence

outcomes

CHAPTER 13 REVIEW

KEY TERMS
if one event can occur in m ways and a second event with no common outcomes can occur in n

ways, then the first or second event can occur in m + n ways

an investment in which the purchaser makes a sequence of periodic, equal payments

a sequence in which the difference between any two consecutive terms is a constant

the sum of the terms in an arithmetic sequence

the number of ways to choose r objects from n objects where order does not matter; equivalent to
 C(n, r),   denoted  ⎛⎝nr

⎞
⎠

the result of expanding  (x + y)n   by multiplying

a formula that can be used to expand any binomial

a selection of objects in which order does not matter

the difference between any two consecutive terms in an arithmetic sequence

the ratio between any two consecutive terms in a geometric sequence

the set of outcomes in the sample space that are not in the event  E 
a series is said to diverge if the sum is not a real number

any subset of a sample space

an activity with an observable result

a formula that defines each term of a sequence in terms of its position in the sequence

a function whose domain consists of a finite subset of the positive integers  {1, 2, … n}  for some
positive integer  n

if one event can occur in m ways and a second event can occur in n ways after the
first event has occurred, then the two events can occur in m×n ways; also known as the Multiplication Principle

a sequence in which the ratio of a term to a previous term is a constant

the sum of the terms in a geometric sequence

in summation notation, the variable used in the explicit formula for the terms of a series and written
below the sigma with the lower limit of summation

a function whose domain is the set of positive integers

the sum of the terms in an infinite sequence

the number used in the explicit formula to find the first term in a series

if one event can occur in m ways and a second event can occur in n ways after the first event
has occurred, then the two events can occur in m×n ways; also known as the Fundamental Counting Principle

events that have no outcomes in common

the product of all the positive integers from 1 to  n
the sum of the first n terms of a sequence

a formula for the general term of a sequence

the possible results of an experiment
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permutation

probability

probability model

recursive formula

sample space

sequence

series

summation notation

term

union of two events

upper limit of summation

a selection of objects in which order matters

a number from 0 to 1 indicating the likelihood of an event

a mathematical description of an experiment listing all possible outcomes and their associated
probabilities

a formula that defines each term of a sequence using previous term(s)

the set of all possible outcomes of an experiment

a function whose domain is a subset of the positive integers

the sum of the terms in a sequence

a notation for series using the Greek letter sigma; it includes an explicit formula and specifies the
first and last terms in the series

a number in a sequence

the event that occurs if either or both events occur

the number used in the explicit formula to find the last term in a series

KEY EQUATIONS

Formula for a factorial
0! = 1
1! = 1
n ! = n(n − 1)(n − 2) ⋯ (2)(1), for n ≥ 2

recursive formula for nth term of an arithmetic sequence an = an − 1 + dn ≥ 2

explicit formula for nth term of an arithmetic sequence an = a1 + d(n − 1)

recursive formula for nth term of a geometric sequence an = ran − 1, n ≥ 2

explicit formula for  nth  term of a geometric sequence an = a1 rn − 1

sum of the first  n  terms of an arithmetic series Sn = n(a1 + an)
2

sum of the first  n  terms of a geometric series Sn = a1(1 − rn)
1 − r ⋅ r ≠ 1

sum of an infinite geometric series with   – 1 < r <  1 Sn = a1
1 − r ⋅ r ≠ 1

1534 Chapter 13 Sequences, Probability, and Counting Theory

This content is available for free at https://cnx.org/content/col11758/1.5



number of permutations of  n  distinct objects taken  r  at a time P(n, r) = n !
(n − r) !

number of combinations of  n  distinct objects taken  r  at a time C(n, r) = n !
r !(n − r) !

number of permutations of  n  non-distinct objects
n !

r1 !r2 ! … rk !

Binomial Theorem (x + y)n = ∑
k − 0

n
⎛
⎝
n
k

⎞
⎠x

n − k yk

(r + 1)th  term of a binomial expansion ⎛
⎝
n
r

⎞
⎠xn − r yr

probability of an event with equally likely outcomes P(E) = n(E)
n(S)

probability of the union of two events P(E ∪ F) = P(E) + P(F) − P(E ∩ F)

probability of the union of mutually exclusive events P(E ∪ F) = P(E) + P(F)

probability of the complement of an event P(E ') = 1 − P(E)

KEY CONCEPTS
13.1 Sequences and Their Notations

• A sequence is a list of numbers, called terms, written in a specific order.

• Explicit formulas define each term of a sequence using the position of the term. See Example 13.1, Example
13.2, and Example 13.3.

• An explicit formula for the  nth  term of a sequence can be written by analyzing the pattern of several terms. See
Example 13.4.

• Recursive formulas define each term of a sequence using previous terms.

• Recursive formulas must state the initial term, or terms, of a sequence.

• A set of terms can be written by using a recursive formula. See Example 13.5 and Example 13.6.

• A factorial is a mathematical operation that can be defined recursively.

• The factorial of  n  is the product of all integers from 1 to  n  See Example 13.7.

13.2 Arithmetic Sequences

• An arithmetic sequence is a sequence where the difference between any two consecutive terms is a constant.

• The constant between two consecutive terms is called the common difference.
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• The common difference is the number added to any one term of an arithmetic sequence that generates the subsequent
term. See Example 13.8.

• The terms of an arithmetic sequence can be found by beginning with the initial term and adding the common
difference repeatedly. See Example 13.9 and Example 13.10.

• A recursive formula for an arithmetic sequence with common difference d is given by an = an − 1 + d, n ≥ 2.
See Example 13.11.

• As with any recursive formula, the initial term of the sequence must be given.

• An explicit formula for an arithmetic sequence with common difference d is given by an = a1 + d(n − 1). See

Example 13.12.

• An explicit formula can be used to find the number of terms in a sequence. See Example 13.13.

• In application problems, we sometimes alter the explicit formula slightly to an = a0 + dn. See Example 13.14.

13.3 Geometric Sequences

• A geometric sequence is a sequence in which the ratio between any two consecutive terms is a constant.

• The constant ratio between two consecutive terms is called the common ratio.

• The common ratio can be found by dividing any term in the sequence by the previous term. See Example 13.15.

• The terms of a geometric sequence can be found by beginning with the first term and multiplying by the common
ratio repeatedly. See Example 13.16 and Example 13.18.

• A recursive formula for a geometric sequence with common ratio r is given by  an = ran – 1   for n ≥ 2 .

• As with any recursive formula, the initial term of the sequence must be given. See Example 13.17.

• An explicit formula for a geometric sequence with common ratio r is given by  an = a1 rn – 1. See Example

13.19.

• In application problems, we sometimes alter the explicit formula slightly to  an = a0 rn.  See Example 13.20.

13.4 Series and Their Notations

• The sum of the terms in a sequence is called a series.

• A common notation for series is called summation notation, which uses the Greek letter sigma to represent the sum.
See Example 13.21.

• The sum of the terms in an arithmetic sequence is called an arithmetic series.

• The sum of the first n terms of an arithmetic series can be found using a formula. See Example 13.22 and
Example 13.23.

• The sum of the terms in a geometric sequence is called a geometric series.

• The sum of the first n terms of a geometric series can be found using a formula. See Example 13.24 and Example
13.25.

• The sum of an infinite series exists if the series is geometric with –1 < r < 1.

• If the sum of an infinite series exists, it can be found using a formula. See Example 13.26, Example 13.27, and
Example 13.28.

• An annuity is an account into which the investor makes a series of regularly scheduled payments. The value of an
annuity can be found using geometric series. See Example 13.29.
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13.5 Counting Principles

• If one event can occur in m ways and a second event with no common outcomes can occur in n ways, then the first
or second event can occur in m + n ways. See Example 13.30.

• If one event can occur in m ways and a second event can occur in n ways after the first event has occurred, then
the two events can occur in m×n ways. See Example 13.31.

• A permutation is an ordering of n objects.

• If we have a set of n objects and we want to choose r objects from the set in order, we write P(n, r).

• Permutation problems can be solved using the Multiplication Principle or the formula for P(n, r). See Example
13.32 and Example 13.33.

• A selection of objects where the order does not matter is a combination.

• Given n distinct objects, the number of ways to select r objects from the set is C(n, r) and can be found using a

formula. See Example 13.34.

• A set containing n distinct objects has 2n subsets. See Example 13.35.

• For counting problems involving non-distinct objects, we need to divide to avoid counting duplicate permutations.
See Example 13.36.

13.6 Binomial Theorem

• ⎛
⎝
n
r

⎞
⎠  is called a binomial coefficient and is equal to C(n, r).  See Example 13.37.

• The Binomial Theorem allows us to expand binomials without multiplying. See Example 13.38.

• We can find a given term of a binomial expansion without fully expanding the binomial. See Example 13.39.

13.7 Probability

• Probability is always a number between 0 and 1, where 0 means an event is impossible and 1 means an event is
certain.

• The probabilities in a probability model must sum to 1. See Example 13.40.

• When the outcomes of an experiment are all equally likely, we can find the probability of an event by dividing
the number of outcomes in the event by the total number of outcomes in the sample space for the experiment. See
Example 13.41.

• To find the probability of the union of two events, we add the probabilities of the two events and subtract the
probability that both events occur simultaneously. See Example 13.42.

• To find the probability of the union of two mutually exclusive events, we add the probabilities of each of the events.
See Example 13.43.

• The probability of the complement of an event is the difference between 1 and the probability that the event occurs.
See Example 13.44.

• In some probability problems, we need to use permutations and combinations to find the number of elements in
events and sample spaces. See Example 13.45.

CHAPTER 13 REVIEW EXERCISES
Sequences and Their Notation
431. Write the first four terms of the sequence defined by
the recursive formula  a1 = 2,  an = an − 1 + n.

432. Evaluate   6!
(5 − 3)!3!.

433. Write the first four terms of the sequence defined by
the explicit formula  an = 10n + 3.
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434. Write the first four terms of the sequence defined by
the explicit formula  an = n !

n(n + 1).

Arithmetic Sequences
435. Is the sequence  47, 47

21, 82
21, 39

7 ,  ... arithmetic? If so,

find the common difference.

436. Is the sequence  2, 4, 8, 16,  ...  arithmetic? If so,
find the common difference.

437. An arithmetic sequence has the first term  a1 = 18 
and common difference  d = − 8. What are the first five
terms?

438. An arithmetic sequence has terms a3 = 11.7 and

a8 = − 14.6. What is the first term?

439. Write a recursive formula for the arithmetic sequence
−20, − 10, 0,10,…

440. Write a recursive formula for the arithmetic sequence
0,  − 1

2,  − 1,  − 3
2, … , and then find the 31st term.

441. Write an explicit formula for the arithmetic sequence
7
8,  29

24,  37
24,  15

8 , …

442. How many terms are in the finite arithmetic sequence
 12, 20, 28, … , 172?

Geometric Sequences
443. Find the common ratio for the geometric sequence
2.5,  5,  10,  20, …

444. Is the sequence 4,  16,  28,  40, … geometric? If
so find the common ratio. If not, explain why.

445. A geometric sequence has terms  a7 = 16,384  and

 a9 = 262,144 . What are the first five terms?

446. A geometric sequence has the first term  a1 = − 3 
and common ratio  r = 1

2. What is the 8th term?

447. What are the first five terms of the geometric
sequence a1 = 3,  an = 4 ⋅ an − 1?

448. Write a recursive formula for the geometric sequence
1,  13,  19,  1

27, …

449. Write an explicit formula for the geometric sequence
−1

5,  − 1
15,  − 1

45,  − 1
135, …

450. How many terms are in the finite geometric sequence
−5,  − 5

3,  − 5
9, … ,  − 5

59,049 ?

Series and Their Notation
451. Use summation notation to write the sum of terms
1
2m + 5 from m = 0 to m = 5.

452. Use summation notation to write the sum that results
from adding the number 13 twenty times.

453. Use the formula for the sum of the first n terms of
an arithmetic series to find the sum of the first eleven terms
of the arithmetic series 2.5, 4, 5.5, … .

454. A ladder has 15 tapered rungs, the lengths of which
increase by a common difference. The first rung is 5 inches
long, and the last rung is 20 inches long. What is the sum of
the lengths of the rungs?

455. Use the formula for the sum of the first n terms
of a geometric series to find S9 for the series

12,  6,  3,  32, …

456. The fees for the first three years of a hunting club
membership are given in Table 13.6. If fees continue to
rise at the same rate, how much will the total cost be for the
first ten years of membership?

Year Membership Fees

1 $1500

2 $1950

3 $2535

Table 13.6

457. Find the sum of the infinite geometric series

∑
k = 1

∞
45 ⋅ ( − 1

3)
k − 1

.
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458. A ball has a bounce-back ratio of 3
5 the height

of the previous bounce. Write a series representing the
total distance traveled by the ball, assuming it was initially
dropped from a height of 5 feet. What is the total distance?
(Hint: the total distance the ball travels on each bounce is
the sum of the heights of the rise and the fall.)

459. Alejandro deposits $80 of his monthly earnings into
an annuity that earns 6.25% annual interest, compounded
monthly. How much money will he have saved after 5
years?

460. The twins Sarah and Scott both opened retirement
accounts on their 21st birthday. Sarah deposits $4,800.00
each year, earning 5.5% annual interest, compounded
monthly. Scott deposits $3,600.00 each year, earning 8.5%
annual interest, compounded monthly. Which twin will
earn the most interest by the time they are 55 years old?
How much more?

Counting Principles
461. How many ways are there to choose a number from
the set  { − 10, − 6,4,10,12,18,24,32}  that is divisible by
either 4 or 6?

462. In a group of 20 musicians, 12 play piano, 7 play
trumpet, and 2 play both piano and trumpet. How many
musicians play either piano or trumpet?

463. How many ways are there to construct a 4-digit code
if numbers can be repeated?

464. A palette of water color paints has 3 shades of green,
3 shades of blue, 2 shades of red, 2 shades of yellow, and
1 shade of black. How many ways are there to choose one
shade of each color?

465. Calculate P(18, 4).

466. In a group of 5 freshman, 10 sophomores, 3
juniors, and 2 seniors, how many ways can a president,
vice president, and treasurer be elected?

467. Calculate C(15, 6).

468. A coffee shop has 7 Guatemalan roasts, 4 Cuban
roasts, and 10 Costa Rican roasts. How many ways can the
shop choose 2 Guatemalan, 2 Cuban, and 3 Costa Rican
roasts for a coffee tasting event?

469. How many subsets does the set
{1,  3,  5,  … ,  99} have?

470. A day spa charges a basic day rate that includes
use of a sauna, pool, and showers. For an extra charge,
guests can choose from the following additional services:
massage, body scrub, manicure, pedicure, facial, and
straight-razor shave. How many ways are there to order
additional services at the day spa?

471. How many distinct ways can the word DEADWOOD
be arranged?

472. How many distinct rearrangements of the letters of
the word DEADWOOD are there if the arrangement must
begin and end with the letter D?

Binomial Theorem

473. Evaluate the binomial coefficient  ⎛⎝
23
8

⎞
⎠.

474. Use the Binomial Theorem to expand ⎛
⎝3x + 1

2y⎞
⎠
6
.

475. Use the Binomial Theorem to write the first three
terms of (2a + b)17.

476. Find the fourth term of ⎛
⎝3a2 − 2b⎞

⎠
11

without fully

expanding the binomial.

Probability

For the following exercises, assume two die are rolled.

477. Construct a table showing the sample space.

478. What is the probability that a roll includes a 2?

479. What is the probability of rolling a pair?

480. What is the probability that a roll includes a 2 or
results in a pair?

481. What is the probability that a roll doesn’t include a 2
or result in a pair?

482. What is the probability of rolling a 5 or a 6?

483. What is the probability that a roll includes neither a 5
nor a 6?

For the following exercises, use the following data: An
elementary school survey found that 350 of the 500
students preferred soda to milk. Suppose 8 children from
the school are attending a birthday party. (Show
calculations and round to the nearest tenth of a percent.)
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484. What is the percent chance that all the children
attending the party prefer soda?

485. What is the percent chance that at least one of the
children attending the party prefers milk?

486. What is the percent chance that exactly 3 of the
children attending the party prefer soda?

487. What is the percent chance that exactly 3 of the
children attending the party prefer milk?

CHAPTER 13 PRACTICE TEST
488. Write the first four terms of the sequence defined by

the recursive formula a = – 14,  an = 2 + an – 1
2 .

489. Write the first four terms of the sequence defined by

the explicit formula an = n2 – n – 1
n ! .

490. Is the sequence 0.3,  1.2,  2.1,  3, … arithmetic?
If so find the common difference.

491. An arithmetic sequence has the first term a1 = − 4

and common difference d = – 4
3. What is the 6th term?

492. Write a recursive formula for the arithmetic sequence
−2,  − 7

2,  − 5,  − 13
2 , … and then find the 22nd

term.

493. Write an explicit formula for the arithmetic sequence
15.6,  15,  14.4,  13.8, … and then find the 32nd term.

494. Is the sequence  − 2, − 1, − 1
2, − 1

4, … geometric?

If so find the common ratio. If not, explain why.

495. What is the 11th term of the geometric sequence
 − 1.5, − 3, − 6, − 12, … ?

496. Write a recursive formula for the geometric sequence
1,  − 1

2,  14,  − 1
8, …

497. Write an explicit formula for the geometric sequence
4,  − 4

3,  49,  − 4
27, …

498. Use summation notation to write the sum of terms
 3k2 − 5

6k  from  k = − 3  to  k = 15.

499. A community baseball stadium has 10 seats in the
first row, 13 seats in the second row, 16 seats in the third
row, and so on. There are 56 rows in all. What is the seating
capacity of the stadium?

500. Use the formula for the sum of the first n terms of a

geometric series to find ∑
k = 1

7
−0.2 ⋅ (−5)k − 1.

501. Find the sum of the infinite geometric series

∑
k = 1

∞
1
3 ⋅ ⎛

⎝−
1
5

⎞
⎠

k − 1
.

502. Rachael deposits $3,600 into a retirement fund each
year. The fund earns 7.5% annual interest, compounded
monthly. If she opened her account when she was 20 years
old, how much will she have by the time she’s 55? How
much of that amount was interest earned?

503. In a competition of 50 professional ballroom dancers,
22 compete in the fox-trot competition, 18 compete in the
tango competition, and 6 compete in both the fox-trot and
tango competitions. How many dancers compete in the fox-
trot or tango competitions?

504. A buyer of a new sedan can custom order the car
by choosing from 5 different exterior colors, 3 different
interior colors, 2 sound systems, 3 motor designs, and either
manual or automatic transmission. How many choices does
the buyer have?

505. To allocate annual bonuses, a manager must choose
his top four employees and rank them first to fourth. In how
many ways can he create the “Top-Four” list out of the 32
employees?
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506. A rock group needs to choose 3 songs to play at
the annual Battle of the Bands. How many ways can they
choose their set if have 15 songs to pick from?

507. A self-serve frozen yogurt shop has 8 candy toppings
and 4 fruit toppings to choose from. How many ways are
there to top a frozen yogurt?

508. How many distinct ways can the word
EVANESCENCE be arranged if the anagram must end with
the letter E?

509. Use the Binomial Theorem to expand ⎛
⎝
3
2x − 1

2y⎞
⎠
5
.

510. Find the seventh term of ⎛
⎝x

2 − 1
2

⎞
⎠
13

without fully

expanding the binomial.

For the following exercises, use the spinner in Figure
13.25.

Figure 13.25

511. Construct a probability model showing each possible
outcome and its associated probability. (Use the first letter
for colors.)

512. What is the probability of landing on an odd
number?

513. What is the probability of landing on blue?

514. What is the probability of landing on blue or an odd
number?

515. What is the probability of landing on anything other
than blue or an odd number?

516. A bowl of candy holds 16 peppermint, 14
butterscotch, and 10 strawberry flavored candies. Suppose
a person grabs a handful of 7 candies. What is the percent

chance that exactly 3 are butterscotch? (Show calculations
and round to the nearest tenth of a percent.)
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A | APPENDIX
A1 Appendix
Important Proofs and Derivations
Product Rule

loga xy = loga x + loga y

Proof:

Let  m = loga x  and  n = loga y.

Write in exponent form.

x = am   and  y = an.

Multiply.

xy = am an = am + n

am + n = xy
loga(xy) = m + n

= loga x + logb y

Change of Base Rule

loga b = logc b
logc a

loga b = 1
logb a

where  x  and  y  are positive, and  a > 0, a ≠ 1.

Proof:

Let  x = loga b.

Write in exponent form.

ax = b

Take the  logc   of both sides.

logc ax = logc b
xlogc a = logc b

x = logc b
logc a

loga b = logc b
loga b

When  c = b,

loga b = logb b
logb a = 1

logb a

Heron’s Formula

A = s(s − a)(s − b)(s − c)
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where  s = a + b + c
2

Proof:

Let  a, b, and  c  be the sides of a triangle, and  h  be the height.

Figure A1

So  s = a + b + c
2 .

We can further name the parts of the base in each triangle established by the height such that  p + q = c.

Figure A2

Using the Pythagorean Theorem,  h2 + p2 = a2   and  h2 + q2 = b2.

Since  q = c − p, then  q2 = (c − p)2. Expanding, we find that  q2 = c2 − 2cp + p2.

We can then add  h2   to each side of the equation to get  h2 + q2 = h2 + c2 − 2cp + p2.

Substitute this result into the equation  h2 + q2 = b2   yields  b2 = h2 + c2 − 2cp + p2.

Then replacing  h2 + p2  with  a2   gives  b2 = a2 − 2cp + c2.

Solve for  p  to get

p = a2 + b2 − c2

2c

Since  h2 = a2 − p2, we get an expression in terms of  a, b, and  c.
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h2 = a2 − p2

= (a + p)(a − p)

=
⎡

⎣
⎢a +

⎛
⎝a2 + c2 − b2⎞

⎠
2c

⎤

⎦
⎥
⎡

⎣
⎢a −

⎛
⎝a2 + c2 − b2⎞

⎠
2c

⎤

⎦
⎥

=
⎛
⎝2ac + a2 + c2 − b2⎞

⎠
⎛
⎝2ac − a2 − c2 + b2⎞

⎠

4c2

=
⎛
⎝(a + c)2 − b2⎞

⎠
⎛
⎝b2 − (a − c)2⎞

⎠

4c2

= (a + b + c)(a + c − b)(b + a − c)(b − a + c)
4c2

= (a + b + c)( − a + b + c)(a − b + c)(a + b − c)
4c2

= 2s ⋅ (2s − a) ⋅ (2s − b)(2s − c)
4c2

Therefore,

h2 = 4s(s − a)(s − b)(s − c)
c2

h = 2 s(s − a)(s − b)(s − c)
c

And since  A = 1
2ch, then

A = 1
2c2 s(s − a)(s − b)(s − c)

c
= s(s − a)(s − b)(s − c)

Properties of the Dot Product

u · v = v · u

Proof:

u · v = 〈 u1, u2, ...un 〉 · 〈 v1, v2, ...vn 〉
= u1 v1 + u2 v2 + ... + un vn
= v1 u1 + v2 u2 + ... + vn vn

= 〈 v1, v2, ...vn 〉 · 〈 u1, u2, ...un 〉
= v · u

u · (v + w) = u · v + u · w

Proof:

u · (v + w) = 〈 u1, u2, ...un 〉 · ⎛
⎝ 〈 v1, v2, ...vn 〉 + 〈 w1, w2, ...wn 〉 ⎞

⎠

= 〈 u1, u2, ...un 〉 · 〈 v1 + w1, v2 + w2, ...vn + wn 〉
= 〈 u1(v1 + w1), u2(v2 + w2), ...un(vn + wn) 〉
= 〈 u1 v1 + u1 w1, u2 v2 + u2 w2, ...un vn + un wn 〉
= 〈 u1 v1, u2 v2, ..., un vn 〉 + 〈 u1 w1, u2 w2, ..., un wn 〉
= 〈 u1, u2, ...un 〉 · 〈 v1, v2, ...vn 〉 + 〈 u1, u2, ...un 〉 · 〈 w1, w2, ...wn 〉
= u · v + u · w

u · u = |u|2

Proof:
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u · u = 〈 u1, u2, ...un 〉 · 〈 u1, u2, ...un 〉
= u1 u1 + u2 u2 + ... + un un

= u1
2 + u2

2 + ... + un
2

= | 〈 u1, u2, ...un 〉 |2
= v · u

Standard Form of the Ellipse centered at the Origin

1 = x2

a2 + y2

b2

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:

(x − (−c))2 + ⎛
⎝y − 0⎞

⎠
2 + (x − c)2 + ⎛

⎝y − 0⎞
⎠
2 = constant

Figure A3

Consider a vertex.

Figure A4

Then,   (x − (−c))2 + ⎛
⎝y − 0⎞

⎠
2 + (x − c)2 + ⎛

⎝y − 0⎞
⎠
2 = 2a

Consider a covertex.
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Figure A5

Then  b2 + c2 = a2.

(x − ( − c))2 + (y − 0)2 + (x − c)2 + (y − 0)2 = 2a

(x + c)2 + y2 = 2a − (x − c)2 + y2

(x + c)2 + y2 = ⎛
⎝2a − (x − c)2 + y2⎞

⎠
2

x2 + 2cx + c2 + y2 = 4a2 − 4a (x − c)2 + y2 + (x − c)2 + y2

x2 + 2cx + c2 + y2 = 4a2 − 4a (x − c)2 + y2 + x2 − 2cx + y2

2cx = 4a2 − 4a (x − c)2 + y2 − 2cx

4cx − 4a2 = 4a (x − c)2 + y2

− 1
4a

⎛
⎝4cx − 4a2⎞

⎠ = (x − c)2 + y2

a − c
ax = (x − c)2 + y2

a2 − 2xc + c2

a2x2 = (x − c)2 + y2

a2 − 2xc + c2

a2x2 = x2 − 2xc + c2 + y2

a2 + c2

a2x2 = x2 + c2 + y2

a2 + c2

a2x2 = x2 + c2 + y2

a2 − c2 = x2 − c2

a2x2 + y2

a2 − c2 = x2 ⎛
⎝1 − c2

a2
⎞
⎠ + y2

Let  1 = a2

a2.

(A1)
a2 − c2 = x2 ⎛

⎝
a2 − c2

a2
⎞
⎠ + y2

1 = x2

a2 + y2

a2 − c2
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Because  b2 + c2 = a2, then  b2 = a2 − c2.

(A2)
1 = x2

a2 + y2

a2 − c2

1 = x2

a2 + y2

b2

Standard Form of the Hyperbola

1 = x2

a2 − y2

b2

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two
fixed points is constant.

Figure A6

Diagram 1: The difference of the distances from Point P to the foci is constant:

(x − ( − c))2 + (y − 0)2 − (x − c)2 + (y − 0)2 = constant

Diagram 2: When the point is a vertex, the difference is  2a.

(x − (−c))2 + ⎛
⎝y − 0⎞

⎠
2 − (x − c)2 + ⎛

⎝y − 0⎞
⎠
2 = 2a
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(x − ( − c))2 + (y − 0)2 − (x − c)2 + (y − 0)2 = 2a

(x + c)2 + y2 − (x − c)2 + y2 = 2a

(x + c)2 + y2 = 2a + (x − c)2 + y2

(x + c)2 + y2 = ⎛
⎝2a + (x − c)2 + y2⎞

⎠

x2 + 2cx + c2 + y2 = 4a2 + 4a (x − c)2 + y2

x2 + 2cx + c2 + y2 = 4a2 + 4a (x − c)2 + y2 + x2 − 2cx + y2

2cx = 4a2 + 4a (x − c)2 + y2 − 2cx

4cx − 4a2 = 4a (x − c)2 + y2

cx − a2 = a (x − c)2 + y2

⎛
⎝cx − a2⎞

⎠
2

= a2 ⎛
⎝(x − c)2 + y2⎞

⎠

c2 x2 − 2a2 c2 x2 + a4 = a2 x2 − 2a2 c2 x2 + a2 c2 + a2 y2

c2 x2 + a4 = a2 x2 + a2 c2 + a2 y2

a4 − a2 c2 = a2 x2 − c2 x2 + a2 y2

a2 ⎛
⎝a2 − c2⎞

⎠ = ⎛
⎝a2 − c2⎞

⎠x2 + a2 y2

a2 ⎛
⎝a2 − c2⎞

⎠ = ⎛
⎝c2 − a2⎞

⎠x2 − a2 y2

Define  b  as a positive number such that  b2 = c2 − a2.

(A3)a2 b2 = b2 x2 − a2 y2

a2 b2

a2 b2 = b2 x2

a2 b2 − a2 y2

a2 b2

1 = x2

a2 − y2

b2

Trigonometric Identities

Pythagorean Identity

cos2 t + sin2 t = 1
1 + tan2 t = sec2 t
1 + cot2 t = csc2 t

Even-Odd Identities

cos( − t) = cos t
sec( − t) = sec t
sin( − t) = − sin t
tan( − t) = − tan t
csc( − t) = − csc t
cot( − t) = − cot t

Table A1
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Cofunction Identities

cos t = sin⎛
⎝
π
2 − t⎞⎠

sin t = cos⎛
⎝
π
2 − t⎞⎠

tan t = cot⎛⎝
π
2 − t⎞⎠

cot t = tan⎛
⎝
π
2 − t⎞⎠

sec t = csc⎛
⎝
π
2 − t⎞⎠

csc t = sec⎛
⎝
π
2 − t⎞⎠

Fundamental Identities

tan t = sin t
cos t

sec t = 1
cos t

csc t = 1
sin t

cot t = 1
tan t = cos t

sin t

Sum and Difference Identities

cos(α + β) = cos α cos β − sin α sin β
cos(α − β) = cos α cos β + sin α sin β
sin(α + β) = sin α cos β + cos α sin β
sin(α − β) = sin α cos β − cos α sin β
tan(α + β) = tan α + tan β

1 − tan α tan β
tan(α − β) = tan α − tan β

1 + tan α tan β

Double-Angle Formulas

sin(2θ) = 2sin θ cos θ
cos(2θ) = cos2 θ − sin2 θ
cos(2θ) = 1 − 2sin2 θ
cos(2θ) = 2cos2 θ − 1

tan(2θ) = 2tan θ
1 − tan2 θ

Half-Angle Formulas

sinα
2 = ± 1 − cos α

2

cosα
2 = ± 1 + cos α

2

tanα
2 = ± 1 − cos α

1 + cos α
tanα

2 = sin α
1 + cos α

tanα
2 = 1 − cos α

sin α

Table A1
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Reduction Formulas

sin2 θ = 1 − cos(2θ)
2

cos2 θ = 1 + cos(2θ)
2

tan2 θ = 1 − cos(2θ)
1 + cos(2θ)

Product-to-Sum Formulas

cosαcosβ = 1
2

⎡
⎣cos⎛

⎝α − β⎞
⎠ + cos⎛

⎝α + β⎞
⎠
⎤
⎦

sinαcosβ = 1
2

⎡
⎣sin⎛

⎝α + β⎞
⎠ + sin⎛

⎝α − β⎞
⎠
⎤
⎦

sinαsinβ = 1
2

⎡
⎣cos⎛

⎝α − β⎞
⎠ − cos⎛

⎝α + β⎞
⎠
⎤
⎦

cosαsinβ = 1
2

⎡
⎣sin⎛

⎝α + β⎞
⎠ − sin⎛

⎝α − β⎞
⎠
⎤
⎦

Sum-to-Product Formulas

sinα + sinβ = 2sin⎛
⎝
α + β

2
⎞
⎠cos⎛

⎝
α − β

2
⎞
⎠

sinα − sinβ = 2sin⎛
⎝
α − β

2
⎞
⎠cos⎛

⎝
α + β

2
⎞
⎠

cosα − cosβ = − 2sin⎛
⎝
α + β

2
⎞
⎠sin⎛

⎝
α − β

2
⎞
⎠

cosα + cosβ = 2cos⎛
⎝
α + β

2
⎞
⎠cos⎛

⎝
α − β

2
⎞
⎠

Law of Sines

sin α
a = sin β

b = sin γ
c

a
sin α = b

sin β = c
sin γ

Law of Cosines

a2 = b2 + c2 − 2bc cos α
b2 = a2 + c2 − 2ac cos β
c2 = a2 + b2 − 2ab cos γ

Table A1
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ToolKit Functions

Figure A7

Figure A8
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Figure A9

Trigonometric Functions
Unit Circle

Figure A10
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Angle 0 π
6, or 30 ° π

4, or 45 ° π
3, or 60 ° π

2, or 90 °

Cosine 1 3
2

2
2

1
2 0

Sine 0
1
2

2
2

3
2 1

Tangent 0 3
3 1 3 Undefined

Secant 1 2 3
3 2 2 Undefined

Cosecant Undefined 2 2 2 3
3 1

Cotangent Undefined 3 1 3
3 0

Table A2
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INDEX
A
absolute maximum, 294, 379
absolute minimum, 294, 379
absolute value, 272, 353
absolute value equation, 197,
216
absolute value functions, 353,
357
absolute value inequality, 210
addition method, 1217, 1224,
1331
Addition Principle, 1502, 1533
addition property, 206
adjacent side, 835, 892
algebraic expression, 23, 99
altitude, 1060, 1201
ambiguous case, 1063, 1201
amplitude, 907, 967
angle, 810, 892
angle of depression, 843, 892
angle of elevation, 843, 892,
1060
angle of rotation, 1409, 1437
angular speed, 828, 892
annual interest, 1497
annual percentage rate (APR),
656, 793
annuity, 1497, 1533
apoapsis, 1422
arc, 815
arc length, 816, 825, 851, 892
arccosine, 951, 967
Archimedes’ spiral, 1129, 1201
arcsine, 951, 967
arctangent, 951, 967
area, 152, 216
area of a circle, 499
area of a sector, 827, 892
argument, 1138, 1201
arithmetic sequence, 1463,
1465, 1467, 1467, 1488, 1533
arithmetic series, 1489, 1533
arrow notation, 580, 634
associative property of addition,
20, 99
associative property of
multiplication, 19, 99
asymptotes, 1365
augmented matrix, 1286, 1290,
1292, 1306, 1331
average rate of change, 282,
379
axes of symmetry, 1365

axis of symmetry, 476, 481, 634,
1395, 1397

B
base, 16, 99
binomial, 68, 99, 552
binomial coefficient , 1514, 1533
binomial expansion, 1515, 1518,
1533
Binomial Theorem, 1517, 1533
break-even point, 1225, 1331

C
cardioid, 1118, 1201
carrying capacity, 762, 793
Cartesian coordinate system,
108, 216
Cartesian equation, 1103
Celsius, 362
center of a hyperbola, 1365,
1437
center of an ellipse, 1344, 1437
central rectangle, 1365
change-of-base formula, 732,
793
circle, 1249, 1250
circular motion, 917
circumference, 815
co-vertex, 1344
co-vertices, 1345
coefficient, 68, 99, 500, 564,
634
coefficient matrix, 1287, 1289,
1308, 1331
cofunction, 1000
cofunction identities, 841, 1000
column, 1272, 1331
column matrix, 1273
combination, 1533
combinations, 1508, 1514
combining functions, 301
common base, 738
common difference, 1463, 1488,
1533
common logarithm, 690, 793
common ratio, 1476, 1491, 1533
commutative, 303
commutative property of
addition, 19, 99
commutative property of
multiplication, 19, 99
complement of an event , 1527,
1533
completing the square, 179,
181, 216

complex conjugate, 166, 216
Complex Conjugate Theorem,
570
complex number, 161, 216,
1134
complex plane, 161, 216, 1134
composite function, 302, 379
composition of functions, 301
compound inequality, 209, 216
compound interest, 656, 793
compression, 410, 674, 707
conditional equation, 129, 216
conic, 1342, 1364, 1431
conic section, 1437
conic sections, 1159
conjugate axis, 1365, 1437
consistent system, 1213, 1331
constant, 23, 99
constant of variation, 625, 634
continuous, 525
continuous function, 516, 634
convex limaçons, 1120
convex limaҫon , 1201
coordinate plane, 1387
correlation coefficient, 457, 466
cosecant, 874, 892, 932
cosecant function, 932, 933,
979
cosine, 1022, 1024
cosine function, 851, 892, 903,
905, 907, 917
cost function, 300, 1225, 1331
cotangent, 873, 892, 940
cotangent function, 940, 979
coterminal angles, 821, 824,
892
Cramer’s Rule, 1318, 1321,
1326, 1331
cube root, 500
cubic functions, 612
curvilinear path, 1148

D
de Moivre, 1141
De Moivre’s Theorem, 1143,
1144, 1201
decompose a composite
function, 311
decomposition, 1260
decreasing function, 289, 379,
397
decreasing linear function, 397,
466
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degenerate conic sections,
1404, 1437
degree, 68, 99, 507, 634, 811,
892
dependent system, 1213, 1224,
1239, 1331
dependent variable, 226, 379
Descartes, 1134
Descartes’ Rule of Signs, 572,
634
determinant, 1317, 1320, 1321,
1331
difference of squares, 73, 99
dimpled limaçons, 1120
dimpled limaҫon , 1201
direct variation, 625, 634
directrix, 1387, 1393, 1395,
1422, 1430, 1431, 1437
discriminant, 183, 216
displacement, 828
distance formula, 118, 216, 991,
1366, 1388
distributive property, 20, 99
diverge, 1533
diverges, 1493
dividend, 551
Division Algorithm, 552, 562,
634
divisor, 551
domain, 227, 237, 256, 258,
379, 950
domain and range, 256
domain of a composite function,
309
dot product, 1193, 1201
double-angle formulas, 1007,
1049
doubling time, 759, 793
Dürer, 1122

E
eccentricity, 1423, 1437
electrostatic force, 286
elimination, 1250
ellipse, 1168, 1250, 1343, 1344,
1345, 1348, 1354, 1386, 1424,
1430, 1437
ellipsis, 1446
end behavior, 502, 592, 634
endpoint, 285, 810
entry, 1273, 1331
equation, 26, 99, 235
equation in quadratic form, 199
equation in two variables, 111,
216
equations in quadratic form, 216

Euler, 1134
even function, 334, 379, 978
even-odd identities, 977, 1049
event, 1522, 1533
experiment, 1522, 1533
explicit formula, 1446, 1468,
1480, 1533
exponent, 16, 99
Exponential decay, 645
exponential decay, 653, 667,
753, 756, 760, 774
exponential equation, 737
exponential function, 645
exponential growth, 645, 649,
668, 753, 759, 762, 793
exponential notation, 16, 99
extraneous solution, 743, 793
extraneous solutions, 194, 216
extrapolation, 454, 466

F
factor by grouping, 81, 99
Factor Theorem, 563, 634
factorial, 1457
factoring, 172
Fahrenheit, 362
feasible region, 1254, 1331
finite arithmetic sequence, 1469
finite sequence, 1448, 1533
foci, 1343, 1344, 1345, 1366,
1437
focus, 1343, 1387, 1393, 1395,
1422, 1430, 1431
focus (of a parabola), 1437
focus (of an ellipse), 1437
formula, 27, 99, 235
function, 227, 273, 379
function notation, 229
Fundamental Counting
Principle, 1504, 1533
Fundamental Theorem of
Algebra, 568, 570, 634

G
Gauss, 1134, 1233, 1286
Gaussian elimination, 1233,
1289, 1331
general form, 478
general form of a quadratic
function, 481, 634
Generalized Pythagorean
Theorem, 1079, 1201
geometric sequence, 1476,
1491, 1533
geometric series, 1492, 1533
global maximum, 541, 634

global minimum, 541, 634
graph in two variables, 111, 216
gravity, 1172
greatest common factor, 78, 99,
173

H
half-angle formulas, 1014, 1049
half-life, 748, 753, 793
Heaviside method, 1262
Heron of Alexandria, 1086
Heron’s formula, 1086
horizontal asymptote, 583, 590,
634
horizontal compression, 340,
379, 1042
horizontal line, 140, 418, 466
horizontal line test, 244, 379
horizontal reflection, 328, 379
horizontal shift, 321, 379, 671,
702, 904
horizontal stretch, 340, 379
hyperbola, 1364, 1369, 1370,
1371, 1375, 1377, 1380, 1387,
1425, 1428, 1437
hypotenuse, 835, 892

I
identities, 882, 892
identity equation, 129, 216
identity matrix, 1301, 1306,
1331
identity property of addition, 21,
99
identity property of
multiplication, 21, 99
imaginary number, 161, 216
inconsistent equation, 130, 216
inconsistent system, 1213,
1222, 1238, 1331
increasing function, 289, 379,
397
increasing linear function, 397,
466
independent system, 1213,
1331
independent variable, 226, 379
index, 61, 99
index of summation, 1488, 1533
inequality, 1252
infinite geometric series, 1493
infinite sequence, 1448, 1533
infinite series, 1493, 1533
initial point, 1178, 1182, 1201
initial side, 811, 892
inner-loop limaçon , 1201
inner-loop limaçons, 1122
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input, 227, 379
integers, 10, 15, 99
intercepts, 116, 216
Intermediate Value Theorem,
537, 634
interpolation, 454, 466
intersection, 1525
interval, 204, 216
interval notation, 204, 216, 257,
290, 379
inverse cosine function, 951,
967
inverse function, 364, 379, 613
inverse matrix, 1306, 1308
inverse of a radical function, 616
inverse of a rational function,
619
inverse property of addition, 21,
99
inverse property of
multiplication, 21, 100
inverse sine function, 951, 967
inverse tangent function, 951,
967
inverse trigonometric functions,
950, 951, 955, 960
inverse variation, 627, 634
inverse variations, 627
inversely proportional, 627, 634
invertible function, 634
invertible functions, 610
invertible matrix, 1301, 1317
irrational numbers, 12, 15, 100

J
joint variation, 629, 634

K
Kronecker, 1134

L
latus rectum, 1387, 1395, 1437
Law of Cosines, 1080, 1201
Law of Sines, 1062, 1081, 1201
leading coefficient, 68, 100, 507,
634
leading term, 68, 100, 507, 635
least common denominator, 92,
100, 131
least squares regression, 455,
466
lemniscate, 1124, 1201
linear equation, 129, 216
Linear Factorization Theorem,
570, 635
linear function, 394, 396, 466
linear growth, 645

linear inequality, 216
linear model, 438, 451
linear relationship, 451
linear speed, 829, 892
local extrema, 288, 379
local maximum, 288, 379, 541
local minimum, 288, 379, 541
logarithm, 687, 793
logarithmic equation, 744
logarithmic model, 778
logistic growth model, 762, 793
long division, 550
lower limit of summation, 1488,
1533

M
magnitude, 272, 319, 1135,
1178, 1201
main diagonal, 1288, 1331
major and minor axes, 1345
major axis, 1344, 1348, 1437
matrix, 1272, 1273, 1286, 1331
matrix multiplication, 1279,
1303, 1308
matrix operations, 1273
maximum value, 476
measure of an angle, 811, 892
midline, 907, 967
midpoint formula, 122, 216
minimum value, 476
minor axis, 1344, 1437
model breakdown, 453, 466
modulus, 272, 1138, 1201
monomial, 68, 100
Multiplication Principle, 1504,
1533
multiplication property, 206
multiplicative inverse, 1304,
1304
multiplicative inverse of a
matrix, 1301, 1331
multiplicity, 530, 635
mutually exclusive events, 1526,
1533

N
n factorial, 1457, 1533
natural logarithm, 692, 742, 793
natural numbers, 10, 15, 100,
226
negative angle, 812, 892
Newton’s Law of Cooling, 760,
793
nominal rate, 656, 793
non-right triangles, 1060

nondegenerate conic section,
1406, 1437
nondegenerate conic sections,
1404
nonlinear inequality, 1252, 1331
nth term of the sequence, 1446
nth partial sum, 1533
nth root of a complex number,
1144
nth term of a sequence, 1533
nth partial sum, 1487

O
oblique triangle, 1060, 1201
odd function, 334, 379, 977
one-loop limaçon, 1120
one-loop limaҫon , 1201
one-to-one, 668, 686, 723, 732
one-to-one function, 241, 364,
379, 950
opposite side, 835, 892
order of magnitude, 754, 793
order of operations, 16, 100
ordered pair, 109, 216, 226, 258
ordered triple, 1233
origin, 109, 216, 354
outcomes, 1522, 1533
output, 227, 380

P
parabola, 476, 486, 1165, 1246,
1386, 1393, 1397, 1422, 1426,
1437
parallel, 141
parallel lines, 421, 466
parallelograms, 1184
parameter, 1148, 1201
parametric equations, 1148,
1164, 1164
parametric form, 1168
parent function, 702
partial fraction decomposition,
1260, 1331
partial fractions, 1260, 1331
Pascal, 1122
Pascal's Triangle, 1516
perfect square trinomial, 72, 100
periapsis, 1422
perimeter, 152, 217
period, 885, 892, 904, 925, 927,
1031
periodic function, 904, 967
permutation, 1504, 1534
perpendicular, 141
perpendicular lines, 421, 466
pH, 722
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phase shift, 908, 967
piecewise function, 273, 380
piecewise functions, 1451
point-slope form, 401, 466
point-slope formula, 143, 1372
polar axis, 1095, 1201
polar coordinates, 1095, 1097,
1100, 1111, 1202
polar equation, 1104, 1112,
1114, 1202, 1423, 1437
polar form, 1135
polar form of a complex number,
1137, 1202
polar form of a conic, 1432
polar grid, 1095
pole, 1095, 1202
polynomial, 68, 100, 564
polynomial equation, 192, 217
polynomial function, 506, 523,
533, 539, 635
position vector, 1179, 1181
positive angle, 812, 892
power function, 500, 635
power rule for logarithms, 726,
732, 793
principal nth root, 61, 100
principal square root, 54, 100
probability, 1522, 1534
probability model, 1522, 1534
product of two matrices, 1279
product rule for logarithms, 724,
726, 793
product-to-sum formula, 1049
product-to-sum formulas, 1022,
1024
profit function, 1226, 1331
properties of determinants, 1324
Proxima Centauri, 754
Pythagoras, 1134
Pythagorean identities, 976,
1049
Pythagorean Identity, 854, 881,
892
Pythagorean identity, 991
Pythagorean Theorem, 118,
184, 217, 1009, 1043, 1079,
1170

Q
quadrant, 108, 217
quadrantal angle, 813, 892
quadratic, 1264, 1266
quadratic equation, 172, 179,
181, 217, 1037
quadratic formula, 181, 183,
217, 1037

quadratic function, 481, 485
quotient, 551
quotient identities, 979, 1049
quotient rule for logarithms, 725,
793

R
radian, 815, 817, 817, 892
radian measure, 817, 892
radical, 54, 100
radical equation, 194, 217
radical expression, 54, 100
radical functions, 610
radicand, 54, 100, 194
radiocarbon dating, 757
range, 227, 380, 952
rate of change, 282, 380, 438
rational equation, 132, 217
rational expression, 89, 100,
131, 1260, 1266
rational function, 585, 595, 601,
635
rational number, 131
rational numbers, 10, 15, 100
Rational Zero Theorem, 564,
635
ray, 810, 892
real number line, 13, 100
real numbers, 13, 100
reciprocal, 141, 363, 500
reciprocal function, 579
reciprocal identities, 979, 1049
reciprocal identity, 931, 940
rectangular coordinates, 1095,
1097, 1100
rectangular equation, 1104,
1158
rectangular form, 1137, 1168
recursive formula, 1454, 1466,
1478, 1534
reduction formulas, 1012, 1049
reference angle, 822, 863, 877,
892
reflection, 676, 711
regression analysis, 774, 778,
781
regression line, 456
relation, 226, 380
remainder, 551
Remainder Theorem, 562, 635
removable discontinuity, 588,
635
Restricting the domain, 373
resultant, 1183, 1202
revenue function, 1225, 1331
Richter Scale, 685

right triangle, 835, 950
roots, 477, 635
rose curve, 1126, 1202
row, 1272, 1331
row matrix, 1273
row operations, 1288, 1294,
1304, 1305, 1306, 1332
row-echelon form, 1288, 1292,
1332
row-equivalent, 1288, 1332

S
sample space, 1522, 1534
SAS (side-angle-side) triangle,
1079
scalar, 1185, 1202, 1276
scalar multiple, 1186, 1276,
1332
Scalar multiplication, 1185
scalar multiplication, 1202, 1276
scatter plot, 451
scientific notation, 46, 48, 100
secant, 873, 892, 931
secant function, 931
sector of a circle, 827
sequence, 1446, 1463, 1534
series, 1487, 1534
set-builder notation, 204, 261,
380
sigma, 1487
sine, 977, 1023, 1025
sine function, 851, 892, 902,
907, 915, 919
sinusoidal function, 905, 967
slope, 136, 217, 395, 466
slope-intercept form, 395, 396,
401, 466
smooth curve, 516, 635
solution set, 129, 217, 1234,
1332
solving systems of linear
equations, 1217
special angles, 989
square matrix, 1273, 1317
square root property, 178, 217
SSS (side-side-side) triangle,
1079
standard form, 139
standard form of a quadratic
function, 481, 635
standard position, 811, 892,
1179, 1202
stretch, 674
stretching/compressing factor,
928, 929
substitution method, 1216, 1332
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sum and difference formulas for
cosine, 990
sum and difference formulas for
sine, 993
sum and difference formulas for
tangent, 996
sum-to-product formula, 1049
sum-to-product formulas, 1025
summation notation, 1488, 1534
surface area, 609
symmetry test, 1112
synthetic division, 555, 566, 635
system of equations, 1287,
1288, 1290, 1292, 1309
system of linear equations, 444,
1212, 1215, 1216, 1332
system of nonlinear equations,
1246, 1332
system of nonlinear inequalities,
1254, 1332
system of three equations in
three variables, 1321

T
tangent, 873, 893, 925, 926
tangent function, 926, 927, 928,
944, 978
term, 1446, 1463, 1534
term of a polynomial, 68, 100
term of a polynomial function,
506, 635
terminal point, 1178, 1182, 1202
terminal side, 811, 893
transformation, 317, 410
translation, 1348
transverse axis, 1365, 1437
trigonometric equations, 1158
trigonometric functions, 877
trigonometric identities, 1080
trinomial, 68, 100
turning point, 513, 534, 635

U
union of two events, 1524, 1534
unit circle, 817, 835, 851, 865,
893, 1032
unit vector, 1188, 1202
upper limit of summation, 1488,
1534
upper triangular form, 1233

V
variable, 23, 100
varies directly, 625, 635
varies inversely, 627, 635
vector, 1178, 1202
vector addition, 1183, 1202

vertex, 476, 635, 810, 893,
1344, 1344, 1387, 1395
vertex form of a quadratic
function, 479, 635
vertical asymptote, 582, 586,
592, 635, 951
vertical compression, 336, 380
vertical line, 140, 418, 466
vertical line test, 242, 380
vertical reflection, 328, 380
vertical shift, 318, 380, 411, 670,
704, 760, 908
vertical stretch, 336, 380, 410,
707
vertices, 1344, 1345
volume, 152, 217
volume of a sphere, 499

W
whole numbers, 10, 15, 100

X
x-axis, 108, 217
x-coordinate, 109, 217
x-intercept, 116, 217, 416

Y
y-axis, 108, 217
y-coordinate, 109, 217
y-intercept, 116, 217, 395

Z
zero-product property, 173, 217
zeros, 477, 525, 530, 566, 635,
1117
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